首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
渭河断裂西安段的展布及其结构特征   总被引:3,自引:0,他引:3       下载免费PDF全文
地震深反射、高分辨率折射和浅层人工地震探测结果表明,渭河北岸断裂由两条断层组成:一条为窑店——张家湾断层,另一条为船张——咀头断层。窑店——张家湾断层从陈家沟, 经窑店镇、前排村、庇李村、吴家村、张家湾到贾家滩,长约22 km,基本呈东西走向;船张——咀头断层从船张,经马北到咀头,长约15 km,近东西走向。渭河断裂为基底和上地壳断裂,错断了TQ、TN、TE和Tg反射层,深约15 km。在深部渭河断裂与次级断层形成ldquo;Yrdquo;字型构造或同向低角度相交。渭河断裂为铲形正断层。该断裂深度在1000 m以浅,具有明显的逆牵引正断层和正牵引正断层的结构特性,并具有同生沉积的特点。渭河断裂是控制盆地沉积的断裂之一,是西安凹陷与咸阳凸起的分界断裂。该断裂从西向东深度逐渐减小,深部在渭河、泾河和灞河三河交汇区与临潼——长安断裂相交,浅部与渭南——泾阳断裂相连。地震探测结果同时表明,渭河南岸断裂不存在。   相似文献   

2.
渭河断裂深、中、浅和近地表显示   总被引:3,自引:0,他引:3  
渭河断裂是渭河盆地一条重要的隐伏断裂,对渭河盆地的形成和发展乃至盆地内的地震活动都具有一定的控制作用。文中基于横跨渭河断裂的深地震反射、浅层地震反射、钻孔勘探和槽探等勘探方法取得的探测结果,从深部、中部、浅部以及近地表4个深度,给出了渭河断裂的呈现特点,即最深切割层位、不同深度的产状变化、错距大小、断裂的最新活动时代和活动期次等  相似文献   

3.
应用浅层地震勘探法对宁夏吴忠地区北部的浅部地壳结构和隐伏活动断裂进行研究。结果表明,该区存在2条隐伏断裂,分别为银川主断层南段和新华桥断层。推测银川主断层南段为近SN走向的W倾正断层,断层下盘地层界面一般呈近水平状展布,而在断层上盘,T_Q及其以下的地层界面向断面方向倾伏并显示出逆牵引现象,断层向上错断了第四系内部。钻孔联合地质剖面及浅层地震探测结果共同揭示新华桥断层为一条走向NE,倾向SW的正断层,深、浅地震测线控制的新华桥断层延伸长度9 km左右,向上错断了第四系内部的T_(02)界面。  相似文献   

4.
汤阴地堑位于太行山脉与华北平原的过渡带,是太行山前重要的地质构造单元。为研究汤阴地堑上地壳结构和断裂特征,利用安阳市与新乡市活断层探测获得的深、浅地震反射剖面,结合研究区已有地震、地质资料,对汤阴地堑浅部结构、汤东断裂特征进行分析研究。结果表明,汤阴地堑北部与南部地壳结构差异明显。地堑北部是由汤东断裂控制的半地堑,地堑内反射震相丰富、反射波层组关系清晰,多组新生代、古生代沉积层强反射不整合地覆盖在自西向东倾伏的结晶基底反射Tg上,且随着深度增加,地层倾角增大,显示出明显的多期掀斜运动特征。地堑南部表现为由汤东、汤西断裂共同控制的断陷型地堑,地堑内新近系底界面反射波TN自西向东倾伏,其下为一些横向呈水平或东倾、延续性较短的反射震相。地堑南部与北部不同的反射震相特征表明,测线控制区域内的汤阴地堑沉积环境与运动特征可能有所差异。汤东断裂为走向NE,倾向NW的铲型正断层,汤西断裂为走向NE、倾向SE的正断层,北部中深层地震反射剖面上未发现该断层的存在。  相似文献   

