首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study a persistent heavy precipitation process caused by a special retracing plateau vortex in the eastern Tibetan Plateau during 21–26 July 2010 using tropical rainfall measuring mission (TRMM) data. Results show that during the whole heavy rainfall process, the precipitation rate of convective cloud is steady for all four phases of the plateau vortex movement. Compared with the convective precipitation clouds, the stratiform precipitation clouds have a higher fraction of area, a comparable ratio of contribution to the total precipitation, and a much lower precipitation rate. Precipitation increases substantially after the vortex moves out of the Tibetan Plateau, and Sichuan Province has the most extensive precipitation, which occurs when the vortex turns back westward. A number of strong convective precipitation cloud centers appear at 3–5 km. With strong upward motion, the highest rain top can reach up to 15 km. In various phases of the vortex evolution, there is always more precipitable ice than precipitable water, cloud ice water and cloud liquid water. The precipitating cloud particles increase significantly in the middle and lower troposphere when the vortex moves eastward, and cloud ice particles increase quickly at 6–8 km when the vortex retraces westward. The center of the latent heat release is always prior to the center of the vortex, and the vortex moves along the latent heat release areas. Moreover, high latent heat is released at 5–8 km with maximum at 7 km. Also, the latent heat release is more significant when the vortex moves out of the Tibetan Plateau than over the Tibetan Plateau.  相似文献   

2.
The diagnostic model of the cumulus convection proposed by Yanai et al. (1973) was applied to the atmosphere over the Tibetan Plateau, and used to estimate the vertical mass flux, entrainment and detrainment, excess temperature and moisture, liquid water content, and condensation and precipitation rates of highland cloud clusters. The re-sults illustrated that in clouds over the Tibetan Plateau, the water vapor condensation rate, liquid water content, and efficiency of the rain generation process are less than those in the tropics (represented by the Marshall Islands region). Therefore, the condensational latent heat released over the Tibetan Plateau, overall, is much smaller than that in the tropics. The water vapor and liquid water detrainment from shallow nonprecipitating cumulus clouds, and their entrainment into deep cumulus clouds, serve as a growing mechanism for the deep precipitating cumulus towers over the Tibetan Plateau. It should be noted that there is a stronger detrainment of liquid water from cumulus clouds and a stronger re-evaporation rate in environment. The process of the condensation-detrainment-re-evaporation-entrainment is repeatedly in progress. It would play an important role in maintaining of cumulus convection on the condition that the supply of moisture is not plentiful over the Tibetan Plateau.The analyses also showed that the cloud mass flux Mc over the Tibetan Plateau is less, and the large-scale av-erage upward motion is much less than those over the Marshall Islands. Stronger compensating downward motion in the cloud environment over the Tibetan Plateau, responsible for the area’s strong environmental heating rate was re-vealed, and would link to the stability of the South Asian High in summer.  相似文献   

3.
利用Advanced Himawari Imager (AHI)/Himawari-8(HW8)云产品分析2017年夏季东亚地区不同下垫面条件对冰云云顶特征的影响,针对不同下垫面条件选择了9个研究区域。结果表明,冰云最常出现在青藏高原和南亚季风区。冰云的发生频率存在南北递减的趋势,并在日本附近有高值中心。冰云云顶的垂直分布高度依赖于纬度,此外还有地形和海陆热力差异的作用。青藏高原和南亚季风区冰云最常发生在6~9 km和6~15 km;冰云云顶温度在南北之间存在明显差异,不同高度的冰云形成方式也存在不同;青藏高原和南亚季风区的冰云光学厚度较高,且冰云光学厚度与发生频率呈正相关。在冰云云顶属性垂直分布中,中国东部冰云发生频率相对于其他区域较低,冰云粒子半径表现出随高度增加先增大后减小的趋势,海洋上的平均冰云粒子半径相对于其他研究区域最大;在中国西部地区,冰云光学厚度存在双峰结构,而其他相对平坦的区域只有一个单峰。  相似文献   

4.
根据WMO(1957)对流层高度的判别方法,利用2007—2013年COSMIC掩星资料计算了对流层高度,并用无线电探空资料对结果进行检验,分析了青藏高原地区对流层顶季节变化特征.结果表明,COSMIC掩星资料和无线电探空资料判定的对流层高度具有很高的线性相关关系,相关系数高达0.976,平均值偏差为0.448 km,...  相似文献   

