首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The characteristics of spatio-temporal seismicity evolution before the Wenchuan earthquake are studied. The results mainly involve in the trend abnormal features and its relation to the Wenchuan earthquake. The western Chinese mainland and its adjacent area has been in the seismically active period since 2001, while the seismic activity shows the obvious quiescence of M≥?7.0, M≥?6.0 and M?≥5.0 earthquakes in Chinese mainland. A quiescence area with M?≥7.0 has been formed in the middle of the North-South seismic zone since 1988, and the Wenchuan earthquake occurred just within this area. There are a background seismicity gap of M?≥5.0 earthquakes and a seismogenic gap of ML?≥4.0 earthquakes in the area of Longmenshan fault zone and its vicinity prior to the Wenchuan earthquake. The seismic activity obviously strengthened and a doughnut-shape pattern of M?≥4.6 earthquakes is formed in the middle and southern part of the North-South seismic zone after the 2003 Dayao, Yunnan, earthquake. Sichuan and its vicinity in the middle of the doughnut-shape pattern show abnormal quiescence. At the same time, the seismicity of earthquake swarms is significant and shows heterogeneity in the temporal and spatial process. A swarm gap appears in the M4.6 seismically quiet area, and the Wenchuan earthquake occurred just on the margin of the gap. In addition, in the short term before the Wenchuan earthquake, the quiescence of earthquake with ML≥?4.0 appears in Qinghai-Tibet block and a seismic belt of ML?≥3.0 earthquakes, with NW striking and oblique with Longmenshan fault zone, is formed.  相似文献   

2.
The Stone Canyon earthquake sequence started during August 1982 and lasted for about four months. It contained four mainshocks withM L 4, each with an aftershock zone about 4 km long. These mainshocks, progressing from southeast to northwest, ruptured a segment of the fault approximately 20 km long leaving two gaps, which were later filled by theM L =4.6 mainshocks of January 14, and May 31, 1986. The equivalent magnitude of the sequence isM L =5.0.Precursory seismic quiescence could be identified in: (1) the northernmost 10 km of the aftershock zone which contained three of the mainshocks; and (2) the southern gap in the aftershock zone. The fault segment containing the first mainshock and its aftershocks did not show quiescence. This pattern of precursory quiescence is very similar to two cases in Hawaii where the rupture initiation points of the mainshocks (M S =7.2 and 6.6, respectively) were located in volumes of constant seismicity rate, surrounded by volumes with pronounced precursory quiescence.The precursory quiescence before the August 1982 Stone Canyon earthquakes lasted for 76 weeks, amounted to a reduction in rate of about 60%, and could be recognized without any false alarms. That is, the anomaly was unique within the 60 km study segment of the fault and in the years 1975 through August 1982. Eighteen foreshocks occurred between July 27 and August 7, 1982. We conclude that the August 1982 mainshocks could have been predicted, based on seismic quiescence and foreshocks.  相似文献   

3.
The development of fault interaction models has triggered the need for an accurate estimation of seismicity rate changes following the occurrence of an earthquake. Several statistical methods have been developed in the past to serve this purpose, each relying on different assumptions (e.g., stationarity, gaussianity) pertaining to the seismicity process.In this paper we review these various approaches, discuss their limitations, and propose further improvements. The feasibility of mapping robust seismicity rate changes, and more particularly rate decreases (i.e., seismicity shadows), in the first few days of an aftershock sequence, is examined. To this aim, the hypothesis of large numbers of earthquakes, hence the use of Gaussian statistics, as is usually assumed, must be dropped.Finally, we analyse the modulation in seismicity rates following the 1992, June 28 Mw 7.3 Landers earthquake in the region of the 1992, April 22 Mw 6.1 Joshua Tree earthquake. Clear instances of early triggering (i.e., in the first few days) followed by a seismicity quiescence, are observed. This could indicate the existence of two distinct interaction regimes, a first one caused by the destabilisation of active faults by the travelling seismic waves, and a second one due to the remaining static stress perturbation.  相似文献   

