首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Based on the lumped-mass method and rigid-body kinematics theory, a mathematical model of a gravity cage system attacked by irregular waves is developed to simulate the hydrodynamic response of cage system, including the maximum tension of mooring lines and the motion of float collar. The normalized response amplitudes (response amplitude operators) are calculated for the cage motion response in heave and surge, and the mooring line tension response, in regular waves. In addition, a statistical approach is taken to determine the motion and tension transfer functions in irregular waves. In order to validate the numerical model of a gravity cage attacked by irregular waves, numerical predictions have been compared with the experimental observations in the time and frequency domain. The effect of wave incident angle on the float collar motion, mooring line tension and net volume reduction of the gravity cage system in irregular waves is also investigated. The results show that at high frequencies, the cage system has no significant heave motion. It tends to contour itself to longer waves. The variation amplitude of mooring line forces decreases as the wave frequency increases. With the increasing of wave incident angle, the horizontal displacement of the float collar increases.  相似文献   

2.
A numerical model was used to analyze the motion response and mooring tension of a submerged fish reef system. The system included a net attached to a rigid structure suspended up from the bottom with a single, high tension mooring by fixed flotation. The analysis was performed by using a Morison equation type finite element model configured with truss elements. Input forcing parameters into the model consisted of both regular and irregular waves, with and without a steady current. Heave, surge and pitch dynamic calculations of the reef structure were made. Tension response results of the attached mooring line were also computed. Results were analyzed in both the time and frequency domain in which appropriate, linear transfer functions were calculated. The influence of the current was more evident in the tension and heave motion response data. This is most likely the result of the large buoyancy characteristics of the reef structure and the length of the mooring cable. Maximum mooring component tension was found to be 13.9 kN and occurred when the reef was subjected to irregular waves with a co-linear current of 1.0 m/s velocity. The results also showed that the system had little damping (in heave) with damped natural periods of 2.8 s. This combination of system characteristics promotes a possible resonating situation in typical open sea conditions with similar wave periods.  相似文献   

3.
Recent work in the area of open-ocean aquaculture-system dynamics has focused either on the response of fish cages in waves or the steady drag response from ocean currents, not on them combined. In reality, however, the forces bearing on these open-ocean structures are a nonlinear, multidirectional combination of both waves and current profiles. In this paper, a numerical model has been developed to simulate the dynamic response of the gravity cage to waves combined with currents. When current flows are combined with regular waves, gravity-cage motion response (including heave, surge, and pitch) and mooring-line forces have been calculated. To examine the validity of simulated results, a series of physical model tests have been carried out. The results of our numerical simulation are all in close agreement with the experimental data.  相似文献   

4.
Numerical models which account for the multiple response modes of floating wave energy converters (WECs) in operating conditions require experimental data for validation. Measurement and observation of complex hydrodynamic mechanisms are also required to inform the development of modelling tools suitable for the simulation of response to extreme waves. Experimental measurements are reported of the motion of an axisymmetric float to regular and near-focused waves. The mechanical system, incident wave conditions and response in a 2D vertical plane are detailed to facilitate comparison to numerical simulations. The system comprises a heaving float connected to a counterweight by an inextensible cable over two pulleys to provide a simplified representation of the slowly varying surge constraint of a mooring system. Translation of the float is measured using an optical encoder. Motion in heave, surge and pitch are also determined by a position identification method based on analysis of video footage. For low frequency regular waves, the float prescribes an elliptical trajectory and the variation of response amplitude with wave amplitude is linear. At higher frequencies, drift of up to one-third of the float radius is observed and the float oscillates along an arc. More complex motions are observed due to the three large amplitude waves of a near-focused wave group. During these waves the upper surfaces of the float are partly immersed and motion occurs in heave, surge and pitch.  相似文献   