5.
基于CloudSat卫星资料分析青藏高原东部夏季云的垂直结构   总被引:5,自引:1,他引:4  
张晓  段克勤  石培宏 《大气科学》2015,39(6):1073-1080
本文利用CloudSat卫星资料,对青藏高原东部2006~2010年6~8月云垂直结构的空间分布进行分析,结果表明:(1)夏季青藏高原东部云发展可达到平流层,且高原东部云在5km以下以水云存在,5~10km以液相和固相共存的混态存在,在垂直高度10km以上以冰云存在。由于CloudSat卫星资料云相的反演问题,可能会造成水云和混态云的发展上限偏低,冰云的发展下限抬升。(2)研究区整层水汽输送和云水平均路径空间分布存在一定的差异性,云水含量纬向分布表现为在26.5°~30.5°N附近存在一个明显的峰值区,经向分布表现为95°E以西云水含量低于以东。(3)研究区以单云层为主,尤其在青藏高原主体。单云层平均云层厚度4182 m,云顶高度、云厚限于水汽的输送,表现为由南向北波动下降。多层云发生频率在27°N以北明显减少,说明强烈的对流运动更容易激发多层云的产生。  相似文献   

6.
汪会  郭学良 《气象学报》2018,76(6):996-1013
为了加强对青藏高原深对流云垂直结构的深入认识,利用TRMM、CloudSat和Aqua多源卫星观测资料及地基垂直指向雷达(C波段调频连续波雷达和KA波段毫米波云雷达)资料,对第三次青藏高原大气科学试验期间2014年7月9日13-16时(北京时)发生在那曲气象站附近的深厚强对流云和那曲气象站以西100 km左右的深厚弱对流云的垂直结构特征进行了分析,得到的结果如下:(1)深厚强对流云和深厚弱对流云的水平尺度均较小(10-20 km),垂直发展高度较高(15-16 km,均指海拔高度);深厚强对流云在0℃层以下雷达反射率因子递增非常快,表明对流云内固态降水粒子下落至0℃层以下后融化过程有很重要的作用;在对流减弱阶段有明显的0℃层亮带出现,亮带位于5.5 km左右(距地1 km);(2)对比TRMM测雨雷达和C波段调频连续波雷达观测到的雷达反射率因子,发现TRMM测雨雷达在11 km以下存在高估;(3)深对流云主要为冰相云,云内10 km以上主要是丰富小冰粒子,而10 km以下是较少的大冰晶粒子;深厚强对流云和深厚弱对流云的微物理过程都主要包括混合相过程和冰化过程,混合相过程分为两种:一种是-25℃(深厚强对流云)或-29℃(深厚弱对流云)高度以下以凇附增长为主,另一种是该高度以上主要以冰晶聚合、凝华增长为主,该过程冰晶粒子有效半径增长较快。这些空基和地基的观测证据进一步揭示了青藏高原深对流云的垂直结构特征,为模式模拟青藏高原深对流云的检验提供了依据。   相似文献   

7.
利用1979~2019年NCEP/NCAR再分析资料和中国地面基本气象要素日值数据集(V3.0)的气温和降水资料,首先定义了客观表征冬季青藏高原南北两支绕流变化的指数,然后分析了其不同的变化特征,并采用相关分析、合成分析等方法初步研究了青藏高原南北两支绕流异常变化对中国气温和降水的影响机制。主要结果有:(1)青藏高原冬季北支绕流和南支绕流之间呈显著的负相关;北支(南支)绕流强、南支(北支)绕流弱时,对流层中低纬度地区从高原西部到我国东部沿岸为一个大范围的异常反气旋式(气旋式)环流系统,500 hPa高原的中部为一个异常反气旋(气旋)环流中心。(2)青藏高原冬季南北两支绕流的变化对中国冬季天气气候有显著影响。当青藏高原北支绕流强(弱)时,中国除东北是气温偏低(高)、降水偏多(少)外,河套、青藏高原及长江以南则是气温偏高(低)、降水偏少(多);当南支绕流强(弱)时,中国气温普遍偏低(高),东北及新疆北部是降水偏少(多),南方大部分地区是降水偏多(少)。(3)分析高原绕流异常变化对中国天气气候的影响机制表明:当青藏高原北支绕流强、南支绕流弱时,中国东部35°N以北的对流层中都是异常西北风,35°N以南都是异常东北风,受高原异常纬向绕流影响,对流层大气为明显的“正压结构”;相应的对流层底层从南到北为一致的异常西南风,850 hPa以上35°N的之间为反气旋式切变和下沉运动异常,300 hPa以下异常偏暖,这些条件加强了下沉增温,导致中国东部气温偏高、降水偏少。当青藏高原南支绕流强、北支绕流弱时,对流层中的纬向风异常则为明显的“斜压特征”,异常西风呈现为从对流层低层到高层、低纬度到高纬度的倾斜的带状特征,其下方自华南近地面到华北200 hPa的“三角形”状异常东风,配合相应的经向风异常和华南到华北的异常上升运动,低层为“三角形”状的异常冷气团向南切入到中国南海,中上层为异常偏暖的西南气流在冷气团上自南向北爬升到中高纬度地区,导致中国大范围的气温异常偏低、降水偏多。  相似文献   

