首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文首先从电子密度及电子温度的输运方程和考虑自作用时的电磁波波动方程出发,利用简正模展开的方法推导出泵波在反射区域激发出热自聚焦不稳定性(thermal self-focusing instabilities,TSFI)所需电场阈值以及其增长率的完整数学表达式,并估算了TSFI激发阈值及所对应的有效辐射功率(ERP)的量级.随后利用三维垂直加热的理论模型,结合国际参考电离层(IRI-2012)和中性大气模型(MSIS-E-00)给出的背景参数,数值模拟了大功率高频泵波加热电离层时泵波反射区域电子密度及电子温度因TSFI而产生的变化及发展的过程,并对比分析了不同背景参数对较热效果的影响.结果表明:当高频泵波的加热阈值达到或超过百毫伏每米的量级时,即可激发TSFI,发展出大尺度电子密度及温度不均匀体,这些不均匀体内的密度耗空约为4%~10%,而电子温度剧烈增长,到达背景温度值的1.6~2.1倍;且在相当的加热条件下,背景电子温度越低、电子密度越小,加热效果越显著;电子密度及电子温度的扰动幅度随着加热时间的推移而逐渐减小,即扰动逐渐趋于饱和,且电子温度要快于电子密度达到饱和状态.本文还对泵波反射高度处的电子密度及电子温度变化率进行采样并求得其功率谱密度,分析结果表明:TSFI发展出的大尺度不均匀体满足幂律谱结构,谱指数随着加热的进行逐渐趋于稳定,白天与夜间的幂律谱指数区别不大,但电子密度与电子温度的幂律谱有所区别.  相似文献   

2.
It is well known that the ionospheric plasma response to high-power HF radio waves changes drastically as the heater frequency approaches harmonics of the electron gyrofrequency. These include changes in the spectrum of the stimulated electromagnetic emission, reduction in the anomalous absorption of low-power diagnostic waves propagating through the heated volume, and reduction in the large scale F-region heating. Theoretical models as well as previous experimental evidence point towards the absence of small-scale field-aligned plasma density irregularities at pump frequencies close to electron gyroharmonics as the main cause of these changes. Results presented in this paper are the first direct observations of the reduced striations at the 3rd gyroharmonic made by the CUTLASS radar. In addition, simultaneous EISCAT observations have revealed that the “enhanced ion-line” usually present in the EISCAT ion-line spectrum during the first few seconds after heater switch on, persisted at varying strengths while the heater was transmitting at frequencies close to the 3rd electron gyroharmonics.  相似文献   

3.
We present an analysis of phenomena observed by HF distance-diagnostic tools located in St. Petersburg combined with multi-instrument observation at Tromsø in the HF modified ionosphere during a magnetospheric substorm. The observed phenomena that occurred during the Tromsø heating experiment in the nightside auroral Es region of the ionosphere depend on the phase of substorm. The heating excited small-scale field-aligned irregularities in the E region responsible for field-aligned scattering of diagnostic HF waves. The equipment used in the experiment was sensitive to electron density irregularities with wavelengths 12–15 m across the geomagnetic field lines. Analysis of the Doppler measurement data shows the appearance of quasiperiodic variations with a Doppler frequency shift, fd and periods about 100–120 s during the heating cycle coinciding in time with the first substorm activation and initiation of the upward field-aligned currents. A relationship between wave variations in fd and magnetic pulsations in the Y-component of the geomagnetic field at Tromsø was detected. The analysis of the magnetic field variations from the IMAGE magnetometer stations shows that ULF waves occurred, not only at Tromsø, but in the adjacent area bounded by geographical latitudes from 70.5° to 68° and longitudes from 16° to 27°. It is suggested that the ULF observed can result from superposition of the natural and heater-induced ULF waves. During the substorm expansion a strong stimulated electromagnetic emission (SEE) at the third harmonic of the downshifted maximum frequency was found. It is believed that SEE is accompanied by excitation of the VLF waves penetrating into magneto-sphere and stimulating the precipitation of the energetic electrons (10–40 keV) of about 1-min duration. This is due to a cyclotron resonant interaction of natural precipitating electrons (1–10 keV) with heater-induced whistler waves in the magnetosphere. It is reasonable to suppose that a new substorm activation, exactly above Tromsø, was closely connected with the heater-induced precipitation of energetic electrons.  相似文献   