5.
唐友刚  宋凯  王宾 《海洋工程》2015,29(6):835-846
The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of the foundation are studied. By taking into account the elastic effect of blades and tower, the classic quasi-steady blade-element/momentum (BEM) theory is used to calculate the aerodynamic elastic loads. A coupled dynamic model of the turbine-foundation- mooring lines is established to calculate the motion response of floating foundation under Kaimal wind spectrum and regular wave by using the FAST codes. The model experiment is carried out to test damping characteristics and natural motion behaviors of the wind turbine system. The dynamics response is tested by considering only waves and the joint action of wind and waves. It is shown that the wind turbine system can avoid resonances under the action of wind and waves. In addition, the heave motion of the floating foundation is induced by waves and the surge motion is induced by wind. The action of wind and waves is of significance for pitch.  相似文献   

6.
Floating wind turbine has been the highlight in offshore wind industry lately. There has been great effort on developing highly sophisticated numerical model to better understand its hydrodynamic behaviour. A engineering-practical method to study the nonlinear wave effects on floating wind turbine has been recently developed. Based on the method established, the focus of this paper is to quantify the wave nonlinearity effect due to nonlinear wave kinematics by comparing the structural responses of floating wind turbine when exposed to irregular linear Airy wave and fully nonlinear wave. Critical responses and fatigue damage are studied in operational conditions and short-term extreme values are predicted in extreme conditions respectively. In the operational condition, wind effects are dominating the mean value and standard deviation of most responses except floater heave motion. The fatigue damage at the tower base is dominated by wind effects. The fatigue damage for the mooring line is more influenced by wind effects for conditions with small wave and wave effects for conditions with large wave. The wave nonlinearity effect becomes significant for surge and mooring line tension for large waves while floater heave, pitch motion, tower base bending moment and pontoon axial force are less sensitive to the nonlinear wave effect. In the extreme condition, linear wave theory underestimates wave elevation, floater surge motion and mooring line tension compared with fully nonlinear wave theory while quite close results are predicted for other responses.  相似文献   

7.
Monocolumn behavior in waves: Experimental analysis   总被引:1,自引:0,他引:1  
A series of tests with a model of a monocolumn platform with a moonpool were performed at the LabOceano/COPPE, at the Universidade Federal do Rio de Janeiro, with the objective of determining the entrance area at the bottom of the moonpool that minimizes vertical motion in waves. The tests include measurements of monocolumn surge, pitch and heave motion, vertical motion of the water column inside the moonpool, with different mooring systems, in regular, irregular and transient waves.This paper presents experimental results of the monocolumn vertical motion and the internal water column motion in the moonpool in transient waves and results of vertical motion of the water column inside the moonpool with the model held still in transient waves. These measurements allow an analysis of the impact of the moonpool's bottom opening on the monocolumn vertical motion in waves.The theoretical analysis of a mass–spring–damper system with two degrees of freedom, similar to the studied system, has shown some analogy with den Hartog's damped vibration absorber; however, there are significant differences in terms of added mass and coupled terms of added mass and damping coefficients dependent on oscillation frequencies.  相似文献   

8.
Real sea conditions are characterized by multidirectional sea waves. However, the prediction of hull load responses in oblique waves is a difficult problem due to numeral divergence. This paper focuses on the investigation of numerical and experimental methods of load responses of ultra-large vessels in oblique regular waves. A three dimensional nonlinear hydroelastic method is proposed. In order to numerically solve the divergence problem of time-domain motion equations in oblique waves, a proportional, integral and derivative (PID) autopilot model is applied. A tank model measurement methodology is used to conduct experiments for hydroelastic responses of a large container ship in oblique regular waves. To implement the tests, a segmented ship model and oblique wave testing system are designed and assembled. Then a series of tests corresponding to various wave headings are carried out to investigate the vibrational characteristics of the model. Finally, time-domain numerical simulations of the ship are carried out. The numerical analysis results by the presented method show good agreement with experimental results.  相似文献   