8.
Based on data from satellite and surface observations,the horizontal and vertical distributions of clouds over eastern China and the East China Sea are examined.Three maximum centers of cloud cover are clearly visible in the horizontal distribution of total cloud cover.Two of these maxima occur over land.As the clouds mainly originate from the climbing airflows in the southern and eastern slopes of the Tibetan Plateau,they can be classified as dynamic clouds.The third center of cloud cover is over the sea.As the clouds mainly form from the evaporation of the warm Kuroshio Current,they can be categorized as thermodynamic clouds.Although the movement of the cloud centers reflect the seasonal variation of the Asian summer monsoon,cloud fractions of six cloud types that are distinct from the total cloud cover show individual horizontal patterns and seasonal variations.In their vertical distribution,cloud cover over the land and sea exhibits different patterns in winter but similar patterns in summer.In cold seasons,limited by divergent westerlies in the middle troposphere,mid-level clouds prevail over the leeside of the Tibetan Plateau.At the same time,suppressed by strong downdraft of the western Pacific subtropical high,low clouds dominate over the ocean.In warm seasons both continental and marine clouds can penetrate upward into the upper troposphere because they are subject to similar unstable stratification conditions.  相似文献   

9.
朱丽华  范广洲  华维 《大气科学》2015,39(6):1250-1262
本文利用NCEP/NCAR月平均再分析资料及中国596个测站月降水资料,采用线性倾向估计、经验正交函数分解(EOF)、相关分析、合成分析等方法,对青藏高原夏季对流层气温垂直变化及其与降水和环流的关系进行了分析。气温垂直变化特征分析表明:自1971年以来,青藏高原夏季对流层低层至对流层中上部气温呈现显著增暖趋势,对流层上部气温呈现显著变冷趋势,高原对流层低层至中上部气温及对流层上部气温在年际、年代际尺度上均呈较显著负相关,且均存在2~4 a及8~13 a的周期;夏季青藏高原地区沿27.5°N~40°N平均的气温距平垂直分布的EOF分解第一模态特征向量在对流层表现为"下降温上增温"的反相变化,其时间系数呈显著负趋势,且存在1978年及1994年的突变点。高原夏季气温在对流层的上下反相变化与我国夏季降水的关系在年际、年代际尺度上均显示:当高原对流层低层至对流层中上部升温而对流层上部降温时,我国夏季降水表现为南方型,其中以江南至华南地区降水显著偏多而我国东北地区降水显著偏少为主要分布特征;另外,长江流域的局部地区及我国西北的部分地区降水也明显偏少,而华北东部的局部地区、青藏高原中部及东部地区以及新疆西北部地区降水明显偏多;降水异常分布在年代际尺度上比年际尺度更显著。环流分析显示:当高原对流层低层至对流层中上部升温而对流层上部降温时东亚中高纬度地区为异常高压控制,中低纬度地区受异常低压影响。环流场与降水分布有较好的配置关系。  相似文献   

10.
Cloud distribution characteristics over the Tibetan Plateau in the summer monsoon period simulated by the Australian Community Climate and Earth System Simulator(ACCESS) model are evaluated using COSP [the CFMIP(Cloud Feedback Model Intercomparison Project) Observation Simulator Package]. The results show that the ACCESS model simulates less cumulus cloud at atmospheric middle levels when compared with observations from CALIPSO and CloudSat, but more ice cloud at high levels and drizzle drops at low levels. The model also has seasonal biases after the onset of the summer monsoon in May. While observations show that the prevalent high cloud at 9–10 km in spring shifts downward to 7–9 km,the modeled maximum cloud fractions move upward to 12–15 km. The reason for this model deficiency is investigated by comparing model dynamical and thermodynamical fields with those of ERA-Interim. It is found that the lifting effect of the Tibetan Plateau in the ACCESS model is stronger than in ERA-Interim, which means that the vertical velocity in the ACCESS model is stronger and more water vapor is transported to the upper levels of the atmosphere, resulting in more high-level ice clouds and less middle-level cumulus cloud over the Tibetan Plateau. The modeled radiation fields and precipitation are also evaluated against the relevant satellite observations.  相似文献   

