首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface. Foundation item: Joint Earthquake Science Foundation of China (201001). Contribution No. RCEG200305, Research Center of Exploration Geophysics, China Earthquake Administration.  相似文献   

2.
Fracturing and hydrothermal alteration in normal fault zones   总被引:9,自引:0,他引:9  
Large normal fault zones are characterized by intense fracturing and hydrothermal alteration. Displacement is localized in a slip zone of cataclasite, breccia and phyllonite surrounding corrugated and striated fault surfaces. Slip zone rock grades into fractured, but less comminuted and hydrothermally altered rock in the transition zone, which in turn grades abruptly into the wall rock. Fracturing and fluid flow is episodic, because permeability generated during earthquakes is destroyed by hydrothermal processes during the time between earthquakes.Fracture networks are described by a fracture fabric tensor (F). The permeability tensor (k) is used to estimate fluid transport properties if the trace of F is sufficiently large. Variations in elastic moduli and seismic velocities between fault zone and wall rock are estimated as a function of fracture density (). Fracturing decreases elastic moduli in the transition zone by 50–100% relative to the country rock, and similar or even greater changes presumably occur in the slip zone.P-andS-wave velocity decrease, andV p /V s increases in the fault zone relative to the wall rock. Fracture permeability is highly variable, ranging between 10–13 m2 and 10–19 m2 at depths near 10 km. Changes in permeability arise from variations in effective stress and fracture sealing and healing.Hydrothermal alteration of quartzo-feldspathic rock atT>300°C creates mica, chlorite, epidote and alters the quartz content. Alteration changes elastic moduli, but the changes are much less than those caused by fracturing.P-andS-wave velocities also decrease in the hydrothermally altered fault rock relative to the country rock, and there is a slight decrease inV p /V s , which partially offsets the increase inV p /V s caused by fracturing.Fracturing and hydrothermal alteration affect fault mechanics. Low modulus rock surrounding fault surfaces increases the probability of exceeding the critical slip distance required for the onset of unstable slip during rupture initiation. Boundaries between low modulus fault rock and higher modulus wall rock also act as rupture guides and enhance rupture acceleration to dynamic velocity. Hydrothermal alteration at temperatures in excess of 300°C weakens the deeper parts of the fault zone by producingphyllitic mineral assemblages. Sealing of fracture in time periods between large earthquakes generates pods of abnormally pressured fluid which may play a fundamental role in the initiation of large earthquakes.  相似文献   

3.
The deep seismic reflection data on profile HY2 are reprocessed by the method of simultaneous inversion of velocity distribution and interface position. By the travel-time inversion with the data of the diving wave Pg and fault plane reflection wave, we determine the geometric form and velocity of Haiyuan fault zone interior and surrounding rock down to 10 km depth. The measured data show that the amplitudes have strong attenuation in the range of stake number 37–39 km, suggesting the fault zone has considerable width in the crustal interior. The results of this paper indicate that to the north of the fault zone the crystalline basement interface upheaves gradually from southwest to northeast and becomes shallow gradually towards northeast, and that to the south of the fault zone, within the basin between Xihua and Nanhua mountains, the folded basement becomes shallow gradually towards southwest. The obliquity of the fault zone is about 70° above the 3 km depth, about 60° in the range of the 3–10 km depths. From the results of this paper and other various citations, we believe that Haiyuan fault zone is in steep state from the Earth’s surface to the depth of 10 km. Foundation item: Joint Seismological Science Foundation of China (201001) and State Key Basic Research Development and Programming Project (95-13-02-02). Contribution No. RCEG200308, Exploration Geophysical Center, China Earthquake Administration.  相似文献   

4.
Introduction South China Sea (SCS) is located in the convergence zone between Euro-Asian plate, Pacific plate (Philippine plate) and Indian plate. Interactions of three plates made the crust of this region suffer tectonic stress in many directions and made the South China Sea be in the complex environ-ment of the tectonic stress. There are four different marginal types in the surrounding of the South China Sea: The tectonic zone of the rifting margin in the north of SCS, the NS direct…  相似文献   

