首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 183 毫秒
1.
大尺度流型年际变化可能机制的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文将年变周期和非年变周期热力强迫项引进正压涡度方程,用方程的截谱形式实施了几十组时间长度为100年的数值积分,研究了非年变周期热力强迫和大气内部动力过程共同激发的大尺度流型的年际变化问题。在一定的参数集合,当非年变外源强迫的振荡周期与大气内部动力过程单独激发出来的振荡的周期相同时,流型年际振动的振幅明显加大,振动的周期则为倍化。在另外的参数集合,随着非年变强迫参数的渐变,流型年际变化的幅度显示出清楚的突变以及其它富有非线性特色的行为。  相似文献   

2.
The thermal forcings of annual and interannual periodic variations are introduced into the barotropic vorticity equation,by using low order spectral model of the equation,more than 40 numerical experiments whose integration time is larger than 100 model years are performed in order to investigate variations of large-scale flow patterns arising from both external interannual thermal forcing and internal dynamical processes.In certain parametric range,when the frequency of the forcing term with interannual period equals to the frequency which is created by the internal dynamical processes alone,the amplitude of interannual variations of flow patterns increases obviously,and the period becomes double.In other parametric range,the amplitude of interannual variations of flow patterns shows abrupt changes and other nonlinear behavior,along with gradual changes of interannual forcing parameters.  相似文献   

3.
A nonlinear steady-state baroclinic primitive-equation numerical model of atmospheric forced stationarywaves is used to investigate the tropics-extratropics interactions.Newtonian cooling,Rayleigh friction andbiharmonic horizontal diffusion are included in the model.The Eliassen-Palm (EP) cross-section and three-dimensional wave activity flux,which was derived by Plumb (1985) for linear quasi-geostrophic stationarywaves on a zonal flow,are used as diagnostics for the vertical and horizontal propagation of the waves.Results of the numerical experiments and diagnostics analyses suggest that the extratropical influenceon the tropical large-scale motion is important.The mid-latitude orographic forcing,especially of the Qing-hai-Xizang Plateau,and the extratropical thermal forcing make substantial contribution to the main-tenance of the cyclonic circulation over the eastern tropical and subtropical Pacific as well as the inversecirculation over the western Pacific in the upper troposphere.In addition,the longitudinal variation ofdiabatic heating in tropics has a significant influence on the wintertime stationary waves at higher latitudes.  相似文献   

4.
Tropical monsoon circulations exhibit substantial interannual variability. Establishing clear links between this variability and the slowly varying boundary forcing (sea surface temperatures, SSTs, and land surface conditions) has proved difficult. For example, no clear relationships have been found between SST anomalies associated with El Nino/La Nina events and monsoon rainfall. Despite much research over the past 50 years, there are still questions regarding how different components of the land-atmosphere-ocean system contribute to tropical monsoon variability. This study examines the question of land-surface-atmosphere interactions in large-scale tropical convection and their role in rainfall interannual variability. The analysis method is based on a conceptual model of convection energetics applied every day of the simulation at the grid points within the region of interest. This allows for a distinction between the frequency and the characteristic energy and water cycle of these events. With two ensembles of five and three experiments in which different land-surface schemes are used, the relation between land-surface processes and variation of the frequency of convection is studied. It has been found in this modeling study that the formulation of land surface schemes may be important for both the simulation of mean tropical precipitation and its interannual variability by way of the frequency of convective events. Linked to this is an increased response of hydrological cycle over land to SSTAs. Numerous studies have suggested that large-scale factors, such as SST, are the dominant control. However the influence of surface processes depends on the areal extent and distance that separates the region from the ocean. The fact that differences between tropical regions decreases as convection intensifies strengthens this hypothesis. The conclusion is that it is inappropriate to separate the causes of interannual variability between SSTAs and land-surface anomalies to explain precipitation variations as land surface processes play a significant mediating role in the relationship between SSTs and monsoon strength. However there remains the possibility that a substantial portion of variability is due to dynamical processes internal to the atmosphere. Determining the relative roles of internal and lower boundary forcing processes in producing interannual variations in the tropical climate is a major objective of future research.  相似文献   

5.
Low-frequency oscillation(LFO) of a large-scale flow pattern is an important observational characteristic feature. In this paper, under the forcing of annual periodic variation a two-layer quasi-geostrophic low-spectrum model is used for carrying out a prolonged numerical integration of more than 30 model years. In the model atmosphere, the interannual time-scale LFO is implicitly reproduced. The result is quite agreeable with the observational evidence.  相似文献   