9.
《Ocean Engineering》1999,26(5):381-400
This paper outlines a procedure for the derivation of the differential equations describing the free response of a heaving and pitching ship from its stationary response to random waves. The coupled heave–pitch motion of a ship in random seas is modelled as a multi-dimensional Markov process. The partial differential equation describing the transition probability density function, known as the Fokker-Planck equation, for this process is derived. The Fokker-Planck equation is used to derive the random decrement equations for the coupled heave–pitch motion. The parameters in these equations are then identified using a neural network approach. The method is validated using numerical simulations and experimental results. The experimental data was obtained using an icebreaker ship model heaving and pitching in random waves. It is shown that the method produces good results when the system is lightly damped. An extension for using this method to identify couple heave–pitch motion in realistic seas is suggested.  相似文献   

10.
Nonlinear hydrodynamics of a twin rectangular hull under heave oscillation is analyzed using numerical methods. Two-dimensional nonlinear time-domain solutions to both inviscid and viscous problems are obtained and the results are compared with linear, inviscid frequency-domain results obtained in [26] to quantify nonlinear and viscous effects. Finite-difference methods based on boundary-fitted coordinates are used for solving the governing equations in the time domain [2]. A primitive-variables based projection method [6] is used for the viscous analysis and a mixed Eulerian–Lagrangian formulation [11] for inviscid analysis. The algorithms are validated and the order of accuracy determined by comparing the results obtained from the present algorithm with the experimental results of Vugt [22] for a heaving rectangle in the free surface. The present study on the twin-hull hydrodynamics shows that at large and non-resonant regular frequencies, and small amplitude of body oscillation, the fluid viscosity does not significantly affect the wave motion and the radiation forces. At low frequencies however the viscosity effect is found to be significant even for small amplitude of body oscillation. In particular, the hydrodynamic force obtained from the nonlinear viscous analysis is found to be closer to the linear inviscid force than the nonlinear inviscid force to the linear inviscid force, the reason for which is attributed to the wave dampening effect of viscosity. Since the wave lengths generated at smaller frequencies of oscillation are longer and therefore the waves could have a more significant effect on the dynamic pressure on the bottom of the hulls which contribute to the heave force, the correlation between the heave force and the wave elevation is found to be larger at smaller frequencies. Because of nonlinearity, the wave radiation and wave damping force remained nonzero even at and around the resonant frequencies – with the resonant frequencies as determined in [26] using linear potential flow theory. As to be expected, the nonlinear effect on the wave force is found to be significant at all frequencies for large amplitude of oscillation compared to the hull draft. The effect of viscosity on the force, by flow separation, is also found to be significant for large amplitude of body oscillation.  相似文献   

11.
The seakeeping characteristics of a Small Waterplane Area Twin Hull (SWATH) vehicle equipped with fixed stabilizing fins was investigated by experimental and numerical methods The calculation methods range from viscous CFD simulation based on an unsteady RANS approach to Boundary Element Method (BEM) based on Three Dimensional Translating-pulsating Source Green Function (3DTP). Responses of ship motions in head regular waves and nonlinear effects on motion responses with increasing wave amplitude were analyzed. Numerical simulations have been validated by comparisons with experimental tests. The results indicate that the heave and pitch transfer functions depict two peaks with the increase of wave length. Comparisons amongst experimental data and different numerical calculations illustrate that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. The heave and pitch transfer functions see a downward trend with the increasing wave amplitude in the resonant zone at low speed.  相似文献   