5.
Seismo-tectonic areas of historical strong earthquakes with M S≥7 along Xianshuihe-Xiaojiang fault zone are divided, and their individual fault-pattern and tectonic geomorphology are analyzed. Those strong-earthquake areas are located in some special parts of the fault zone, where the major branch-faults of the fault zone form left stepping, parallel, and fork-like patterns. In the strong-earthquake areas structurally complicated basins are developed, such as pull-apart basins in fork-like area, in double stepping area, and in stepping and fork-like areas. Foundation item: Chinese Joint Seismological Science Foundation (9507424). Contribution No. 2001A003, Institute of Crustal Dynamics, China Seismological Bureau.  相似文献   

6.
Crustal structure of Dabieshan orogenic belt   总被引:2,自引:0,他引:2  
The crustal structures ofP velocity and density on the deep seismic sounding profile across the Ilabieshan orogenic belt are presented. There is a 5-km-thick crustal “root” between the Yuexi and Xiaotian where the elevation is highest on the profile. An apparent Moho offset of 4. 5 km beneath the Xiaotian-Mozitan fault marks the paleo-suture of the Triassic collision. A high-velocity anomaly zone at the depth below 3 km beneath the ultra-high pressure (UHP) zone may be correlated to the higher content of UHP metamorphic rocks. Project supported by the National Natural Science Foundation of China and the Joint Earthquake Science Foundation.  相似文献   

7.
Barkam-Luqu-Gulang deep seismic sounding profile runs from north of Sichuan Province to south of Gansu Province. It is located at the northeastern edge of Tibetan Plateau and crosses eastern A’nyemaqên suture zone. The upper crust structures around eastern A’nyemaqên suture zone and its adjacent area are reconstructed based on the arrival times of refracted Pg and Sg waves by using finite difference method, ray tracing inversion, time-term method and travel-time curve analysis. The results show that the depth variation of basement along profile is very strong as indicated by Pg and Sg waves. The basement rose in Zoigê basin and depressed in eastern A’nyemaqên suture zone, and it gradually rose again northward and then depressed. The results also indicate that eastern A’nyemaqên suture zone behaves as inhomogeneous low velocity structures in the upper crust and is inclined toward the south. Hoh Sai Hu-Maqên fault, Wudu-Diebu fault and Zhouqu-Liangdang fault are characterized by low velocity distributions with various scales. The distinct variation in basement depth occurred near Hoh Sai Hu-Maqên fault and Zhouqu-Liangdang fault, which are main tectonic boundaries of A’nyemaqên suture zone. Wudu-Diebu fault, located at the depth variation zone of the basement, possibly has the same deep tectonic background with Zhouqu-Liangdang fault. The strongly depressed basement characterized by low velocity distribution and lateral inhomogeneity in A’nyemaqên suture zone implies crushed zone features under pinching action. Foundation item: National Natural Science Foundation of China (40334040).  相似文献   

8.
In this paper the relation between fault movement and stress state in deep crust is discussed, based on synthetic analysis of the crustal stresses measured over the world and the concerned data of focal mechanism. Using Coulomb criterion for shear failure and frictional slip, analytical expressions for estimating stabilities of intact rock and existing fault in the crust and for identifying the type of faulting (normal, strike-slip or thrust fault) are derived. By defining the Failure FunctionF m and the Fraction FunctionF f, which may describe steadiness of crustal rock and existing fault, respectively, a synthetic model is set up to consider both fracturing mechanism and the sliding mechanism. By this model, a method to study stability and unstable behavior of crustal rock and fault at different depths is given. According to the above model, quantitative study on the crustal stability in the North China plain is made in terms of the measured data of hydraulic fracturing stress, pore-fluid pressure, terrestrical heat flow in this region. The functionsF m andF f and the shear stresses on faults with different strike angle and dip angle at various depths in this region are calculated. In the calculation the constraint condition of fault movement obeys Byerlee’s Law, and the depth-dependent nonlinear change in the vertical stress due to inhomogeneity of crustal density and the high anomalous pore-fluid pressure in deep crust of this region are considered. The conclusions are: the unstable behavior of the crust in the North China plain is not failure of crustal rock but slip on existing fault; the depth range where stick-slip of fault may happen is about from 8 to 20 km or more; stability of steep fault is lower than that of gentle sloping fault; the shear stresses in the range where may occur stick-slip are nearly horizontal; the steep faults trending from NNE to NE in this region are liable to produce strong earthquakes, whose co-seismic faultings are, for the most part, right lateral slip; the change in pore-fluid pressure in depth remarkably affects the stability of the crust and the increase in pore-fluid pressure, therefore, would be an important factor exciting strong earthquake in this region. The above theoretical inferences are consistent with the data measured in this region. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologia Sinica,13, 450–461, 1991. This work is supported by Chinese Joint Seismological Science Foundation.  相似文献   

