首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whistler-mode signals from a single VLF transmitter that have propagated in the same duct, have been observed simultaneously at Faraday, Antarctica (65°S, 64°W) and Dunedin, New Zealand (46°S, 171°E). The signals received have group-delay times that differ in the order of 10 ms, which can be explained by the differences in southern-hemisphere sub-ionospheric propagation time from duct exit region to receiver for the two sites. This difference has been used to determine the location of the duct exit region, with confirmation provided by arrival-bearing information from both sites. The whistler-mode signals typically occur one or two days after geomagnetic activity, with Kp\geq5. The sub-ionospheric-propagation model, LWPC, is used to estimate the whistler-mode power radiated from the duct exit region. These results are then combined with estimated loss values for ionospheric and ducted transmission to investigate the role of wave-particle amplification or absorption. On at least half of the events studied, plasmaspheric amplification of the signals appears to be needed to explain the observed whistler-mode signal strengths.  相似文献   

2.
Antenna field 2 of the Tromsø Heating facility consists of six rows of six horizontal crossed full wave dipoles aligned with the rows running geographic east-west. In previous experiments on ELF/VLF wave generation it has been the practice to feed the rows in parallel, with HF radiation amplitude modulated at the ELF/VLF frequency it was desired to radiate (AM configuration). Here we describe how the antenna array was also configured so that it could be fed with a continuous wave (CW) input power but still carry information at an ELF/VLF frequency. To effect this the three southern most rows of the antenna array were driven with a CW signal at 4.04 MHz and the three northernmost rows with a CW signal at frequency greater than 4.04 MHz by the ELF/VLF frequency it was desired to radiate (CW configuration). Experiments were performed with modulation/difference frequencies of 565 and 2005 Hz and the signals were received at the Lycksele Geophysical Observatory, 500 km south of the heating facility. The signals were typically 11 dB greater in the AM than the CW configuration, despite the fact that the average power delivered to the ionosphere in the CW configuration was four times that in the AM configuration. Significant harmonic radiation (both odd and even) was produced in the AM configuration but no harmonic radiation was detected in the CW configuration. A simple theory has been developed to model the fields produced by HF heating using the two techniques (AM,CW). A good agreement has been obtained between the experimental observations and model computations. The model has been extended to show how the relative efficiency of generation, AM/CW, varies with the frequency of the ELF/VLF radiation and HF antenna element spacing. Radiation patterns for the ‘ionospheric ELF/VLF antenna’ have also been derived for the two generation techniques.  相似文献   

3.
In this study, the variations of average amplitude of the very-low-frequency (VLF) signal thunderstorm origin propagating over areas of strong (magnitude >5) earthquakes are considered. Despite the non-stationary state of thunderstorms, a decrease in the amplitude of its VLF signals was usually detected 3–6 days before an earthquake, with subsequent recovery on the day of the event. The effect is similar to the attenuation of the signal amplitude of low-frequency radio stations that is observed for several days before the occurrence of an earthquake. These influences of earthquakes on thunderstorm VLF signals are recorded along different paths (different azimuths and different distances to the earthquake epicenter). The probability that an earthquake of strong magnitude will induce changes in the thunderstorm VLF signal is 60–70%.  相似文献   

4.
We discuss the results of an analysis of digital high-sensitivity ground-based observations of very low frequency (VLF) emissions, carried out in Northern Finland (L = 5.3) in May–June 2012. During this period of time, we found that three high-speed solar wind streams approached the Earth’s magnetosphere and at the front of these fluxes long-lasting intense daytime bursts of VLF emissions were generated in two frequency bands: above and below ~2.5 kHz. At frequencies above ~2.5–3.0 kHz, there were VLF hiss waves, the temporal structure of which consisted of a quasi-periodic sequence of separate stronger spots of noise signals. The low-frequency band was represented by chorus waves, superimposed on intense hiss emissions at frequencies below ~1.5 kHz. The high-frequency (f > 2.5 kHz) waves were elliptic and, predominately, left-hand polarized and the low-frequency waves were right-hand polarized. It was supposed that high-frequency VLF hiss waves were generated at L < 5 and VLF chorus waves were generated at L > 5. We discuss a possible scenario of the generation and propagation of the VLF emissions observed.  相似文献   