12.
A numerical model based on the second-order fully nonlinear Boussinesq equations of Wei et al. [1995. Journal of Waterway, Port, Coastal and Ocean Engineering 121 (5), 251-263] is developed to simulate the Bragg reflection of both regular and irregular surface waves scattered by submerged bars. Particularly for incident regular waves, the computed results are observed to agree very well with the existing experimental data as presented by Davies and Heathershaw [1984. Journal of Fluid Mechanics 144, 419-446] and Kirby and Anton [1990. Proceedings of the 22nd International Conference on Coastal Engineering, ASCE, New York, pp. 757–768). In the case of incident irregular waves, the simulated results reveal that the distribution of Bragg reflection from irregular waves becomes more flat than that of regular waves. Due to lack of experimental data, the numerical results for incident irregular waves are compared with those of the evolution equation of the mild-slope equation [Hsu et al., 2002 Proceedings of the 24th Ocean Engineering Conference in Taiwan, pp. 70–77 (in Chinese)]. In addition, several parameters such as the number of bars, the relative height of bars and the spacing of bars affecting Bragg reflection are also discussed.  相似文献   

13.
A point-absorber-type Wave-Energy Converter (WEC) consisting of a floating vertical inner cylinder and an annular outer cylinder that slides along the inner one is considered. The two cylinders heave differently under wave excitation, and wave energy can be harnessed from the relative heave motion between the two cylinders using a Permanent Magnet Linear Generator (PMLG) as the Power Take-Off unit. A mooring cable is attached to the bottom of the inner cylinder. This paper aims to examine the effect of the stiffness of the mooring cable on the performance of the coaxial-cylinder WEC system. The two limiting cases of no mooring cable (freely floating inner and outer cylinders) and an infinitely stiff mooring cable (fixed inner cylinder) were also considered. To perform the analysis, hydrodynamic and interference coefficients of the two heaving cylinders were computed semi-analytically using the method of matched eigenfunction expansions. Experimentally determined viscous corrections on damping were also included in the model in order to have more realistic predictions. The performance of the system in terms of motion responses and capture width were predicted and discussed for both regular and irregular waves. The results of the analysis indicate that both the freely floating design and the design with rigidly moored inner cylinder are viable. The two limiting cases show similar optimal performances, albeit with very different optimal generator damping. However, an ill-chosen mooring-cable stiffness may cause the inner and the outer cylinders to have the same resonance frequency, eliminating the relative heave motion and leading to almost no energy extraction. This situation needs to be avoided when designing the mooring system for a coaxial-cylinder WEC.  相似文献   

14.
Current paper presents a mathematical model based on 2D-asymmetric wedge water entry to model heave and pitch motions of planing hulls at non-zero heel angles. Vertical and horizontal forces as well as heeling moment due to asymmetric water entry are computed using momentum theory in conjunction with added mass of impact velocity in vertical and horizontal directions. The proposed model is able to compute sway and yaw forces, roll moment, as well as heave and pitch motions in calm water and regular waves. Validity of the proposed model is verified by comparing the results against existing experimental data in both symmetric and asymmetric conditions. Ultimately, different parametric studies are conducted to examine the effects of non-zero heel angle on dynamic vertical motions. The resulting sway and yaw forces due to asymmetric motion are also derived and effects of heel angle on these side forces are investigated.  相似文献   

15.
为了探究激波捕捉类Boussinesq模型在模拟岛礁地形上规则波和不规则波传播的可行性,采用基于完全非线性Boussinesq方程并具有激波捕捉能力的数值模型Funwave-TVD对规则波和不规则波在岛礁地形上的传播进行了数值模拟,通过与试验数据对比,分析模型中空间步长的影响,验证模型在模拟波高、平均水位分布以及波谱空间演变的能力,结果表明:采用合适的空间步长,模型能较好地模拟规则波和不规则波在岛礁地形上的传播和演化过程。对于规则波,较小的空间步长可改善破碎点处波高峰值的预测,并能更好地预测波浪破碎后波高的空间分布,相比结合经验破碎的Boussinesq模型,Funwave-TVD能更好地模拟规则波在岛礁地形上的破碎,以及破碎以后行进涌波的再生成过程;对于不规则波,Funwave-TVD总体而言能较好地模拟涌浪有效波高、次重力波的生成及空间演化和平均水位,但会低估礁坪上次重力波波高,较粗的空间步长也会低估礁坪上涌浪有效波高。  相似文献   