9.
The results of seismic deep reflection,high resolution refraction and shallow artificial seismic exploration indicate that the fault on the northern bank of the Weihe river is composed of two faults,one is the Yaodian-Zhangjiawan fault and the other is the Chuanzhang-Zuitou fault.The 22 km long Yaodian-Zhangjiawan fault of EW-striking starts from Chenjiagou via Yaodian town,Qianpai village,Bili village,Wujia town and Zhangjiawan to Jiajiatan.The 15 km long Chuanzhang-Zuitou fault striking near EW starts from Chuanzhang via Mabei to Zuitou.The Weihe fault offset the basement and upper crust,the reflecting layers of TQ,TN,TE and Tg are ruptured at depth of about 15 km.In the deep part,the Weihe fault and the secondary fault form a Y-shaped structure or a synthetic low angle intersection.The Weihe fault is a listric normal fault.The fault has obvious structural characteristics of a reversed-drag normal fault and a normal drag normal fault with the depth of 1 000 m,and also has the characteris-tics of syngenetic sediment.The Weihe fault is one of the faults which control the basin sediment,and it is the boundary fault of Xi’an depression and Xianyang salient.The depth of the fault decreases from the west to east gradually,the deep part intersects with the Lintong-Chang’an fault at the intersection part of Weihe River,Jinghe River and Bahe River and the shallow part connects with the Weinan-Jingyang fault.The seismic exploration re-sults indicate that no fault exists on southern bank of the Weihe River.  相似文献   

10.
The research of the information dimension (D 1) in an active fault zone considers the contribution of each seismic event to information and reflects the characteristics of the temporal and spatial distributions of earthquakes from a new point of view, avoiding some short-comings of the research about the capacity dimension (D 0). The results of calculation show that the information dimension of the temporal distribution in Xianshuihe active fault zone before Luhuo large earthquake isD 1=0.1051. It is a consult creterion of large earthquakes in future in the fault zone. The information dimensions of the temporal distribution of the earthquakes in Anninghe active fault zone are respectivelyD 1(t N)=0.1363 (for the north section) andD 1(t S)=0.06710 (for the south section). The information dimensions of the spatial distribution are respectivelyD 1(K N)=1.053 (for the north section) andD 1(K S)=0.7758 (for the south section). The north section and the south section belong to two self-similar systems with different information dimensions respectively. The extent of the self-organization of seismic activity in the south section is higher than that in the north section. This is helpful for us to judge the major dangerous section in the key region of the seismic monitoring. The research about the information dimension of the temporal and the spatial distributions of earthquakes is significant for the exploration of active fault zones and seismic prediction. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 372–379, 1991. This paper is sponsored by the Chinese Joint Seismological Science Foundation. The English version is improved by Zhenwen An.  相似文献   

11.
IntroductionDuringtheMarchof1997,anactive-sourceseismicexperimentwasundertakenbyajointSino-GermanseismicprojecttoinvestigatethesubsurfacestructurebeneaththeDabieUHPMbeltwithintheframeworkofinternationalContinentalScientificDrillingProgramme(ICDP).ThetargetareaislocatedbetweenYuexiandQianshaninAnhuiProvince,andgeologicallyonthejunctureoftheDabieorogenicbeltandtheTanlufault(Figurel).Thisexperimentisparticularlydesignedsinthefieldcombinedwiththeinterestsofseismictomographyandwide-anglere…  相似文献   

12.
The Anninghe fault is one of the significant earthquake-generating fault zones in the Southwest China. Local his-torical record shows that a M≥7 strong earthquake occurred in the year of 1536. On the basis of the detailed air-photographic interpretation and field investigation, we have acquired the following knowledge: 1 The average sinistral strike-slip rate since the Late Pleistocene is about 3~7 mm/a; 2 There is important reverse faulting along the fault zone besides the main left-lateral strike-slip motion, and the shortening rate across the Anninghe fault zone due to the reverse faulting is about 1.7~4.0 mm/a. If the Xianshuihe fault zone is simply partitioned into the Anninghe and Daliangshan faults, we can also get a slip rate of 3~7 mm/a along the Daliangshan fault zone, which is the same as that on the Anninghe fault zone. Moreover, on the basis of our field investigation and the latest knowledge concerning the active tectonics of Tibetan crust, we create a dynamic model for the Anninghe fault zone.  相似文献   