5.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

6.
In October and November 2002, the Molise region (southern Italy) was struck by two moderate magnitude earthquakes within 24 hours followed by an one month long aftershocks sequence. Soon after the first mainshock (October 31st, 10.32 UTC, Mw 5.7), we deployed a temporary network of 35 three-component seismic stations. At the time of occurrence of the second main event (November 1st, 15.08 UTC, Mw 5.7) the eight local stations already installed allowed us to well constrain the hypocentral parameters. We present the location of the two mainshocks and 1929 aftershocks with 2 < ML < 4.2. Earthquake distribution reveals a E-trending 15 km long fault system composed by two main segments ruptured by the two mainshocks. Aftershocks define two sub-vertical dextral strike-slip fault segments in agreement with the mainshock fault plane solutions. P- and T-axes retrieved from 170 aftershocks focal mechanisms show a coherent kinematics: with a sub-horizontal NW and NE-trending P and T-axes, respectively. For a small percentage of focal mechanisms (∼ 10%) a rotation of T axes is observed, resulting in thrust solutions. The Apenninic active normal fault belt is located about 80 km westward of the 2002 epicentral area and significant seismicity occurs only 20-50 km to the east, in the Gargano promontory. Seismic hazard was thought to be small for this region because neither historical earthquake are reported in the Italian seismic catalogue or active faults were previously identified. In this context, the 2002 seismic sequence highlights the existence of trans-pressional active tectonics in between the extensional Apenninic belt and the Apulian foreland.  相似文献   

7.
A seismic gap on the Anninghe fault in western Sichuan,China   总被引:10,自引:0,他引:10  
Through integrated analyses of time-varying patterns of regional seismicity, occurrence background of strong and large historical earthquakes along active faults, and temporal-spatial distribution of accu- rately relocated hypocenters of modern small earthquakes, this paper analyzes and discusses the im- plication of a 30-year-lasting seismic quiescence in the region along and surrounding the Anninghe and Zemuhe faults in western Sichuan, China. It suggests that the seismic quiescence for ML≥4.0 events has been lasting in the studied region since January, 1977, along with the formation and evaluation of a seismic gap of the second kind, the Anninghe seismic gap. The Anninghe seismic gap has the background of a seismic gap of the first kind along the Anninghe fault, and has resulted from evident fault-locking and strain-accumulating along the fault during the last 30 years. Now, two fault sections either without or with less small earthquakes exist along the Anninghe fault within the An- ninghe seismic gap. They indicate two linked and locked fault-sections, the northern Mianning section and the Mianning-Xichang section with lengths of 65 km and 75 km and elapsed time from the latest large earthquakes of 527 and 471 years, respectively. Along the Anninghe fault, characteristics of both the background of the first kind seismic gap and the seismicity patterns of the second seismic gap, as well as the hypocenter depth distribution of modern small earthquakes are comparable, respectively, to those appearing before the M=8.1 Hoh Xil earthquake of 2001 and to those emerging in the 20 years before the M=7.1 Loma Prieta, California, earthquake of 1989, suggesting that the Anninghe seismic gap is tending to become mature, and hence its mid- to long-term potential of large earthquakes should be noticeable. The probable maximum magnitudes of the potential earthquakes are estimated to be as large as 7.4 for both the two locked sections of the Anninghe fault.  相似文献   

8.
为确定渭河断裂中部隐伏段的位置,在咸阳窑店布设了浅层地震勘探测线,在浅层地震勘探资料对断层解译的基础上,进一步开展了窑店和陈家沟钻孔联合剖面勘探工作,详细查明了渭河断裂的精确位置和组合特征,结合钻孔土样光释光(OSL)年龄测试和区域地层资料,深入研究了渭河断裂带最新活动年代和滑动速率等特征。  相似文献   