4.
Excitation of upper hybrid waves associated with the ionospheric heating experiments is assumed to be essential in explaining some of the features of stimulated electromagnetic emissions (SEE). A direct conversion process is proposed as an excitation mechanism of the upper hybrid waves where the energy of an obliquely propagating electromagnetic pump wave is converted into the electrostatic upper hybrid waves due to small-scale density irregularities. We performed electromagnetic particle-in-cell simulations to investigate the energy conversion process in the ionospheric heating experiments. We studied dependence of the amplitude of the excited wave on the propagation angle of the pump wave, scale length of the density irregularity, degree of the irregularity, and thermal velocity of the plasma. The maximum amplitude is found to be 37% of the pump amplitude under an optimum condition.  相似文献   

5.
The artificial ionospheric turbulence occurs in the ionosphere illuminated by high power HF radio waves. There are a lot of irregularities stretched along the geomagnetic field in this region. The investigation of the artificially disturbed ionospheric region is based on the reception of back scattered signals (BSS) which permits the basic parameters of this region to be estimated and its inhomogeneous structure to be described.Experiments were carried out using ‘Sura’ heating facility in the frequency range of ? = 4.7–9 MHz (ordinary mode) with the effective radiated power Peff = 50–70 MW beamed vertically upwards. The most important dynamic and statistical BSS characteristics (the built-up time, the relaxation and autocorrelation times, the BSS amplitude spatial correlation function and power spectra) were measured using probe waves in the frequency range of that made it possible to obtain the basic parameters of the artificial irregularities. The model representation of a disturbed region in a form of a periodic structure gives a possibity to evaluate the scale of the structure, the whole size of the disturbance and its power and to calculate the main BSS characteristics.  相似文献   

6.
A numerical model of the high-latitude ionosphere, which takes into account the convection of the ionospheric plasma, has been developed and utilized to simulate the F-layer response at auroral latitudes to high-power radio waves. The model produces the time variations of the electron density, positive ion velocity, and ion and electron temperature profiles within a magnetic field tube carried over an ionospheric heater by the convection electric field. The simulations have been performed for the point with the geographic coordinates of the ionospheric HF heating facility near Tromso, Norway, when it is located near the midnight magnetic meridian. The calculations have been made for equinox, at high-solar-activity, and low-geomagnetic-activity conditions. The results indicate that significant variations of the electron temperature, positive ion velocity, and electron density profiles can be produced by HF heating in the convecting high-latitude F layer.  相似文献   

7.
The method for estimating the behavior of the ionospheric irregularity motion vector in the artificially disturbed HF ionospheric region has been proposed, and this behavior has been analyzed based on the simultaneous Doppler observations performed on several paths using the method of bi-static backscatter of diagnostic HF signals by small-scale artificial ionospheric irregularities. The Doppler measurements were performed during the modification of the auroral ionosphere by powerful HF radiowaves emitted by the EISCAT heating facility (Tromsø, Norway). It has been obtained that the dynamics of the ionospheric irregularity directions in the F region, calculated based on the Doppler measurements of the total vector of the ionospheric irregularity velocity above the Tromsø EISCAT radar at a frequency of 931 MHz, is in satisfactory agreement with such calculations performed using the three-position method.  相似文献   