13.
In this paper, fluid flow is examined for a mature strike‐slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc) and rock‐quality measurements (Q‐value) performed along a 50‐m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water‐injection test. The resulting fluid pressures and flow rates through the different fault‐zone compartments were then analyzed with a two‐phase fluid‐flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q‐value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro‐ and macrofractures that lower the fault‐zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties.  相似文献   

14.
We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580–600 km) earthquakes (4.8 < M w < 5.5) in the Jilin-Heilongjiang, China region that borders with Russia and North Korea. These earthquakes are 200–300 km from the NKTS, within 200 km of the Global Seismic Network seismic station in Mudanjiang, China (MDJ) and the International Monitoring System primary arrays at Ussuriysk, Russia (USRK) and Wonju, Republic of Korea (KSRS). With the deep earthquakes, we split the t*(total) ray path into two segments: a t*(u), that represents the attenuation of the up-going ray from the deep hypocenters to the local-regional receivers, and t*(d), that represents the attenuation along the down-going ray to teleseismic receivers. The sum of t*(u) and t*(d) should be equal to t*(total), because they both share coincident ray paths. We estimated the upper-mantle attenuation t*(u) of 0.1 s at stations MDJ, USRK, and KSRS from individual and stacks of normalized P-wave spectra. We then estimated the average lower-mantle attenuation t*(d) of 0.4 s using stacked teleseismic P-wave spectra. We finally estimated a network average t*(total) of 0.5 s from the stacked teleseismic P-wave spectra from the 2009 nuclear test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5–2 Hz range.  相似文献   

15.
Experimental study of spinel-garnet phase transition was carried out using natural mineral and rock specimens from xenolith of mantle rocks in Cenozoic basalt as starting materials. From the result it was found that the condition of spinel Iherzolite-garnet Ihenolite phase transition (T = 1 100°C andP = 1.8–2.0 GPa) is consistent with theP-T equilibrium condition of the five-phase assemblage spinel/garnet Iherzolite in eastern China, suggesting that there may exist a spinel-garnet Iherzolite phase transition zone with the thickness of a few km to several ten km at the depth of 55–70 km in the continental upper mantle of eastern China. The depth of phase transition from spinel pyroxenite to garnet pyroxenite is found to be less than 55 km. Experiment results also show that water promotes metasomatism on one hand but suppresses phase transition on the other. Zoning of mineral composition was also discussed. Project supported by the National Natural Science Foundation of China.  相似文献   

16.
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990‘s up to the present, the characteristics of distribution and displacement of surface rupture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M ≈ 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.  相似文献   

17.
Taking the contribution of the tectonic force to the total hydrostatic pressure into account, the author puts forward a new method on the calculation of the depth of petrogenesis and metallogenesis which is summarized as follows: first the tectonic added hydrostatic pressured Ps is subtracted from the total hydrostatic pressure P, then using their difference Pr, according to the general method the depth of petrogenesis and metallogenesis can be determined in consideration of lateral constraint. By the new method the following data on the depths of the metallogenesis are obtained: 2 243.6 m (No. I and No. II veins with metallogenic epoch of 105 Ma) and 1 632. 38 m (No. III vein with 105 Ma) for Jiaojia orefield, and 3 454.97 m (NE-trending zone with 213.2 Ma), 1 902.79 III (ENE-trending zone with 100.28 Ma), 1 090.97 m (NE-trending zone with 80.67 Ma) and 720.55 m (NNE-trending zone with 71.86 Ma) for Linglong orefield. Project supported by the Foundation of the State Planning Commission, China and the Foundation of the State Science and Technology Commission, China.  相似文献   