4.
利用区域台网地震资料, 分析了川西安宁河-则木河断裂带不同段落的现今活动习性,进而鉴别潜在大地震危险的断裂段. 文中由异常低b值的分布圈绘出凹凸体,发展和应用了由多个地震活动参数值的组合判定断裂分段活动习性的方法,尝试了利用凹凸体段的震级频度关系参数估计特征地震的平均复发间隔. 结果表明,该研究断裂带存在5个不同现今活动习性的段落. 其中,安宁河断裂的冕宁-西昌段属于高应力下的闭锁段,其核心部分为一较大尺度的凹凸体;则木河断裂的西昌-普格段则表现为低应力下的微弱活动状态. 重新定位的震源深度分布,显示出上述闭锁段和微弱活动段的断层面轮廓. 冕宁-西昌段是未来大地震的潜在危险段. 该段从最晚的1952年6.7级地震起算,至未来特征地震的平均复发间隔估值为55~67年, 未来地震的震级估值为7.0~7.5. 本研究也初步表明,同-断裂段的活动习性可随时间动态演变.   相似文献   

5.
傅莺  龙锋  王世元 《中国地震》2018,34(1):60-70
选用四川及云南地震台站资料,采用多阶段地震定位法(Hypo2000+Velest+HypoDD),对四川境内川滇菱形块体东边界的道孚南至巧家段2010年1月1日~2014年12月31日7787次地震进行了精定位。精定位后,震源位置精度明显提高,震中分布与地震断裂带线性展布较一致。定位结果显示,鲜水河断裂带东南段地震分布相对密集,鲜水河南段与安宁河断裂带、小金河断裂带及以东的大凉山断裂带交叉区域相对密集。深度剖面图沿活动断裂带地震活动分段活动特征明显,横跨鲜水河、安宁河和大凉山等断裂的剖面呈现出石棉附近多断裂交汇处的断层间复杂的相互作用,地震明显分为深、浅两丛。15~20km深度范围地震非常稀少,这与朱艾斓提出的14~19km塑性流变的层厚和位置较一致。  相似文献   

6.
断裂深部产状和空间几何关系是研究地壳运动变形、动力作用及其地表响应的基础,也是模拟发震断裂与强震关系的基础。为了研究川西南地区强震活动与安宁河、则木河和金河断裂的关系,对盐源-西昌-雷波高分辨地震折射剖面初至Pg波走时和断层面反射波走时进行模拟,获得了川滇活动地块东边界带安宁河、则木河和金河断裂的深部形态。结果表明:在上地壳内,安宁河断裂和则木河断裂东倾32°~35°,其速度结构为舌状低速带,二者规模较大,延伸到了基底。金河断裂东倾约30°,向下延伸至少5km。  相似文献   

7.
安宁河—则木河断裂带及东侧的大凉山断裂带作为大凉山次级块体西侧与东侧边界,具有发生大地震的活动构造背景.本文意在用有限的形变数据和地震数据两种资料评估大凉山次级块体边界断裂带的孕震深度及其地震危险性.采用弹性半空间模型对安宁河断裂、则木河断裂和大凉山断裂带滑动速率和闭锁深度进行了详细分析;计算了90%、95%和99%不同分位数的小震深度下界值并与GPS得到的闭锁深度进行对比,分析二者异同点.结果显示,安宁河断裂北段闭锁深度为6.2 km,不到90%分位小震震源深度16 km的一半,表明该段在1952年MS63/4地震后,断层逐渐趋于闭锁;而在6~16 km深度主要以小地震和无震滑动两种形式释放能量,存在深部蠕滑运动.大凉山断裂北段在0~10 km范围内完全闭锁,而10~25 km闭锁程度较弱.安宁河断裂南段、则木河断裂、大凉山断裂中段和南段均处于完全闭锁阶段,闭锁深度接近90%分位数小震深度的下界值,标准差约为0.94 km.此外,A、B、C三个剖面的反演结果表明大凉山次级块体的运动自北向南具有顺时针旋转特性,与川滇块体顺时针运动特征吻合.大凉山次级块体北、中、南三段边界断裂及块体内部总的滑动速率分别为9.8 mm·a-1、8.9 mm·a-1和8.4 mm·a-1,呈自北向南递减趋势.大凉山断裂南段布拖断裂和交际河断裂积累的能量分别能够发生一次矩震级为MW7.5的地震,离逝时间已经接近地震平均复发间隔,未来100年大地震的发震概率分别为7.1%和5.9%,应对其地震危险性给予重视.  相似文献   