5.
This paper is concerned with a new, previously unknown type of high-frequency (above 4 kHz) VLF emissions that were detected during winter VLF campaigns in Kannuslehto (L ~ 5.5), Finland. These previously unknown emissions have been discovered as a result of the application of special digital filtering: it clears the VLF records from pulse signals of intensive atmospherics, which prevent other kinds of VLF emissions in the same frequency range from being seen on spectrograms. As it appears, aside from wellknown bursts of auroral hisses and discrete quasiperiodic emissions, a previously unknown type of daytime right-hand polarized VLF waves is also present at frequencies above 4 kHz. These emissions can persist for several hours as series of separate short discrete wideband (from 4 to 10 kHz and higher) signals, each with a duration between one and several minutes. It has been found that such signals can be observed almost daily in winter. These emissions sound like bird’s chirping to a human ear; for that reason, they were called “bird emissions.” The dynamic spectra of individual signals often resemble flying birds. The signals are observed during daytime, more often in magnetically quiet conditions preceded by geomagnetic disturbances. As a rule, the occurrence of these bird emissions is accompanied by a slight increase in electron density in the lower ionosphere, which is evidence of the precipitation of energetic (>30 keV) electrons. This raises a number of questions as to where and how the VLF bird emissions are generated and how such emissions, at frequencies greatly exceeding half the electron equatorial gyrofrequency at L ~ 5.5, can reach the Earth’s surface.  相似文献   

6.
In the last decades, one of the main research directions in identifying seismic precursors involved monitoring VLF (Very Low Frequency) and LF (Low Frequency) radio waves and analysing their propagation characteristics. Essentially this method consists of monitoring different available VLF and LF transmitters from long distance reception points. The received signal has two major components: the ground wave and the sky wave, where the sky wave propagates by reflection on the lower layers of the ionosphere. It is assumed that before and during major earthquakes, unusual changes may occur in the lower layers of the ionosphere, such as the modification of the charged particles number density and the altitude of the reflection zone. Therefore, these unusual changes in the ionosphere may generate unusual variations in the received signal level.The International Network for Frontier Research on Earthquake Precursors (INFREP) was developed starting with 2009 and consists of several dedicated VLF and LF radio receivers used for monitoring various radio transmitters located throughout Europe. The receivers’ locations were chosen so that the propagation path from these VLF/LF stations would pass over high seismicity regions while others were chosen to obtain different control paths.The monitoring receivers are capable of continuously measuring the received signal amplitude from the VLF/LF stations of interest. The recorded data is then stored and sent to an INFREP database, which is available on the Internet for scientific researchers. By processing and analysing VLF and LF data samples, collected at different reception points and at different periods of the year, one may be able to identify some distinct patterns in the envelope of the received signal level over time. Significant deviations from these patterns may have local causes such as the electromagnetic pollution at the monitoring point, regional causes like existing electrical storms over the propagation path or even global causes generated by high-intensity solar flares. As a consequence, classifying these perturbations and minimizing them (when possible) would represent an important step towards identifying significant pattern deviations caused by seismic activities.Taken into consideration some of the issues mentioned above, this paper intends to present some aspects meant to improve the overall performance of the existing INFREP network. The signal-to-noise ratio improvement of the monitoring receiver may be achieved by relocating the antenna (or even the entire monitoring system if possible) in areas with less electromagnetic pollution within the VLF and LF bands. Other solution may involve replacing the existing electric “whip” antennas with magnetic loop antennas.Regarding the measuring method, long-term averaging of the received signal to reduce the electromagnetic noise should be carefully applied. If the averaging time is too long, there is a risk that, during a seismic event, the details of the received signal envelope would be lost. Moreover, this may reduce the possibility of making correlations between the monitored stations and INFREP receivers in case of sudden ERP (Effective Radiated Power) variations of the VLF/LF stations. For the same reason, the time synchronization of the recorded data using (for instance) GPS technology is highly recommended.Other aspects related to the overall performance improvement of the INFREP network consist of monitoring other VLF/LF stations such as the Krasnodar station (south of Russia), part of the ALPHA/RSDN-20 VLF navigation system, or the 77.5 kHz DCF77 time signal transmitter (near Frankfurt am Main, Germany). Moreover, the installation of a new reception point in Romania (near Cluj-Napoca) for monitoring the Vrancea area (within the Carpathians Mountains) and the Adriatic region will provide complementary scientific data within the network.  相似文献   