18.
This paper studies the computation method of two-step inversion of interface and velocity in a region. The 3-D interface is described by a segmented incomplete polynomial; while the reconstruction of 3-D velocity is accomplished by the principle of least squares in functional space. The computation is carried out in two steps. The first step is to inverse the shape of 3-D interface; while the second step is to do 3-D velocity inversion by distributing the remaining residual errors of travel time in accordance with their weights. The data of seismic sounding in the Tangshan-Luanxian seismic region are processed, from which the 3-D structural form in depth of the Tangshan seismic region and the 3-D velocity distribution in the crust below the Tangshan-Luanxian seismic region are obtained. The result shows that the deep 3-D structure in the Tangshan seismic region trends NE on the whole and the structure sandwiched between the NE-trending Fengtai-Yejituo fault and the NE-trending Tangshan fault is an uplifted zone of the Moho. In the 3-D velocity structure of middle-lower crust below that region, there is an obvious belt of low-velocity anomaly to exist along the NE-trending Tangshan fault, the position of which tallies with that of the Tangshan seismicity belt. The larger block of low-velocity anomaly near Shaheyi corresponds to a denser earthquake distribution. In that region, there is an NW-trending belt of high-velocity anomaly, probably a buried fault zone. The lower crust below the epicentral region of the Tangshan M S=7.8 earthquake is a place where the NE-trending belt of low-velocity anomaly meets the NW-trending belt of high-velocity anomaly. The two sets of structures had played an important role in controlling the preparation and occurrence of the M S=7.8 Tangshan earthquake. Contribution RCEG97006, Research Center of Exploration Geophysics, China Seismological Bureau, China. This project is supported by the Chinese Joint Seismological Science Foundation.  相似文献   

19.
A single scattering model was used to analyse the temporary changes in the mean density of scattered waves in a discrete random medium. The model of the mean energy density, originally proposed bySato (1977) for spherical radiation and isotropic scattering, has been modified and applied to a medium in which the scatterers are confined to a specified volume. The time variation of the early part of the mean energy density function for the different source durations was investigated. The dominant effect on the theoretical mean energy density is caused by the specified volume containing scatterers. The duration of the source pulse influences the early part of the coda fort/t 0<1.2, wheret is the lapse time measured from the source origin time, andt 0is arrival time of the body wave.The analysis of the coda signal of micro-events occurring immediately in front of the face enables us to estimate the size of the fracture zone induced by the stope. The model of the mean energy density of coda for a medium containing scatterers close to the seismic source was used to analyse a large number of events recorded close to an advancing mine face in a deep level gold mine in South Africa. The coda decay rate has two trends: the first, with a steep decay of coda, is produced by a larger deviation of rock parameters and/or larger size of the scatterers; the second trend, which decays more slowly, has the corresponding mean-free path ranging from 20 m to 200 m. The analysis indicates that the rock mass about 15–20 m from the stope contains a large proportion of fractured and blocked rock, which is the source of scattering. The scattering of theS-wave was much stronger and more stable, with the mean-free path varying from 11 m to 45 m. This is due to the shorter wavelength of theS wave in comparison with theP wave. The quality factor for theP coda wave varies from 30 to 100 in the fracture zone of stope and outside this zone it has a value of 300. The quality factor of theS wave varies from 20 to 78 in the equivalent volume. For rock surrounding the stope the ratioQ sp –1 /Q ss –1 varied from 0.31 to 0.69. This suggests that the radii of scatterers are smaller than 3.5 m.  相似文献   

20.
This paper studies the relations between the great Wenchuan earthquake and the active-quiet periodic characteristics of strong earthquakes, the rhythmic feature of great earthquakes, and the grouped spatial distribution of MS8.0 earthquakes in Chinese mainland. We also studied the relation between the Wenchuan earthquake and the stepwise migration characteristics of MS?≥7.0 earthquakes on the North-South seismic belt, the features of the energy releasing acceleration in the active crustal blocks related to the Wenchuan earthquake and the relation between the Wenchuan earthquake and the so called second-arc fault zone. The results can be summarized as follows: ① the occurrence of the Wenchuan earthquake was consistent with the activequiet periodic characteristics of strong earthquakes; ② its occurrence is consistent with the features of grouped occurrence of MS8.0 earthquakes and follows the 25 years rhythm (each circulation experiences the same time) of great earthquakes; ③ the Wenchuan MS8.0 earthquake follows the well known stepwise migration feature of strong earthquakes on the North-South seismic belt; ④ the location where the Wenchuan MS8.0 earthquake took place has an obvious consistency with the temporal and spatial characteristic of grouped activity of MS≥?7.0 strong earthquakes on the second-arc fault zone; ⑤ the second-arc fault zone is not only the lower boundary for earthquakes with more than 30 km focal depth, but also looks like a lower boundary for deep substance movement; and ⑥ there are obvious seismic accelerations nearby the Qaidam and Qiangtang active crustal blocks (the northern and southern neighbors of the Bayan Har active block, respectively), which agrees with the GPS observation data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号