8.
Numerous cases of precursory seismic quiescence have been reported in recent years. Some investigators have interpreted these observations as evidence that seismic quiescence is a somewhat reliable precursor to moderate or large earthquakes. However, because failures of the pattern to predict earthquakes may not, in general, be reported, and because numerous earthquakes are not preceded by quiescence, the validity and reliability of the quiescence precursor have not been established.We have analyzed the seismicity rate prior to, and in the source region of, 37 shallow earthquakes (M 5.3–7.0) in central California and Japan for patterns of rate fluctuation, especially precursory quiescence. Nonuniformity in rate for these pre-mainshock sequences is relatively high, and numerous intervals with significant (p<0.10) extrema in rate are observed in some of the sequences. In other sequences, however, the rate remains within normal limits up to the time of the mainshock. Overall, in terms of an observational basis for intermediate-term earthquake prediction, no evidence is found in the cases studied for a systematic, widespread or reliable pattern of quiescence prior to the mainshocks.In earthquake sequences comprising full seismic cycles for 5 sets of (M 3.7–5.1) repeat earthquakes on the San Andreas fault near Bear Valley, California, the seismicity rates are found to be uniform. A composite of the estimated rate fluctuations for the sequences, normalized to the length of the seismic cycle, reveals a weak pattern of a low rate in the first third of the cycle, and a high rate in the last few months. While these observations are qualitative, they may represent weak expressions of physical processes occurring in the source region over the seismic cycle.Re-examination of seismicity rate fluctuations in volumes along the creeping section of the San Andreas fault specified by Wyss and Burford (1985) qualitatively confirms the existence of low-rate intervals in volumes 361, 386, 382, 372 and 401. However, only the quiescence in volume 386 is found by the present study to be statistically significant.  相似文献   

9.
Based on the seismic station data sets from Sichuan and Yunnan provinces, we employed a multi-step seismic location method (Hypo2000 + Velest + HypoDD) to precisely locate the 7,787 earthquakes that occurred during 2010-2015 along the eastern boundaries of the Sichuan-Yunnan rhombic block, namely from southern Dawu to the Qiaojia segment. The final results show that location precision is greatly advanced and epicenter distribution exhibits good consistency with the linear distribution of the seismic faults. Earthquake distribution is quite intensive at the intersection region in the southern segment of the Xianshuihe fault, the Anninghe fault zone, the Xiaojinhe fault zone and the Daliangshan fault zone to the east. The depth profile of seismicity shows a clear stepwise activity along the active seismic fault zones. The profile crossing the faults of the Xianshuihe, Anninghe, and Daliangshan presents a complex interaction among faults near the multiple faults intersection region, Shimian, where the earthquakes are obviously divided into two groups in depth. Earthquakes are very rare at the depth of 15km-20km, which is consistent with the region of the plastic rheology between 14km-19km calculated by Zhu Ailan et al.,(2005).  相似文献   