9.
The Yangjia Village-Yaodian segment of Weihe Fault, starting from Yangjia Village in the west, passing through Weijiaquan, Jinjiazhuang, Donger Village, Chenjiatai to Yaodian, occurs as a NE-striking fault dipping south with a total length of 33 kilometers. As a syn-depositional normal fault, it extends along the leading and trail edge of T1, T2 and T3 terrace at the northern bank of Weihe River. Results of remote sensing interpretation, shallow seismic exploration, exploratory trench, and drilling show that the Yangjia Village-Yaodian section of Weihe Fault manifests as fault scarps, overlapping with the NE-extending terrace scarp at the northern bank of Weihe River. Weihe Fault broke the T1 that can be distinguished on the shallow seismic profile and multiple profiles with broken signs from T1 to the ground, which is the same with the cracks through the Han Tomb at the top of the exploratory trench in Yangjia Village. It shows that the fault may still be active from the late Pleistocene to Holocene. Through composite drilling section and the analysis of exploratory trench, there is no significant difference in activity between the Yangjia Village-Jinjiazhuang and Donger Village-Yaodian section. This segment has experienced a large displacement event since (46.0±3.3)ka BP, approximately 11.0~16.5m, with a vertical slip rate of 0.34~0.45mm/a. The most recent activity occurred approximately around 2.0ka BP. The left-step en echelon fracture zone at Jingjiazhuang separates this section into two minor ones, Yangjia Village-Jinjiazhuang section and Donger Villag-Yaodian section. Yangjia Village-Yaodian section in Weihe Fault and Yaodian-Zhangjiawan section which was found out in the Xi'an active fault detection and seismic risk assessment project can be combined into the Yangjia Village-Zhangjiawan section.  相似文献   

10.
芦山地震发生在龙门山断裂带前缘.关于芦山地震的发震断层,有的认为是前山断裂——双石—大川断裂,有的认为是山前断裂——大邑断裂拟或其他隐伏断裂,发震断裂究竟是哪条断裂以及芦山地震是不是汶川地震的余震?目前仍存在较大争议.震后穿过芦山地震区完成了一条长近40km的深地震反射剖面,以确定芦山地震的发震构造.反射剖面显示浅部褶皱和断裂构造发育,在上地壳存在6条逆冲断裂,下地壳存在一条非常明显的变形转换带,在深度16km左右还存在一个滑脱层,浅部的6条断裂最终都归并到该滑脱层上.参考主余震精定位结果,芦山地震的发震断裂应该是位于双石—大川断裂和大邑断裂之间的隐伏断裂F4,F2和F3断裂受控于发震断裂而活动,形成剖面上"Y"字型余震分布现象.隐伏断裂F4属山前断裂,不是前山断裂,因此芦山地震不是汶川地震的余震.  相似文献   

11.
A shallow earthquake ofM S=6.2 occurred in the southern part of the Peloponnesus, 12 km north of the port of the city of Kalamata, which caused considerable damage. The fault plane solution of the main shock, geological data and field observations, as well as the distribution of foci of aftershocks, indicate that the seismic fault is a listric normal one trending NNE-SSW and dipping to WNW. The surface ruptures caused by the earthquake coincide with the trace of a neotectonic fault, which is located 2–3 km east of the city of Kalamata and which is related to the formation of Messiniakos gulf during the Pliocene-Quaternary tectonics. Field observations indicate that the earthquake is due to the reactivation of the same fault.A three-days aftershock study in the area, with portable seismographs, recorded many aftershocks of which 39 withM S1.7 were very well located. The distribution of aftershocks forms two clusters, one near the epicenter of the main shock in the northern part of the seismogenic volume, and the other near the epicenter of the largest aftershock (M S=5.4) in the southern part of this volume. The central part of the area lacks aftershocks, which probably indicates that this is the part of the fault which slipped smoothly during the earthquake.  相似文献   