7.
ZH-1卫星观测的VLF人工源信号特征分析与全波模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
中国地震电磁监测试验卫星张衡一号(ZH-1)已于2018年2月2日成功发射,正在开展卫星数据在轨测试,并对卫星数据质量进行判定.本文对ZH-1卫星2018年5月至6月夜侧的VLF频段电场功率谱数据进行了分析.通过分析位于不同L值、具有不同发射频率的多个VLF人工源上空的卫星重访轨道观测数据,发现ZH-1卫星记录的人工源信号电场变化标准差与DEMETER卫星记录电场变化标准差几乎一致,说明ZH-1卫星观测数据具有较好的稳定性.通过重访轨道均值与全波模型计算结果对比,发现两者在数值上较为接近,在形态上较为一致,说明ZH-1卫星VLF频段电场功率谱数据具有一定的可靠性.此外,研究了VLF人工源上空及共轭区的电场分布特征和电波传播规律,并与DEMETER卫星的结果进行了对比,结果表明VLF人工源产生的电磁辐射穿透电离层后以导管或者非导管的哨声波模向共轭区传播,因为传播过程中的朗道阻尼,共轭区的电场能量比辐射源顶空更小.VLF人工源位于L1.5时,电磁波传播更容易发生非导管传播,VLF人工源信号导管传播模式在共轭区的电场响应相对于共轭点会发生一定程度北向偏移.  相似文献   

8.
In a previous study it was reported that whistler- mode signals received at Faraday, Antarctica (65°S,64°W) and Dunedin, New Zealand (46°S, 171°E) with entry regions in Pacific longitudes (typically from the VLF transmitter NLK, Seattle, USA) showed an increase in transmission of wave energy as magnetic activity increased. However, signals with entry regions in Atlantic longitudes (typically from the NSS transmitter, Annapolis, USA) did not appear to show such a relationship. This paper reports the results of a study of the same two longitude ranges but with the opposite transmitter providing additional whistler-mode signal information, with L-values in the range 1.8–2.6. Transmissions from NLK once again indicate a relationship between the transmission of wave energy and magnetic activity even though the signals were propagating in Atlantic longitudes, not Pacific. Any trend in NSS events observed at Dunedin was obscured by a limited range of magnetic activity, and duct exit regions so close to the receiver that small-scale excitation effects appeared to be occurring. However, by combining data from both longitudes, i.e Pacific and Atlantic, and using only ducts with exit regions that were > 500 km from the receiver, NSS events were found to show the same trend as NLK events. No significant longitude-dependent or transmitter-dependent variations in duct efficiency could be detected. Duct efficiency increases by a factor of about 30 with Kp = 2–8 and this result is discussed in terms of changes in wave-particle interactions and duct size.  相似文献   

9.
A detailed analysis of the VLF/ELF wave data obtained during a whistler campaign under All India Coordinated Program of Ionosphere Thermosphere Studies (AICPITS) at our low latitude Indian ground station Jammu (geomag. lat. = 22° 26′ N, L = 1.17) has yielded two types of unusual and unique whistler-triggered VLF/ELF emissions. These include (1) whistler-triggered hook emissions and (2) whistler-triggered long enduring discrete chorus riser emissions in VLF/ELF frequency range during night time. Such types of whistler-triggered emissions have not been reported earlier from any of the ground observations at low latitudes. In the present study, the observed characteristics of these emissions are described and interpreted. Dispersion analysis of these emissions show that the whistlers as well as emissions have propagated along a higher geomagnetic field line path with L-values lying ∼L = 4, suggesting that these triggered emissions are to be regarded as mid-latitude emissions. These waves could have propagated along the geomagnetic field lines either in a ducted mode or in a pro-longitudinal (PL) mode. The measured intensity of the triggered emissions is almost equal to that of the source waves and does not vary throughout the period of observation on that day. It is speculated that these emissions may have been generated through a process of resonant interaction of the whistler waves with energetic electrons. Parameters related to this interaction are computed for different values of L and wave amplitude. The proposed mechanism explains some aspects of the dynamic spectra.  相似文献   