8.
We present the results of complex experiments dealing with the impact of powerful HF radiowaves on the high-latitude ionosphere using the European Incoherent Scatter Scientific Association (EISCAT) facilities. During the ionospheric F-region heating by powerful extraordinary (X-mode) polarized HF radiowaves under the conditions of heating near the critical f H frequency f Hf x F2 of the extraordinary wave of the F2-layer, we were first to detect the excitation of intense artificial small-scale ionospheric irregularities (ASIs), accompanied by electron temperature increases by approximately 50%. The results of coordinated satellite and ground-based observations of the powerful HF radiowave impact on the high-latitude ionosphere are considered. During ionospheric F-region heating by powerful HF radiowaves of ordinary polarization (O-mode) during evening hours, the phenomenon of ion outflow accompanied by electron temperature increases and thermal plasma expansion was revealed. Concurrent DMSP-F15 satellite measurements at a height of about 850 km indicate an O+ ion density increase. The CHAMP satellite observations identified ULF emissions at the modulation frequency (3 Hz) of the powerful HF radiowave, generated during modulated emissions of the powerful HF radiowave of O-polarization and accompanied by a substantial increase in the electron temperature and ASI generation.  相似文献   

9.
The results of the experimental studies of the ionospheric effects originating under the action of high-power HF radiowaves, emitted by the SPEAR heating facility into the sporadic E s layer of the polar ionosphere, are presented. The experiment was performed on March 2, 2007, simultaneously at two spaced points: Barentsburg (Spitsbergen, a distance of about 40 km from the SPEAR facility) and Gor’kovskaya observatory near St. Petersburg, located at a distance of about 2000 km from SPEAR. The distributions of the heating signal intensity in the 100 kHz frequency band were measured in Barentsburg. Bistatic backscatter of diagnostic HF signals by small-scale artificial ionospheric irregularities was observed at Gor’kovskaya observatory. Based on an analysis of the experimental data obtained in Barentsburg, it has been found out that a broadband noise-like component originated and additional maximums appeared in the heating signal spectrum. The broadband emission intensity was a factor of 1.5–3 as high as the noise level. The additional maximums were formed in the regions of the positive and negative frequency shift relative to the heating signal frequency and were observed when the heating frequency was lower than the critical frequency of the E s layer; e.g., a high-power HF radiowave reflected from E s . The expression for determining the frequency shift of the additional maximum in the heating signal spectrum at altitudes of the ionospheric E region, taking into account the ion-electron collision frequency, has been obtained. The heating signal spectrum registration was compared with the observations of small-scale artificial ionospheric irregularities and the trajectory modeling of signals scattered by the considered irregularities. The observation results have been analyzed and interpreted taking into account the magnetic and ionospheric data characterizing the background geophysical conditions.  相似文献   

10.
Results are presented from an experimental campaign in April 1996, in which the new CUTLASS (Co-operative UK twin-located Auroral Sounding System) coherent scatter radar was employed to observe artificial field aligned irregularities (FAI) generated by the EISCAT (European Incoherent SCATter) heating facility at Tromso, Norway. The distribution of back-scatter intensity from within the heated region has been investigated both in azimuth and range with the Finland component of CUTLASS, and the first observations of artificial irregularities by the Iceland radar are also presented. The heated region has been measured to extend over a horizontal distance of 170 ± 50 km, which by comparison with a model of the heater beam pattern corresponds to a threshold electric field for FAI of between 0.1 and O.OlV/m. Differences between field-aligned and vertical propagation heating are also presented.  相似文献   

11.
Experimental results from SPEAR HF heating experiments in the polar ionosphere are examined. Bi-static scatter measurements of HF diagnostic signals were carried out on the Pori (Finland)–SPEAR–St. Petersburg path at operational frequencies of 11,755 and 15,400 kHz and the London–SPEAR–St. Petersburg path at frequencies of 12,095 and 17,700 kHz, using a Doppler spectral method. The SPEAR HF heating facility generates heater-induced artificial field-aligned small-scale irregularities (AFAIs), which can be detected by HF diagnostic bi-static radio scatter techniques at St. Petersburg at a distance of about 2000 km. In accordance with the Bragg condition, HF bi-static backscatters were sensitive to small-scale irregularities having spatial sizes of the order of 9–13 m across the geomagnetic field line. The properties and behaviour of AFAIs have been considered in the winter and summer seasons under quiet magnetic conditions and under various status of the polar ionosphere (the presence of “thick” and “thin” sporadic Es layers, different structures of the F2 layer). The experimental results obtained have shown that AFAIs can be excited in the F as well as in the E regions of the polar ionosphere. The excitation of a very intense wide-band spectral component with an abrupt increase in the spectral width up to 16–20 Hz has been found in the signals scattered from striations. Along with a wide-band component, a narrow-band spectral component can be also seen in the Doppler sonograms and in the average spectra of the signals scattered from the SPEAR-induced striations. AFAIs were excited even when the HF heater frequency was up to 0.5 MHz larger than the critical frequency. A simulation of the ray geometry for the diagnostic HF radio waves scattered from AFAIs in the polar ionosphere has been made for the geophysical conditions prevailing during experiments carried out in both the winter and summer seasons.  相似文献   