11.
中国地区夏季6~8月云水含量的垂直分布特征   总被引:6,自引:4,他引:2  
杨大生  王普才 《大气科学》2012,36(1):89-101
基于观测资料的夏季云水含量时空分布情况对于数值天气预报、气候预测以及人工影响天气试验都十分重要。本文利用CloudSat卫星资料, 分析了2006~2008年中国地区夏季月平均云水含量的垂直和区域变化特征。结果显示, 青藏高原地形以及东亚夏季风对月平均云含水量分布具有明显影响。中国中部纬度上对流层中层的月平均液态水含量比南部及北部的量值大。各月平均云液水含量垂直廓线存在两个不同高度上的峰值区, 原因可能主要是受大尺度参数的控制, 以及受到青藏高原和东亚季风环流的影响。平均冰水含量纬向垂直分布的高值区主要在对流层中上部。本文中所揭示的云水含量特征为天气和气候模式改进、人工影响天气及云—辐射相互作用提供了重要的基础信息。  相似文献   

12.
Yafei YAN  Yimin LIU 《大气科学进展》2019,36(10):1089-1102
Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models.  相似文献   

13.
末次冰期冰盛期中国地区水循环因子变化的模拟研究   总被引:2,自引:1,他引:1  
刘煜  李维亮  何金海  陈隆勋 《气象学报》2008,66(6):1005-1019
ISCCP卫星资料(1983—2006年)的结果显示:青藏高原地区是高云的高值中心;而以四川为中心直到同纬度的中国东南沿海地区是中云的高值区,同时,青藏高原地区是中云的低值中心。利用全球气候模式CCM3嵌套区域模式MM5模拟了现代和末次冰期冰盛期的气候。MM5模拟的结果与ISCCP的卫星资料对比表明:模拟结果再现了中国地区高云和中云分布的主要特征。这暗示云分布的气候特征可能主要由相对湿度决定。同时,通过MM5的结果与NCEP资料的对比也说明,模式可以较好地模拟水汽和温度的垂直分布。在此基础上,研究了末次冰期冰盛期水循环因子的变化。模拟结果显示:末次冰期冰盛期夏季对流层的温度降低,在对流层中上层存在温度降低的中心;而在冬季在南方的对流层中层存在降温中心,在北方的对流层中上层温度升高。大气中水汽含量与温度变化有很好的正相关,除了冬季北方对流层中上层水汽增加外,水汽含量一般降低,而且在近地层降低的最多,随高度增高水汽变化逐渐变小。但是,水汽的相对变化在对流层上层存在降低的高值中心。相对湿度存在变化,最大的变化超过15%,而且有增加,也有减少。在区域尺度相对湿度不是保守的。相对湿度变化与中云和低云的变化一致。在末次冰期冰盛期,中国地区高云量减少,除中国西南地区外,中云和低云量减少,低云量减少的最多。降水的变化与中云和低云的变化相对应,云量增加降水增加,云量减少降水也减少。从相对湿度和有效降水可以看到在西南地区末次冰期冰盛期变得潮湿,在夏季西北地区也变得潮湿。  相似文献   