10.
We present an analysis of phenomena observed by HF distance-diagnostic tools located in St. Petersburg combined with multi-instrument observation at Tromsø in the HF modified ionosphere during a magnetospheric substorm. The observed phenomena that occurred during the Tromsø heating experiment in the nightside auroral Es region of the ionosphere depend on the phase of substorm. The heating excited small-scale field-aligned irregularities in the E region responsible for field-aligned scattering of diagnostic HF waves. The equipment used in the experiment was sensitive to electron density irregularities with wavelengths 12–15 m across the geomagnetic field lines. Analysis of the Doppler measurement data shows the appearance of quasiperiodic variations with a Doppler frequency shift, fd and periods about 100–120 s during the heating cycle coinciding in time with the first substorm activation and initiation of the upward field-aligned currents. A relationship between wave variations in fd and magnetic pulsations in the Y-component of the geomagnetic field at Tromsø was detected. The analysis of the magnetic field variations from the IMAGE magnetometer stations shows that ULF waves occurred, not only at Tromsø, but in the adjacent area bounded by geographical latitudes from 70.5° to 68° and longitudes from 16° to 27°. It is suggested that the ULF observed can result from superposition of the natural and heater-induced ULF waves. During the substorm expansion a strong stimulated electromagnetic emission (SEE) at the third harmonic of the downshifted maximum frequency was found. It is believed that SEE is accompanied by excitation of the VLF waves penetrating into magneto-sphere and stimulating the precipitation of the energetic electrons (10–40 keV) of about 1-min duration. This is due to a cyclotron resonant interaction of natural precipitating electrons (1–10 keV) with heater-induced whistler waves in the magnetosphere. It is reasonable to suppose that a new substorm activation, exactly above Tromsø, was closely connected with the heater-induced precipitation of energetic electrons.  相似文献   

11.
A protocol for optical dating of potassium-rich feldspar (K-feldspar) is proposed. It utilizes the infrared stimulated luminescence (IRSL) signal measured by progressively increasing the stimulation temperature from 50 to 250 °C in step of 50 °C, so-called multi-elevated-temperature post-IR IRSL (MET-pIRIR) measurements. Negligible anomalous fading was observed for the MET-pIRIR signals obtained at 200 and 250 °C. This was supported by equivalent dose (De) measurements using the IRSL and MET-pIRIR signals. The De values increase progressively from 50 °C to 200 °C, but similar De values were obtained for the MET-pIRIR signal at 200 and 250 °C. Measurement of modern samples and bleached samples indicates that the MET-pIRIR signals have small residual doses less than 5 Gy equivalent to about 1–2 ka. We have tested the protocol using various sedimentary samples with different ages from different regions of China. The MET-pIR IRSL ages obtained at 200 and 250 °C are consistent with independent and/or quartz OSL ages.  相似文献   

12.
Recent Results from Studies of Electric Discharges in the Mesosphere   总被引:3,自引:3,他引:0  
The paper reviews recent advances in studies of electric discharges in the stratosphere and mesosphere above thunderstorms, and their effects on the atmosphere. The primary focus is on the sprite discharge occurring in the mesosphere, which is the most commonly observed high altitude discharge by imaging cameras from the ground, but effects on the upper atmosphere by electromagnetic radiation from lightning are also considered. During the past few years, co-ordinated observations over Southern Europe have been made of a wide range of parameters related to sprites and their causative thunderstorms. Observations have been complemented by the modelling of processes ranging from the electric discharge to perturbations of trace gas concentrations in the upper atmosphere. Observations point to significant energy deposition by sprites in the neutral atmosphere as observed by infrasound waves detected at up to 1000 km distance, whereas elves and lightning have been shown significantly to affect ionization and heating of the lower ionosphere/mesosphere. Studies of the thunderstorm systems powering high altitude discharges show the important role of intracloud (IC) lightning in sprite generation as seen by the first simultaneous observations of IC activity, sprite activity and broadband, electromagnetic radiation in the VLF range. Simulations of sprite ignition suggest that, under certain conditions, energetic electrons in the runaway regime are generated in streamer discharges. Such electrons may be the source of X- and Gamma-rays observed in lightning, thunderstorms and the so-called Terrestrial Gamma-ray Flashes (TGFs) observed from space over thunderstorm regions. Model estimates of sprite perturbations to the global atmospheric electric circuit, trace gas concentrations and atmospheric dynamics suggest significant local perturbations, and possibly significant meso-scale effects, but negligible global effects.  相似文献   