10.
2008年汶川8.0级地震发生的历史与现今地震活动背景   总被引:13,自引:5,他引:8       下载免费PDF全文
为了了解2008年5月12日四川汶川MS8.0地震发生的地震活动背景,本文综合历史与现代地震资料,从南北地震带中段及其邻区的视野研究了汶川地震前1~2千年的强震活动性,以及震前20年的地震活动性背景.结果主要表明:(1)至少在2008年之前的1100~1700年中,龙门山断裂带未发生M≥7的地震,相对其南、北两侧的其他活动断裂带(或段)形成一个地震空区,2008年汶川MS8.0地震发生在该空区中;(2)17世纪以来,在由龙门山断裂带大部分地区、川北岷江-虎牙断裂带以及甘南文县-武都断裂带组成的巴颜喀拉块体东边界上共发生了12次M=6.5~8.0地震,显示出一个已持续了近400年、逐渐加速的应变能释放过程,2008年汶川MS8.0地震属于该过程中两次巨大地震之一;(3)汶川地震前20年,龙门山断裂带中、南段不存在背景地震活动的平静,反而显示出比曾经发生过1879年MS8地震的甘南文县-武都断裂带还略高的地震活动背景水平;(4)2008年汶川地震的强度远远超出龙门山断裂带的历史最大地震,说明仅基于数百年至一、两千年的历史地震记载,远不足以正确评估较低滑动速率的、大型活动断裂带的潜在地震危险性.  相似文献   

11.
Introduction Strong and large earthquakes are prepared and generated on specific segments of active fault zones, especially on the asperity parts of the zones (Aki, 1984; Wiemer, Wyss, 1997; Wyss, et al, 2000). Therefore, both the faulting-behavior identification and the rupture segmentation mainly based on the method of active tectonics are always important aspects in active fault research (DING, et al, 1993). The purposes of the two aspects of research focus on determining fault units tha…  相似文献   

12.
The seismicity of Longmenshan fault zone and its vicinities before the 12 May 2008 Wenchuan MS8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile stations, the focal mechanism solutions are determined. Our analysis results show that the seismicities of Longmenshan fault zone before the 12 May 2008 Wenchuan earthquake were in stable state. No obvious phenomena of seismic activity intensifying appeared. According to focal mechanism solutions of some small earthquakes before the 12 May 2008 Wenchuan earthquake, the direction of principal compressive stress P-axis is WNW-ESE. The two hypocenter fault planes are NE-striking and NW-striking. The plane of NE direction is among N50°?70°E, the dip angles of fault planes are 60°?70° and it is very steep. The faultings of most earthquakes are dominantly characterized by dip-slip reverse and small part of faultings present strike-slip. The azimuths of principal compressive stress, the strikes of source fault planes and the dislocation types calculated from some small earthquakes before the 12 May 2008 Wenchuan earthquake are in accordance with that of the main shock. The average stress field of micro-rupture along the Longmenshan fault zone before the great earthquake is also consistent with that calculated from main shock. Zipingpu dam is located in the east side 20 km from the initial rupture area of the 12 May 2008 Wenchuan earthquake. The activity increment of small earthquakes in the Zipingpu dam is in the period of water discharging. The source parameter results of the small earthquakes which occurred near the initial rupture area of the 12 May 2008 Wenchuan earthquake indicate that the focal depths are 5 to 14 km and the source parameters are identical with that of earthquake.  相似文献   

13.
We report results from a detailed study of seismicity in central Kamchatka for the period from 1960 to 1997 using a modified traditional approach. The basic elements of this approach include (a) segmentation of the seismic region concerned (the Kronotskii and Shipunskii geoblocks, the continental slope and offshore blocks), (b) studying the variation in the rate of M = 4.5–7.0 earthquakes and in the amount of seismic energy release over time, (c) studying the seismicity variations, (d) separate estimates of earthquake recurrence for depths of 0–50 and 50–100 km. As a result, besides corroborating the fact that a quiescence occurred before the December 5, 1997, M = 7.9 Kronotskii earthquake, we also found a relationship between the start of the quiescence and the position of the seismic zone with respect to the rupture initiation. The earliest date of the quiescence (decreasing seismicity rate and seismic energy release) was due to the M = 4.5–7.0 earthquakes at depths of 0–100 km in the Kronotskii geoblock (8–9 years prior to the earthquake). The intermediate start of the quiescence was due to distant seismic zones of the Shipunskii geoblock and the circular zone using the RTL method, combining the Shipunskii and Kronotskii geoblocks (6 years). Based on the low magnitude seismicity (M≥2.6) at depths of 0–70 km in the southwestern part of the epicentral zone (50–100 km from the mainshock epicenter), the quiescence was inferred to have occurred a little over 3 years (40 months) before the mainshock time and a little over 2 years (25 months) in the immediate vicinity of the epicenter (0–50 km). These results enable a more reliable identification of other types of geophysical precursors during seismic quiescences before disastrous earthquakes.  相似文献   