12.
银川断陷盆地地壳结构与构造的地震学证据   总被引:12,自引:6,他引:6       下载免费PDF全文
通过跨银川断陷盆地,完成了一条长68.9 km的高分辨深地震反射探测剖面,首次获得了银川盆地地壳精细结构、地堑型断陷盆地深部断裂系(黄河断裂、银川断裂、贺兰山东麓断裂)特征及深浅构造关系.结果表明:银川断陷盆地上地壳为双程走时8 s(深度约20 km)反射面以上的区域,上地壳上部地层层位丰富,地层分段连续性较好,上地壳下部地层分层特征不明显,地质构造简单;下地壳(8~13 s)反射能量较弱,反射同相轴不明显;下地壳下部壳幔过渡带(13 s附近)由一组能量较强、持续时间较长(1.5 s)的反射波组组成,厚度约4.5 km.芦花台断裂、银川断裂分别于12~12.5 km、18~19 km深处交汇于贺兰山东麓断裂,贺兰山东麓断裂于28~29 km深处交汇于黄河断裂,黄河断裂为错断Moho面的深大断裂,银川地堑为以黄河断裂为主,其他断裂为辅组合而成的负花状构造.根据贺兰山东麓断裂和银川断裂的相互关系,认为贺兰山东麓断裂对1739年平罗—银川8级地震起主要控制作用.  相似文献   

13.
It is indicated by historical records and the exploratory trench on the Weihe fault that the Yaodian-Zhangjiawan segment of the Weihe fault zone has experienced a historical earthquake and 3 paleoearthquake events in the past 9110a. The historical earthquake, namely, event Ⅳ, occurred between 1487 and 1568 AD. The date of paleoseismic event Ⅰ is (9110 + 90) a, and the ages of events Ⅱ and Ⅲ are unknown. The coseismic vertical displacement of events Ⅰ, Ⅱ and Ⅲ is 0.5m, 0.5m and 0.2m, respectively. The exploratory trench also indicates that the Yaodian-Zhangjiawan segment of the Weihe fault was active in the Holocene.  相似文献   

14.
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.  相似文献   

15.
通过对2014年8月3日云南省昭通市鲁甸县发生的MS6.5地震的震源机制解、余震空间分布、活动断裂组合样式和区域构造背景等特征的综合分析表明:(1)根据主震及4级以上强余震的震源机制解、余震空间分布、烈度长轴方向,判断本次地震的发震断裂为NW向的包谷垴—小河断裂;(2)根据地表GPS水平运动速率及水平缩短速率的差异性、断裂组合样式和历史余震深度,判断发震断裂具有薄皮-同向差异逆冲型捩断层的特征;(3)包谷垴—小河断裂活动可能主要受深部的"管道流"控制,"管道流"自NW向SE方向运动,在昭通断裂带处受到华南板块的差异阻挡,造成包谷垴—小河断裂西侧管道流运动速率大于东侧管道,从而驱动包谷垴—小河捩断层的左旋滑动,导致了鲁甸地震的发生。  相似文献   

16.
太行山山前断裂位于太行山脉与华北平原过渡地带,是华北及我国东部地区一条重要的构造带,有关该断裂带的活动性有以下观点:1)它属深大断裂带;2)它是活动断裂带和地震构造带;3)它不是地震构造带。。为研究和评价该断裂的活动性,利用最近获得的地震资料和钻探联合剖面研究了太行山山前断裂的深部构造背景和第四系以来的活动特征。钻探验证以及研究结果与表明:太行山山前断裂不是岩石圈深大断裂,该断裂在第四系仅错断了中更新世QP2早期,中更新世QP2晚期和晚更新世地层没有发生错断。由此得出,太行山山前断裂不是活动断裂,也不是岩石圈深大断裂。该研究结果为跨越太行山山前断裂的城市进行规划和建设提供了重要的地质和地球物理资料,对于首都圈地震危险性评价也具有十分重要的意义。  相似文献   

17.
陕西地区小微震震源机制研究   总被引:4,自引:1,他引:3       下载免费PDF全文
小微震事件的震源机制是区域应力场及诸多地球动力学研究的基础资料。陕西地区为多个地震带的交汇区,近些年积累了丰富的小微震波形资料。运用新近发展的适用于求解小微震震源机制的广义极性振幅技术(GPAT),结合陕西2015地壳速度模型,求解陕西测震台网2011年4月至2015年12月间记录的121次ML1.5~3.5事件的震源机制。反演结果表明:(1)以上事件的震源机制大部分为走滑及正断类型,其比例占64.5%;逆断型机制占22.3%。(2)反演震源机制得到的震源深度与定位深度具有良好的一致性;矩震级与近震震级间存在差别,且这种差别随事件的变小而增大。(3)对比渭河断陷带相关研究成果,验证了该区域震源机制以正断型为主,具有拉张应力状态。  相似文献   