6.
外强迫引起的夏季大气环流异常及其机制探讨   总被引:5,自引:1,他引:5       下载免费PDF全文
杨修群  黄士松 《大气科学》1993,17(6):697-702
本文主要探讨了夏季模式大气对热带海温和高纬极冰异常的外强迫响应机制,结果表明,在大气环流模式长时间积分以后,不同的外强迫源均可在全球大气的一些关键性区域激发产生相同的环流异常型,即夏季大气主要异常型对外强迫源地理位置不敏感,很大程度上依赖于大气内部动力学过程.根据以上特点本文提出外强迫引起大气异常存在两类机制,其中外强迫和大气内部动力学过程相互作用机制是产生大气异常的重要动力学途径.  相似文献   

7.
The centennial?Cmillennial variation of the East Asian summer monsoon (EASM) precipitation over the past 1000?years was investigated through the analysis of a millennium simulation of the coupled ECHO-G model. The model results indicate that the centennial?Cmillennial variation of the EASM is essentially a forced response to the external radiative forcing (insolation, volcanic aerosol, and green house gases). The strength of the response depends on latitude; and the spatial structure of the centennial?Cmillennial variation differs from the interannual variability that arises primarily from the internal feedback processes within the climate system. On millennial time scale, the extratropical and subtropical precipitation was generally strong during Medieval Warm Period (MWP) and weak during Little Ice Age (LIA). The tropical rainfall is insensitive to the effective solar radiation forcing (insolation plus radiative effect of volcanic aerosols) but significantly responds to the modern anthropogenic radiative forcing. On centennial time scale, the variation of the extratropical and subtropical rainfall also tends to follow the effective solar radiation forcing closely. The forced response features in-phase rainfall variability between the extratropics and subtropics, which is in contrast to the anti-correlation on the interannual time scale. Further, the behavior of the interannual?Cdecadal variation in the extratropics is effectively modulated by change of the mean states on the millennial time scale, suggesting that the structure of the internal mode may vary with significant changes in the external forcing. These findings imply that on the millennial time scale, (a) the proxy data in the extratropical EA may more sensitively reflect the EASM rainfall variations, and (b) the Meiyu and the northern China rainfall provide a consistent measure for the EASM strength.  相似文献   

8.
To reveal the possible factors affecting the maintenance and interannual variations of the subtropical planetary-scale vortices such as the south Asian anticyclone and the mid-oceanic troughs, a series of nu-merical experiments are conducted with a quasi -geostrophic low-resolution spectral model. Firstly a simu-lation experiment is performed in which the realistic thermal and topographic forcing are incorporated. The results of simulation show a certain similarity to the actual subtropical flow field in July. On the basis of simulation experiment a series of contrast experiments are performed. It is found that the topog-raphic boundary forcing is less important than the thermal forcing in the dynamics of these systems, and that the anomaly of heating field may cause significant change in position and intensity of the south Asian high and the other systems. It is speculated that the response of the subtropical large-scale systems to heat-ing anomaly is an important cause for the interannual variations of circulation, especially the monsoon circulation.  相似文献   

9.
10.
Using ERA-40 reanalysis daily data for the period 1958-2002,this study investigated the effect of transient eddy(TE) on the interannual meridional displacement of summer East Asian subtropical jet(EASJ) by conducting a detailed dynamical diagnosis.The summer EASJ axis features a significant interannual coherent meridional displacement.Associated with such a meridional displacement,the TE vorticity forcing anomalies are characterized by a meridional dipole pattern asymmetric about the climatological EASJ axis.The TE vorticity forcing anomalies yield barotropic zonal wind tendencies with a phase meridionally leading the zonal wind anomalies,suggesting that they act to reinforce further meridional displacement of the EASJ and favor a positive feedback in the TE and time-mean flow interaction.However,The TE thermal forcing anomalies induce baroclinic zonal wind tendencies that reduce the vertical shear of zonal wind and atmospheric baroclinicity and eventually suppress the TE activity,favoring a negative feedback in the TE and time-mean flow interaction.Although the two types of TE forcing tend to have opposite feedback roles,the TE vorticity forcing appears to be dominant in the TE effect on the time-mean flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号