14.
利用COSMIC掩星资料研究青藏高原地区大气边界层高度   总被引:5,自引:1,他引:4  
周文  杨胜朋  蒋熹  郭启云 《气象学报》2018,76(1):117-133
以往关于青藏高原边界层的研究都是基于个别站点的常规观测,对青藏高原边界层的整体性认识受限。GPS掩星资料具有测量精度高和垂直分辨率高的特性,其廓线中含有大量有价值的边界层信息。利用2007—2013年COSMIC掩星资料,通过计算大气折射率最小梯度来确定边界层高度,并用无线电探空资料对结果进行了检验。在此基础上,对青藏高原地区边界层高度的特征及其形成机制展开了研究,比较了COSMIC掩星确定的边界层高度和ERA-Int的差别,讨论了最小梯度法用于边界层研究的不确定性。结果表明:青藏高原上COSMIC掩星和无线电探空数据检测的边界层高度相关系数为0.786,平均值偏差为0.049 km,均方根误差为0.363 km,COSMIC掩星数据检测的边界层高度和无线电探空的结果非常接近。青藏高原上边界层高度呈现西高东低的分布特征,高原中西部边界层高度主要为1.8—2.3 km,而高原东部边界层为1.4—1.8 km,最大值在高原西南部。青藏高原地区边界层有明显的季节差异,冬季高原上大部分地区边界层高度超过2.0 km;春季大部分地区高度降低,但在受印度季风影响的高原南部有明显的抬升,最大值可超过3.0 km;夏季高原上边界层高度开始升高,大部分地区超过1.8 km;秋季又开始回落。青藏高原以北塔克拉玛干沙漠和高原以南印度季风活动区是两个高值区,北部的沙漠地区边界层高度在夏季最高,南部印度季风活动区在季风爆发前(4月)达到全年最大值。青藏高原中西部地区有水平风辐合以及广泛的上升运动,为边界层的发展提供了动力条件,而东部的下沉运动对边界层的发展有抑制作用。青藏高原边界层各个季节的空间分布与地表感热通量分布一致。COSMIC掩星资料确定的边界层高度和ERA-Int相比,空间分布基本一致但ERA-Int边界层高度明显偏低。当有系统性强逆温存在的时候,或者云中液态水或冰水含量较大时,用最小梯度法检测的边界层高度不确定性增加。   相似文献   

15.
利用1998—2013年热带测雨卫星(TRMM)3A12资料,对南海及其周边地区降水、云和潜热的三维特征及其变化进行了对比研究,把南海及其周边地区分为四个区域:华南地区、中南半岛、马来群岛、南海。结果表明:(1)地面降水率EOF分析的第一、二模态方差贡献率分别为57.16%和8.72%,第一模态向量场均为正值,降水呈现南多北少的分布特征;第二模态向量场体现了降水变化南北反相的特征,马来群岛降水变化与其他三个区域反相。从两个模态时间系数序列看出,1998—2005年整个区域降水总体减少,区域降水北部增多南部减少;2005—2013年整个区域降水总体增多,区域降水南部增多北部减少。(2)南海及其周边地区降水夏秋季多,春冬季少,降水中心春夏季北移,秋冬季南撤,其中马来群岛夏季降水最少,冬季最多;其它三个区域都是夏季降水最多,华南和中南半岛冬季最少,南海春季最少。(3)赤道附近对流降水为主,23 °N以北区域层云降水为主,5~23 °N之间区域两种类型降水比例随季节变化,其中陆地降水比例随季节变化明显,特别是华南地区陆地夏季对流降水比例大于50%,冬季层云降水比例大于80%;海洋对流降水所占比例普遍大于50%,随季节变化小。(4)云冰、云水含量水平分布大值区与降水大值区相对应;二者随高度先增加后减少,云冰在13 km高度达到最大值,云水在2.5 km高度达到最大。春冬季,马来群岛云冰含量最大;夏秋季,南海云冰含量最大。云水含量在四个季节都以南海最大。(5)潜热加热率水平分布大值区与降水大值区相对应;随高度呈双峰分布,峰值分别出现在1~2 km高度和4 km高度处,春冬季马来群岛潜热加热率最大。   相似文献   

16.
基于MODIS产品的中国陆地冰云季节变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011年11月-2016年10月Terra卫星MODIS(moderate-resolution imaging spectroradiometer)3级大气产品数据(MOD08_M3)对中国陆地区域冰云发生概率、有效粒子半径、光学厚度和冰水路径的水平分布与季节变化进行分析。结果表明:冰云特性的水平分布和季节变化特征与东亚季风和强对流天气的发生存在一定联系。近5年冰云发生概率呈上升趋势,季节性变化规律明显,高值区出现在青藏高原东北部;冰云有效粒子水平分布呈现由西南向东北逐渐增加的趋势,总体季节性变化特点不明显,但在纬度较高地区出现随季节变化特征;冰云光学厚度与冰水路径水平分布和季节变化趋势大致相同,呈东南向西北递减趋势,总体季节性变化明显。  相似文献   