14.
In October and November 2002, the Molise region (southern Italy) was struck by two moderate magnitude earthquakes within 24 hours followed by an one month long aftershocks sequence. Soon after the first mainshock (October 31st, 10.32 UTC, Mw 5.7), we deployed a temporary network of 35 three-component seismic stations. At the time of occurrence of the second main event (November 1st, 15.08 UTC, Mw 5.7) the eight local stations already installed allowed us to well constrain the hypocentral parameters. We present the location of the two mainshocks and 1929 aftershocks with 2 < ML < 4.2. Earthquake distribution reveals a E-trending 15 km long fault system composed by two main segments ruptured by the two mainshocks. Aftershocks define two sub-vertical dextral strike-slip fault segments in agreement with the mainshock fault plane solutions. P- and T-axes retrieved from 170 aftershocks focal mechanisms show a coherent kinematics: with a sub-horizontal NW and NE-trending P and T-axes, respectively. For a small percentage of focal mechanisms (∼ 10%) a rotation of T axes is observed, resulting in thrust solutions. The Apenninic active normal fault belt is located about 80 km westward of the 2002 epicentral area and significant seismicity occurs only 20-50 km to the east, in the Gargano promontory. Seismic hazard was thought to be small for this region because neither historical earthquake are reported in the Italian seismic catalogue or active faults were previously identified. In this context, the 2002 seismic sequence highlights the existence of trans-pressional active tectonics in between the extensional Apenninic belt and the Apulian foreland.  相似文献   

15.
川滇地区是我国地震危险性较高的地区之一.本文基于对特大强震的风险性考虑,使用全球地震模型OpenQuake软件,建立了川滇地区地震危险性预测新模型.首先根据构造特征划分多个震源分区,并整理出这些震源分区内断层活动特征与滑动速率;基于震源分区和断层模型,使用GPS应变率转换成的锥形古登堡-里克特关系作为整个区域的地震积累率,并允许超过历史最大震级的特大地震的出现,结合活动断层滑动速率所积累的地震发生率,给出震源分区内断层地震源和背景地震源的地震发生率的比率分配关系;在活动断层分段上,保留了大型断裂或其主要部分,没有根据小的阶区来对断层进行详细分段,以便分配特大地震发生率;并使用地震率平滑方法分配背景地震发生率.最后在OpenQuake中加入地震动预测方程,计算出了川滇地区的PGA分布图,为区域地震危险性提供科学依据.  相似文献   

16.
系统梳理了2000年以来山西地区6次MS≥4.5地震前地震活动异常,结果表明,地震空区/平静、地震条带、显著地震/震群、大同地震窗“开窗”活动等异常在地震发生前具有一定普遍性,且异常基本围绕在震中及附近地区分布,特别是在地震平静/空区、地震条带等异常发展后期出现的显著地震/震群活动,对未来地震发生的地点和时间具有较好的预测意义。异常持续时间与发震间隔统计表明:异常多出现在主震发生前6个月以内,显著地震/震群、大同地震窗“开窗”对未来主震的发生具有短临预测意义。此外,随着区域应力水平的不断增强,在特定敏感地区会发生成组极微震密集活动,监视跟踪这些有别于正常活动背景的极微震活动,对地震短临预测具有一定意义。  相似文献   

17.
2021年5月22日青海省果洛州玛多县发生M_S7.4地震。为探究本次地震的发震构造及余震分布特征,选取2021年5月1日—6月3日青海测震台网观测到的33°~36°N,97°~99.5°E空间范围内的地震观测报告,利用双差精定位方法进行双差精定位处理。重定位后整体残差平均减小了0.23,深度在5~25 km间随机分布。根据地震迁移方向和震区地质构造,认为本次地震的发震构造为昆仑山口—江错断裂,玛多—甘德东段受主震触发影响爆发一系列小震,两条断裂之间可能因为本次地震产生一定联系。本次地震产生新的断裂,突破了两条断裂之前的空区,连接到玛多—甘德断层,使两条断层交叉相连,形成新的断层构造。  相似文献   