12.
We describe an experiment in satellite radio-wave probing of the ionosphere, modified by powerful waves from the HF heating facility at Tromsø (Norway) in May 1995. Amplitude scintillations and variations of the phase of VHF signals from Russian navigational satellites passing over the heated region were observed. We show that both large-scale electron density irregularities (several tens of kilometers in size) and small-scale ones (from hundreds of meters to kilometers) can be generated by the HF radiation. Maximum effects caused by small-scale irregularities detected in the satellite signals are observed in the directions sector approximately parallel to the geomagnetic field lines although large-scale structures can be detected within a much larger area. The properties of small-scale irregularities (electron density fluctuations) are investigated by applying a statistical analysis and by studying experimental and model mean values of the logarithm of the relative amplitude of the signal. The results indicate that satellite radio probing can be a supporting diagnostic technique for ionospheric heating and add valuable information to studies of effects produced by HF modification.  相似文献   

13.
With the action of powerful, high-frequency (HF) radio waves, the ionosphere plasma will depart from the equilibrium state and the non-Maxwellian distribution function can be produced. An artificial field-aligned irregularities (AFAI) model is introduced to describe the distortion from the normal shape, and the measured data are analyzed with this model during ionosphere heating at a 186-km height on August 15th, 2006. The electron temperature and density deduced from the AFAI model are compared with the results obtained from a standard procedure. The inversion of the electron temperature is evidently affected, and the overestimation is up to 22.9%. Owing to the introduction of the AFAI model, the new irregularities’ parameters can be obtained, which implies that incoherent scatter radar is feasible as a ground-based instrument to diagnose information on irregularities.  相似文献   

14.
Experimental results concerning the growth and decay times of different spectral components of stimulated electromagnetic emission (SEE) are presented. A new method of measurement, employing a special pulsed pump scheme for the ionospheric plasma modification, has been elaborated and applied for studying HF-induced processes with high time resolution. The measurements performed show that the development and relaxation of different SEE features have an intricate pattern which depends on the emission frequency shift from the pump frequency, on the proximity of the pump frequency to the gyroharmonic frequencies, on the intensity of artificial ionospheric turbulence, and on the ionospheric conditions. The scope of this method for studies of HF plasma turbulence is discussed.  相似文献   

15.
低纬地区电离层电流的人工调制数值模拟   总被引:6,自引:3,他引:3       下载免费PDF全文
利用高频泵波能对低电离层进行有效的人工扰动.采用ELF/VLF调幅高频电波对电离层进行加热,电子温度会随着调制频率振荡,并引起电导率周期性变化,从而使加热区内电离层电流周期性变化,形成等效的ELF/VLF电离层虚拟天线,辐射调制频率范围内的无线电波.早期的电离层人工调制研究主要集中在高纬和极区,本文讨论低纬地区电离层人工调制的可能性.本文的理论研究和数值模拟结果表明,低纬地区低电离层电导率在周期性加热的条件下能有效地被调制,使加热区域形成ELF/VLF波的电流辐射源,并分析了不同加热参数和入射条件对调制效果的影响.  相似文献   

16.
We discuss the propagation of sounding radio waves in the inhomogeneous ionosphere, in the reflection area of which there are small-scale artificial magnetically-positioned irregularities. The propagation of radio waves in such an area, where the lateral dimensions of strongly elongated artificial irregularities are smaller than the wavelength, has a diffraction nature. It is shown that the calculation of diffraction parameters makes it possible to derive the amplitude of density irregularities and their relative area perpendicular to the magnetic field direction. Comparison of theoretical calculations with experimental studies on modification of the electron density altitude profile by heating of the ionosphere with midlatitude stand Sura showed that the relative area of the negative density perturbations can reach several percent.  相似文献   

