首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
In the quantitative evaluation of radar-rainfall products (maps), rain gauge data are generally used as a good approximation of the true ground rainfall. However, rain gauges provide accurate measurements for a specific location, while radar estimates represent areal averages. Because these sampling discrepancies could introduce noise into the comparisons between these two sensors, they need to be accounted for. In this study, the spatial sampling error is defined as the ratio between the measurements by a single rain gauge and the true areal rainfall, defined as the value obtained by averaging the measurements by an adequate number of gauges within a pixel. Using a non-parametric scheme, the authors characterize its full statistical distribution for several spatial (4, 16 and 36 km2) and temporal (15 min and hourly) scales.  相似文献   

2.
The paper aims to develop researches on the spatial variability of heavy rainfall events estimation using spatial copula analysis. To demonstrate the methodology, short time resolution rainfall time series from Stuttgart region are analyzed. They are constituted by rainfall observations on continuous 30 min time scale recorded over a network composed by 17 raingages for the period July 1989–July 2004. The analysis is performed aggregating the observations from 30 min up to 24 h. Two parametric bivariate extreme copula models, the Husler–Reiss model and the Gumbel model are investigated. Both involve a single parameter to be estimated. Thus, model fitting is operated for every pair of stations for a giving time resolution. A rainfall threshold value representing a fixed rainfall quantile is adopted for model inference. Generalized maximum pseudo-likelihood estimation is adopted with censoring by analogy with methods of univariate estimation combining historical and paleoflood information with systematic data. Only pairs of observations greater than the threshold are assumed as systematic data. Using the estimated copula parameter, a synthetic copula field is randomly generated and helps evaluating model adequacy which is achieved using Kolmogorov Smirnov distance test. In order to assess dependence or independence in the upper tail, the extremal coefficient which characterises the tail of the joint bivariate distribution is adopted. Hence, the extremal coefficient is reported as a function of the interdistance between stations. If it is less than 1.7, stations are interpreted as dependent in the extremes. The analysis of the fitted extremal coefficients with respect to stations inter distance highlights two regimes with different dependence structures: a short spatial extent regime linked to short duration intervals (from 30 min to 6 h) with an extent of about 8 km and a large spatial extent regime related to longer rainfall intervals (from 12 h to 24 h) with an extent of 34 to 38 km.  相似文献   

3.
Radar rainfall estimation for flash flood forecasting in small, urban catchments is examined through analyses of radar, rain gage and discharge observations from the 14.3 km2 Dead Run drainage basin in Baltimore County, Maryland. The flash flood forecasting problem pushes the envelope of rainfall estimation to time and space scales that are commensurate with the scales at which the fundamental governing laws of land surface processes are derived. Analyses of radar rainfall estimates are based on volume scan WSR-88D reflectivity observations for 36 storms during the period 2003–2005. Gage-radar analyses show large spatial variability of storm total rainfall over the 14.3 km2 basin for flash flood producing storms. The ability to capture the detailed spatial variation of rainfall for flash flood producing storms by WSR-88D rainfall estimates varies markedly from event to event. As spatial scale decreases from the 14.3 km2 scale of the Dead Run watershed to 1 km2 (and the characteristic time scale of flash flood producing rainfall decreases from 1 h to 15 min) the predictability of flash flood response from WSR-88D rainfall estimates decreases sharply. Storm to storm variability of multiplicative bias in storm total rainfall estimates is a dominant element of the error structure of radar rainfall estimates, and it varies systematically over the warm season and with flood magnitude. Analyses of the 7 July 2004 and 28 June 2005 storms illustrate microphysical and dynamical controls on radar estimation error for extreme flash flood producing storms.  相似文献   

4.
Spatial correlation structure in small-scale rainfall is analyzed based on a dense cluster of raingauges in Central Oklahoma. This cluster, called the EVAC PicoNet, consists of 53 gauges installed in 25 measurement stations covering an area of about 3 km by 3 km. Two raingauges are placed in 24 stations and five in the central station. Three aspects of the estimated spatial correlation functions are discussed: dependence on time-scale ranging from 1 min to 24 h, inter-storm variability, and dependence on rainfall intensity. The results show a regular dependence of the correlogram parameters on the averaging time-scale, large differences of the correlograms in the individual storms, and the dominance of storms with high spatial variability on the average large sample characteristics. The authors also demonstrate and discuss the ambiguities in correlation estimates conditioned on rainfall intensities. The findings of this study have implications for raingauge network design, rainfall modeling, and conclusive evaluation of radar and satellite estimates of rainfall.  相似文献   