18.
The Stone Canyon earthquake sequence started during August 1982 and lasted for about four months. It contained four mainshocks withM L 4, each with an aftershock zone about 4 km long. These mainshocks, progressing from southeast to northwest, ruptured a segment of the fault approximately 20 km long leaving two gaps, which were later filled by theM L =4.6 mainshocks of January 14, and May 31, 1986. The equivalent magnitude of the sequence isM L =5.0.Precursory seismic quiescence could be identified in: (1) the northernmost 10 km of the aftershock zone which contained three of the mainshocks; and (2) the southern gap in the aftershock zone. The fault segment containing the first mainshock and its aftershocks did not show quiescence. This pattern of precursory quiescence is very similar to two cases in Hawaii where the rupture initiation points of the mainshocks (M S =7.2 and 6.6, respectively) were located in volumes of constant seismicity rate, surrounded by volumes with pronounced precursory quiescence.The precursory quiescence before the August 1982 Stone Canyon earthquakes lasted for 76 weeks, amounted to a reduction in rate of about 60%, and could be recognized without any false alarms. That is, the anomaly was unique within the 60 km study segment of the fault and in the years 1975 through August 1982. Eighteen foreshocks occurred between July 27 and August 7, 1982. We conclude that the August 1982 mainshocks could have been predicted, based on seismic quiescence and foreshocks.  相似文献   

19.
漳州盆地及其邻区地壳深部结构的探测与研究   总被引:5,自引:0,他引:5  
漳州盆地及其邻区地处我国大陆东南沿海地震带中段。通过该地区高分辨率折射及宽角反射,折射地震探测剖面,获得了该区地壳几何结构与速度结构、地壳深浅部断裂的几何形态和构造关系等。结果表明,该区地壳分为上地壳和下地壳。上地壳的厚度为16.5~18.8km,下地壳厚度为12.0~13.0km。上地壳分为上下两部分。在上地壳下部有一个低速层,速度约为6.00km/s,低速层顶面深度为12.0km左右,厚度约为5.0km。下地壳也分为上下两部分。Moho界面的深度为29.0~31.8km。该区6条地壳浅部正断层大部分向地下延伸深度不超过4km,最大延伸深度达5km左右。据推测,浅部正断层下方有一条高倾角地壳深断裂带,该断裂带向下断至Moho面,向上断至上地壳下部低速层中。深浅部断裂构造不相连接。漳州盆地深浅部构造组合特征表明,九龙江断裂带是该区内一条特征明显、具有复杂深浅构造背景的深断裂带。这一深地震探测成果的获得,使得该地区深部资料解释的可靠性和探测精度比以往显著提高;对深浅部构造的组合可作统一解释,地壳的分层和结构特征更为确切和精细;首次发现上地壳的拉张性构造及铲式正断层组合特征,不仅有助于对漳州及其邻区地震危险性的综合判定,而且对深化东南沿海地震带深部动力学过程的认识具有重要意义。  相似文献   

20.
2022年1月8日,青海省门源县发生MS6.9地震。使用青海、甘肃等区域数字台网所观测到的2009年1月1日—2022年2月8日间青海门源及周边地区(36°~39°N,101°~104°E)14 869次地震事件的地震观测资料,基于双差成像(TomoDD)方法进行重定位分析,结果表明:门源及周边地区地震震源深度较浅,主要集中在5~15 km深度范围,其中10 km附近分布最多。推断该深度区域为门源及周边地区的主要孕震区。基于地震重定位结果和主震区三维速度结构分别对2016年门源MS6.4地震和此次地震序列的发震机理进行分析对比,发现两次地震都位于高速异常体边缘,速度结构与断裂、地震序列吻合较好。2022年门源地震位于高速体的西端末梢位置,是该高速体受青藏高原东北缘顺时针应力作用导致的滑动产生的走滑型地震。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号