13.
A portable low-power Very Low Frequency (VLF) transmitter using a large square loop antenna has been designed, assembled and tested by the Geological Survey of Canada (GSC) for geological studies of fracture patterns in igneous rock masses. Standard laboratory equipment, consisting of a signal generator, a 1100-W power amplifier and several high-power tuning capacitors, was used for the purpose. Field tests at the Chalk River facilities of Atomic Energy of Canada Limited have demonstrated a remarkable similarity between survey results obtained using the VLF signals from the local loop transmitter and from distant US Navy VLF transmitters. The local loop was used to simulate the fields from navy stations NAA in Cutler, Maine and NSS in Annapolis, Maryland. Conductor axes, mapped by using these navy stations, and by using the loop antenna yielded almost identical results. A survey was also done in the same area with the local loop placed in such a manner that the direction of the VLF field was at 45° to the field directions from NAA and NSS. In this case, the same conductor axes were located with only minor shifts in position, indicating that conductors whose axes lie within 45° of the direction of the primary horizontal magnetic field are mapped. Thus, it is probably sufficient to have two sources with orthogonal VLF fields to map all VLF conductors in an area. Since in most areas at least one navy VLF station can be used, the local loop transmitter can be used to generate a signal at right angles to the direction from the navy transmitter to allow a more complete VLF survey coverage.  相似文献   

14.
The effect of the solar eclipse that occurred on August 1, 2008, on the level of the natural electro-magnetic emission signals in the ELF-VLF range, simultaneously observed at Kamchatka and in Yakutsk, and the variations in the amplitude and phase of signals from the VLF radiostations, registered in Yakutsk, has been considered. The VLF radiostations in Krasnodar, Novosibirsk, and Khabarovsk successively emitted signals at frequencies of 11 905, 12 649, and 14 880 Hz. Based on the observations of the signals from these radiostations, it has been established that the signal amplitudes and phases increased by 3–5% and 30°–45° when the signals crossed the lunar shadow region. The synchronous registration of the ELF-VLF noise emission indicated that a bay-like increase and the following decrease in the emission to the background level was observed at both receiving points during the eclipse from ∼1000 to 1130 UT. This effect was registered at frequencies of 0.6–5.6 kHz in Yakutsk and at lower (30–200 Hz) and higher (2.5–11 kHz) frequencies at Kamchatka. In this case the noise emission intensity maximum was observed when the lunar shadow maximally approached the registration point. At higher frequencies, the emission maximum was observed simultaneously at both points (at 1100 UT) but with a delay relative to the maximum at lower frequencies. The possible causes of the appearance of the solar eclipse effects in the natural ELF-VLF emission are considered.  相似文献   

15.
The observations of subionospheric VLF waves from the Australian VLF transmitter NWC (frequency=19.8 kHz) at the Japanese receiving stations Chofu, Chiba and Kochi have been utilized to identify a possible precursor of ionospheric perturbations to the huge Sumatra earthquake of 26 December 2004. The VLF amplitude data at Japanese stations have indicated the depression in amplitude and also the enhancement in nighttime amplitude fluctuation before the earthquake. The nighttime fluctuation is composed of wave-like structures, and the wavelet analysis and cross-correlation analyses have been performed for those fluctuations. A significant enhancement in the fluctuation spectra in the period 20–30 min to ∼100 min (the frequency range of atmospheric gravity waves) is observed only before the earthquake. Then, the wave-like structures tend to propagate from the NWC–Kochi path to NWC–Chiba path with the time delay of ∼2 h, and so the wave propagation speed is estimated as ∼20 m/s. This finding might be important when we think of lithosphere–ionosphere coupling mechanism.  相似文献   