18.
The Xiluodu (XLD) reservoir is the second largest reservoir in China and the largest in the Jinsha River basin. The occurrence of two M > 5 earthquakes after reservoir impoundment has aroused great interest among seismologists and plant operators. We comprehensively analyzed the seismicity of the XLD reservoir area using precise earthquake relocation results and focal mechanism solutions and found that the seismicity of this area was weak before impoundment. Following impoundment, earthquake activity increased significantly. The occurrence of M ≥ 3.5 earthquakes within five years of impoundment also appear to be closely related to rapid rises and falls in water level, though this correlation weakened after five years because earthquake activity was far from the reservoir area. Earthquakes in the XLD reservoir area are clustered; near the dam (Area A), small faults are intermittently distributed along the river, while Area B is composed of multiple NW-trending left-lateral strike-slip faults and a thrust fault and Area C is composed of a NW-trending left-lateral strike-slip main fault and a nearly EW-trending right-lateral strike-slip minor fault. The geometries of the deep and the shallow parts of the NW-trending fault differ. Under the action of the NW-trending background stress field, a series of NW-trending left-lateral strike-slip faults and NE-trending thrust faults in critical stress states were dislocated due to the stress caused by reservoir impoundment. The two largest earthquakes in the XLD reservoir area were tectonic earthquakes that were directly triggered by impoundment.  相似文献   

19.
2016年12月—2018年4月间布设于汶川、芦山地震之间地震空段的密集监测台阵(LmsSGA)提供了密集的观测数据.通过拾取地震走时、初始定位,计算地方震级,得到了完备性震级为0级的地震目录.更加完备的地震目录为地震空段及周围地震活动的时空分布特征和孕震风险性评估提供了丰富的信息.重定位结果显示地震主要集中于龙门山断裂带深度为5~20km的孕震层内.地震活动频繁的汶川、芦山主震区,震源的空间分布模式与其早期余震相似,说明两次大地震的区域仍处于缓慢的应力调整阶段.青藏高原物质东向挤出受宝兴、彭灌杂岩阻挡,在两个杂岩体西北侧地震活动频繁.地震活动性分布显示汶川—茂县、映秀—北川断裂上存在一个清晰的长约30km,宽约20km的地震活动"空白"区域,与其下方因部分熔融而产生的低速体分布一致,我们推测熔融体的加温作用是导致空段内极低的地震活动性的主要原因.监测时段内仍观测到降雨变化率和地震数量呈反相关关系,再次证实了汶川—芦山地震间地震空段及邻区内季节性降雨对地震活动性存在一定调节作用.综合分析S波速度模型、历史强震活动及b值,我们推断地震空段东部的彭灌断裂中段及周围部分隐伏断层存在发生强震的风险.  相似文献   

20.
宋金  蒋海昆  孟令媛  臧阳 《中国地震》2017,33(2):219-228
本文采用分层粘弹性介质模型计算了汶川地震对芦山震中产生的库仑应力加载的影响,进而结合Dieterich(1994)提出的速率状态摩擦定律给出芦山附近区域6级地震累积发震概率随时间的变化。结果显示,2013年芦山7.0级地震时其累积发震概率达18%,说明汶川地震产生的应力扰动加速了芦山地震的发生。本文还计算了汶川、芦山2次地震对其间"破裂空段"处产生的累积库仑应力扰动的影响,结合背景地震发生率,给出了"破裂空段"处6级地震累积发震概率变化。虽然计算结果可能受到大邑地震、介质模型参数的选取和背景地震发生概率等因素影响而存在一定误差,但"破裂空段"在2次强震应力加载下累积发震概率是不断增大的,因此我们认为"破裂空段"处发生中强地震的紧迫性不断增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号