17.
青藏高原上空的云及其相关联的降水和辐射影响了高原上空非绝热加热的空间结构。2006年卫星发射升空的CloudSat/CALIPSO卫星提供了定量的、完整的云垂直结构信息。本文回顾了国内外基于该资料进行的青藏高原上云宏观和微观结构特征,云与降水相关性,云辐射效应以及模式中的云-辐射问题方面的研究。指出抬升的青藏高原上水汽较少,限制了高原上云的垂直高度,对云层厚度和层数有显著压缩作用。在云量及其季节变化上,单层云的相对贡献大于亚洲季风区的其他区域;夏季对流云比较浅薄,积云发生频率最高,云内滴谱较宽;降水云以积云和卷云为主,云对总降水的贡献随着云层数增多而减小,降水增强时高层冰粒子的密集度趋于紧密;夏季青藏高原地区云的净辐射效应在8 km高度存在一个厚度仅1 km左右但较强的辐射冷却层,而在其下(4~7 km高度之间)为强的辐射加热层。最后展望了未来需要进一步开展的研究。  相似文献   

18.
利用CloudSat/CALIPSO卫星资料,本文揭示了东亚三个代表性区域的云微物理属性,为评估和改进模式云微物理过程提供重要的观测基础.研究的云微物理量包括云水/冰质量,数浓度和有效半径.研究表明:暖云中云水质量和数浓度随高度增加而减小,有效半径处于8-14μm范围.对于冰云,云冰质量和有效半径随高度增加而减小,而数浓度在垂直方向上变化不大.此外,云微物理属性在不同云型之间存在显著差异:积云的云水质量和数浓度最大,而卷云的云水质量和数浓度最小.从三个区域的对比结果来看,相比于华东和西北太平洋地区,青藏高原地区暖云的云水质量和数浓度较小,而冰云的则较大.  相似文献   

19.
朱怡杰  邱玉珺  陆春松 《气象》2019,45(7):945-957
结合2014年7—8月第三次青藏高原大气科学试验获得的毫米波雷达资料与探空温度资料,利用模糊逻辑法反演了西藏那曲地区夏季云中水成物的相态并对其分布特征开展了研究。首先,分析了层积云、雨层云以及深对流云的典型个例,发现三类云反射率因子、多普勒速度、速度谱宽以及退偏振因子垂直分布均有较大差别,相应的云中水凝物的回波特征与相态分布差别也较大。其次,研究了液相、混合相和冰相云层的云雷达探测特征,发现液相云层在0℃层以下的暖云层和0℃层以上的过冷水云层均具有反射率因子高值中心,混合云层的反射率因子高值中心随高度上升变化不大,冰云层的反射率因子高值主要集中在6 km以上,且随高度上升而趋于集中;三种相态云层出现频率高值分别集中在地面以上1、2~3、3~4 km高度层;液相云层在上午出现频率最高,混合相云层高频率发生在下午,冰相云层在晚上的出现频率最高。三种相态云层出现在上午的高度与下午和晚上相比较低,出现在晚上的高度范围最大;液相云层厚度一般小于0.3 km,冰相云层云顶位于9 km左右高度层时平均厚度最大,中云内的混合相和冰相厚度变化较小。  相似文献   

20.
2010年6月中国南方发生持续性强降水,其强度与2008年6月相当,超过近年来其他年份。但是,与2008年6月相比,2010年6月对流层中低层低值系统活动在青藏高原至长江中下游地区异常频繁,副热带高压(副高)位置异常偏西、强度偏强,导致低层异常风场辐合区及强降水区域相对偏北。分析2010年6月14—24日中国南方连续出现的4次持续性强降水过程,发现南亚高压、对流层中层的中纬度槽脊和西太平洋副高以及低层切变线和东移低涡是造成持续性强降水的主要天气系统。利用WRF模式对2010年6月强降水过程实施显式对流集合模拟试验,在控制试验重现观测到的地面降水和天气系统特征的基础上,在敏感性试验中将青藏高原的地表短波反照率修改为1.0,对比两组模拟试验的结果表明:控制试验中青藏高原的地表感热加热作用使得高原及其周边地区的大气温度发生变化,相应的热成风平衡调整使得对流层低层至高层大气环流和天气系统特征发生显著变化,增强了中国南方的持续性降水。200 hPa青藏高原西部形成反气旋性环流异常,东部形成气旋性环流异常,青藏高原东部南下的冷空气加强,中国南方辐散增强;500 hPa青藏高原北部的脊加强,中国东部的槽加深,副高西北侧的西南风明显增强,从青藏高原向下游传播的正涡度也显著加强;850 hPa的低涡强烈发展并逐步东移,华南沿海的西南低空急流更为强盛,导致降水区的水汽辐合、上升运动及降水强度都增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号