17.
The mathematical model of the high-latitude ionosphere, developed earlier, is applied to investigate how the modulation regime of the ionospheric HF heating facility near Tromso, Scandinavia, affects the large-scale high-latitude F-layer modification. Simulations are made for distinct cases, in which high-power waves have different modulations, namely, for continuous wave transmission and for pulse operation, with the amplitude of the HF wave being square wave-modulated. The calculations are performed for different lengths of pulses and various time intervals between successive pulses. The frequency of HF waves is chosen to be close to the most effective frequency for the large-scale F2-layer modification. Simulations are made for autumn and low geomagnetic activity conditions both for nocturnal and for daytime conditions. The results of modeling indicate that the most considerable decrease in the F-region electron concentration may be achieved when the heater is operated continuously. Moreover, the perceptible decrease in the F-region electron concentration may take place when the heating facility is operated pulsatily. For the pulse operation, the amplitude of the electron concentration variations depends on the ratio of the length of pulses to the time interval between successive pulses. The higher the latter ratio is, the more the electron concentration variation amplitude ought to be.  相似文献   

18.
基于低电离层加热理论和甚低频电波在地-电离层波导中传播理论,建立低电离层扰动对甚低频电波传播影响的分析模型,并利用实验数据验证了该模型的正确性.据此模型,研究了加热功率、加热波极化以及背景参数所导致的低电离层扰动对不同频率甚低频电波传播的影响.结果表明,低电离层扰动越强,则通过该区域内甚低频波幅度和相位的相对变化越强,通过研究地-电离层波导甚低频信号通过人工扰动区域后幅度和相位的变化,可望用于诊断人工电离层扰动强度.  相似文献   

19.
The experimental studies of the specific behavior of small-scale artificial ionospheric irregularities at midlatitudes, performed using the Sura HF heating facility, are analyzed. The observations were performed in September 2006, using the method of bi-static backscatter by artificial ionospheric irregularities on the Armavir-Sura-St. Petersburg and Samara-Sura-Rostov-on-Don diagnostic paths. It has been detected that the Doppler frequency shift of scattered signals at 3–7 Hz was split on the Armavir-Sura-St. Petersburg path from 1500 to 1600 UT on September 6, 2006. The simultaneous measurements on the Samara-Sura-Rostov-on-Don path indicated that only one signal of bi-static backscatter was present. An analysis of the experimental data, performed using the numerical simulation results, indicated that the ordinary and extraordinary polarization modes of bi-static backscatter signals could be simultaneously observed on September 6, 2006, on the Armavir-Sura-St. Petersburg path.  相似文献   

20.
HF radar observations of mid-latitude sporadic-E irregularities carried out with the Valensole radar in South France are compared with simultaneous ionosonde measurements underneath the irregularity zones. In a previous study of Valensole radar data, it has been shown that HF backscatter from the night-time mid-latitude E region is usually associated with largescale wave-like modulations. To obtain more information on the geophysical conditions prevailing during backscatter events, a new experiment was performed which also included a vertical ionosonde beneath the scattering region. The data to be presented here are from two periods when radar scattering appeared simultaneously with large variations in the virtual height and the Doppler velocity of F-layer reflected echoes measured with the vertical ionosonde, indicating very clearly the passage of atmospheric gravity waves (AGWs). The effect of the atmospheric waves on the sporadic-E layer is not always as marked as it is in the F region. In the first event, the passage of the AGWs is accompanied by an upward followed by a downward movement of the Es-layer. The apparent descending movement of the Es-layer from 135 to 110km in less than 10 min corresponded to a positive (downward) Doppler velocity of 35 m/s measured by the vertical ionosonde, and was accompanied by a range variation in the radar scattering region with a negative rate of about 90–110 m/s. In the second event, the Es-layer is not as strongly disturbed as in the previous one, but, nevertheless, the range variations of the scattering region can still be associated with height fluctuations of the Es-layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号