16.
On the parametric rolling of ships using a numerical simulation method   总被引:2,自引:0,他引:2  
B.C. Chang   《Ocean Engineering》2008,35(5-6):447-457
This paper has shown a numerical motion simulation method which can be employed to study on parametric rolling of ships in a seaway. The method takes account of the main nonlinear terms in the rolling equation which stabilize parametric rolling, including the nonlinear shape of the righting arm curve, nonlinear damping and cross coupling among all 6 degrees of freedom. For the heave, pitch, sway and yaw motions, the method uses response amplitude operators determined by means of the strip method, whereas the roll and surge motions of the ship are simulated, using nonlinear motion equations coupled with the other 4 degrees of freedom. For computing righting arms in seaways, Grim's effective wave concept is used. Using these transfer functions of effective wave together with the heave and pitch transfer functions, the mean ship immersion, its trim and the effective regular wave height are computed for every time step during the simulation. The righting arm is interpolated from tables, computed before starting the simulation, depending on these three quantities and the heel angle. The nonlinear damping moment and the effect of bilge keels are also taken into account. The numerical simulation tool has shown to be able to model the basic mechanism of parametric rolling motions. Some main characteristics of parametric rolling of ships in a seaway can be good reproduced by means of the method. Comprehensive parametric analyses on parametric rolling amplitude in regular waves have been carried out, with that the complicated parametric rolling phenomena can be understood better.  相似文献   

17.
Most of the large scaled casualties are caused by loss of structural strength and stability due to the progressive flooding and the effect of waves and wind. To prevent foundering and structural failure, it is necessary to predict the motion of the damaged ship in waves.This paper describes the motion of damaged ship in waves resulting from a theoretical and experimental study. A time domain theoretical model, which can be applied to any type of ship or arrangement, for the prediction of damaged ship motion and accidental flooding has been developed considering the effects of flooding of compartments. To evaluate the accuracy of the model, model tests are carried out in ship motion basin for three different damaged conditions: engine room bottom damage, side shell damage and bow visor damage of Ro–Ro ship in regular and irregular waves with different wave heights and directions.  相似文献   

18.
The reflection of regular and irregular waves from a partially perforated caisson breakwater with a rock-filled core is examined. The present mathematical model is developed by means of the matched eigenfunction method. Numerical results of the present model are compared with the experimental data of different researchers. Numerical examples are given to examine the effect of rock fill on the reflection coefficient. The differences between regular and irregular waves are also investigated by means of theoretical and experimental results. It is found that the minimum reflection coefficient of irregular waves is larger than that of corresponding regular waves, but the contrary is the case for the maximum reflection coefficient.  相似文献   

19.
The reflection of regular and irregular waves from a partially perforated caisson breakwater with a rock-filled core is examined. The present mathematical model is developed by means of the matched eigenfunction method. Numerical results of the present model are compared with the experimental data of different researchers. Numerical examples are given to examine the effect of rock fill on the reflection coefficient. The differences between regular and irregular waves are also investigated by means of theoretical and experimental results. It is found that the minimum reflection coefficient of irregular waves is larger than that of corresponding regular waves, but the contrary is the case for the maximum reflection coefficient.  相似文献   

20.
A Time Domain Computation Method for Dynamic Behavior of Mooring System   总被引:1,自引:1,他引:0  
A quasi-steady time domain method is developed for the prediction of dynamic behavior of amooring system under the environmental disturbances,such as regular or irregular waves,winds and cur-rents.The mooring forces are obtained in a static sense at each instant.The dynamic feature of the moor-ing cables can be obtained by incorporating the extended 3-D lumped-mass method with the known shipmotion history.Some nonlinear effects,such as the influence of the instantaneous change of the wettedhull surface on the hydrostatic restoring forces and Froude-Krylov forces,are included.Thecomputational results show a satisfactory agreement with the experimental ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号