16.
The thermospheric and ionospheric effects of the precipitating electron flux and field-aligned-current variations in the cusp have been modelled by the use of a new version of the global numerical model of the Earths upper atmosphere developed for studies of polar phenomena. The responses of the electron concentration, ion, electron and neutral temperature, thermospheric wind velocity and electric-field potential to the variations of the precipitating 0.23-keV electron flux intensity and field-aligned current density in the cusp have been calculated by solving the corresponding continuity, momentum and heat balance equations. Features of the atmospheric gravity wave generation and propagation from the cusp region after the electron precipitation and field-aligned current-density increases have been found for the cases of the motionless and moving cusp region. The magnitudes of the disturbances are noticeably larger in the case of the moving region of the precipitation. The thermospheric disturbances are generated mainly by the thermospheric heating due to the soft electron precipitation and propagate to lower latitudes as large-scale atmospheric gravity waves with the mean horizontal velocity of about 690 ms–1. They reveal appreciable magnitudes at significant distances from the cusp region. The meridional-wind-velocity disturbance at 65° geomagnetic latitude is of the same order (100 ms–1) as the background wind due to the solar heating, but is oppositely directed. The ionospheric disturbances have appreciable magnitudes at the geomagnetic latitudes 70°–85°. The electron-concentration and -temperature disturbances are caused mainly by the ionization and heating processes due to the precipitation, whereas the ion-temperature disturbances are influence strongly by Joule heating of the ion gas due to the electric-field disturbances in the cusp. The latter strongly influence the zonal- and meridional-wind disturbances as well via the effects of ion drag in the cusp region. The results obtained are of interest because of the location of the  相似文献   

17.
Here we used the VLF signal data received by the DEMETER satellite, transmitted from various ground VLF transmitters which are located around China, to study the changes in the signal to noise ratio (SNR) before and after the Wenchuan earthquake, which had a magnitude of 8.0. We also found that the SNRs of different frequency signals decreased significantly over the epicenter region before the earthquake, and reverted to their original levels after the earthquake. This phenomenon may be related to the earthquake. Special Foundation of Basic Research from Institute of Geophysics, China Earthquake Administration (Grant No. DQJB08Z08), National Key Technology R & D Program (Grant No. 2008BAC35B01)  相似文献   

18.
B. Singh 《Annales Geophysicae》1997,15(8):1005-1008
A detailed analysis of the VLF emissions data obtained during occasional whistler campaigns at the low-latitude ground station Agra (geomagnetic latitude 17°1 N, L = 1.15) has yielded some unusual discrete VLF emissions of the rising type. These include (1) emissions occurring at time intervals increasing in geommetrical progression, (2) emissions occuring simultaneously in different frequency ranges and (3) emissions observed during daytime. In the present study, the observed characteristics of these emissions are described and interpreted. It is shown that the increasing time delay between different components of the emissions match closely with the propagation time delays between different hops of a whistler of dispersion 19 s1/2, the unusual occurrence of the emissions in two different frequency ranges approximately at the same time may possibly be linked with their generation at two different locations, and the occurrence of emissions during daytime may be due to propagation under the influence of equatorial anomaly.  相似文献   

19.
本文利用搭载在DEMETER卫星上的感应式磁力仪(Instrument Magnetometer Search-Coil,IMSC)探测数据分析了磁场甚低频(Very Low Frequency,VLF)波功率谱的空间分布.在排除地磁扰动影响(Dst≤-30 nT,Kp≥3,AE≥200 nT)的前提下,我们给出200...  相似文献   

20.
The ionospheric D-region (~60 km up to ~95 km) and the corresponding neutral atmosphere, often referred to as the mesosphere–lower thermosphere (MLT), are challenging and costly to probe in situ. Therefore, remote sensing techniques have been developed over the years. One of these is based on very low frequency (VLF, 3–30 kHz) electromagnetic waves generated by various natural and man-made sources. VLF waves propagate within the Earth–ionosphere waveguide and are extremely sensitive to perturbations occurring in the D-region along their propagation path. Hence, measurements of these signals serve as an inexpensive remote sensing technique for probing the lower ionosphere and the MLT region. This paper reviews the use of VLF narrowband (NB) signals (generated by man-made transmitters) in the study of the D-region and the MLT for over 90 years. The fields of research span time scales from microseconds to decadal variability and incorporate lightning-induced short-term perturbations; extraterrestrial radiation bursts; energetic particle precipitation events; solar eclipses; lower atmospheric waves penetrating into the D-region; sudden stratospheric warming events; the annual oscillation; the solar cycle; and, finally, the potential use of VLF NB measurements as an anthropogenic climate change monitoring technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号