5.
Radar estimates of rainfall are being increasingly applied to flood forecasting applications. Errors are inherent both in the process of estimating rainfall from radar and in the modelling of the rainfall–runoff transformation. The study aims at building a framework for the assessment of uncertainty that is consistent with the limitations of the model and data available and that allows a direct quantitative comparison between model predictions obtained by using radar and raingauge rainfall inputs. The study uses radar data from a mountainous region in northern Italy where complex topography amplifies radar errors due to radar beam occlusion and variability of precipitation with height. These errors, together with other error sources, are adjusted by applying a radar rainfall estimation algorithm. Radar rainfall estimates, adjusted and not, are used as an input to TOPMODEL for flood simulation over the Posina catchment (116 km2). Hydrological model parameter uncertainty is explicitly accounted for by use of the GLUE (Generalized Likelihood Uncertainty Estimation). Statistics are proposed to evaluate both the wideness of the uncertainty limits and the percentage of observations which fall within the uncertainty bounds. Results show the critical importance of proper adjustment of radar estimates and the use of radar estimates as close to ground as possible. Uncertainties affecting runoff predictions from adjusted radar data are close to those obtained by using a dense raingauge network, at least for the lowest radar observations available. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, some considerations are given to the employment of C-band polarimetric weather radars for rainfall estimates. The most common error sources are discussed, such as ground clutter and propagation attenuation effects, together with decorrelation in the sampling at the ground between radar and raingauge measurements, which can be quite significant in radar systems located in hilly regions, as is the case of the Arno basin in Tuscany. Since the main objective from a hydrological point of view is the estimate of rainfall at ground, integrations and comparisons are needed between radar and raingauge data, which are characterized by different time and space sampling. The paper is then focussed mainly on this problem and a technique is presented in order to improve radar based rainfall estimates through the integration with raingauge data, in order to enhance the correlation between the two types of measurements. Such a method is finally applied to a serious meteorological event which affected the Arno basin on October 1992.  相似文献   

7.
A comprehensive parametric approach to study the probability distribution of rainfall data at scales of hydrologic interest (e.g. from few minutes up to daily) requires the use of mixed distributions with a discrete part accounting for the occurrence of rain and a continuous one for the rainfall amount. In particular, when a bivariate vector (X, Y) is considered (e.g. simultaneous observations from two rainfall stations or from two instruments such as radar and rain gauge), it is necessary to resort to a bivariate mixed model. A quite flexible mixed distribution can be defined by using a 2-copula and four marginals, obtaining a bivariate copula-based mixed model. Such a distribution is able to correctly describe the intermittent nature of rainfall and the dependence structure of the variables. Furthermore, without loss of generality and with gain of parsimony this model can be simplified by some transformations of the marginals. The main goals of this work are: (1) to empirically explore the behaviour of the parameters of marginal transformations as a function of time scale and inter-gauge distance, by analysing data from a network of rain gauges; (2) to compare the properties of the regression curves associated to the copula-based mixed model with those derived from the model simplified by transformations of the marginals. The results from the investigation of transformations’ parameters are in agreement with the expected theoretical dependence on inter-gauge distance, and show dependence on time scale. The analysis on the regression curves points out that: (1) a copula-based mixed model involves regression curves quite close to some non-parametric models; (2) the performance of the parametric regression decreases in the same cases in which non-parametric regression shows some instability; (3) the copula-based mixed model and its simplified version show similar behaviour in term of regression for mid-low values of rainfall. An erratum to this article can be found at  相似文献   

8.
Radar‐based estimates of rainfall are affected by many sources of uncertainties, which would propagate through the hydrological model when radar rainfall estimates are used as input or initial conditions. An elegant solution to quantify these uncertainties is to model the empirical relationship between radar measurements and rain gauge observations (as the ‘ground reference’). However, most current studies only use a fixed and uniform model to represent the uncertainty of radar rainfall, without consideration of its variation under different synoptic regimes. Wind is such a typical weather factor, as it not only induces error in rain gauge measurements but also causes the raindrops observed by weather radar to drift when they reach the ground. For this reason, as a first attempt, this study introduces the wind field into the uncertainty model and designs the radar rainfall uncertainty model under different wind conditions. We separate the original dataset into three subsamples according to wind speed, which are named as WDI (0–2 m/s), WDII (2–4 m/s) and WDIII (>4 m/s). The multivariate distributed ensemble generator is introduced and established for each subsample. Thirty typical events (10 at each wind range) are selected to explore the behaviours of uncertainty under different wind ranges. In each time step, 500 ensemble members are generated, and the values of 5th to 95th percentile values are used to produce the uncertainty bands. Two basic features of uncertainty bands, namely dispersion and ensemble bias, increase significantly with the growth of wind speed, demonstrating that wind speed plays a considerable role in influencing the behaviour of the uncertainty band. On the basis of these pieces of evidence, we conclude that the radar rainfall uncertainty model established under different wind conditions should be more realistic in representing the radar rainfall uncertainty. This study is only a start in incorporating synoptic regimes into rainfall uncertainty analysis, and a great deal of more effort is still needed to build a realistic and comprehensive uncertainty model for radar rainfall data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper characterizes the joint distribution of multiplicative errors (ME) in radar (R) and satellite (S) quantitative precipitation estimates (QPEs). A semi-parametric framework is established on the basis of this joint distribution to describe the probability of rainfall exceeding a particular threshold given concurrent R and S-based estimates (referred to as conditional exceedance probability, or CEP). This framework entails integrating copula-based joint distributions of MEs over a range of rainfall amounts to yield the joint probability of exceedance, which forms the basis for estimating CEP. In demonstrating this approach, MEs were computed for R (Weather Surveillance Radar-1988 Doppler) and S (Self-calibrating Multivariate Precipitation Retrieval) for central Texas over 2000–2007 using gauge records as the reference. Analysis of the MEs in R and S reveals a substantial correlation between the two, and it also shows that the interdependence is complex as a considerable portion of S QPEs are negatively biased while their concurrent R values are bias-neutral. CEP values from the semi-parametric approach is found to be generally superior to those empirically derived based on rainfall estimates: it yields values for a wide range of rainfall thresholds and suffers much fewer discontinuities and artifacts that the empirical results exhibit. For the lower range of S and R thresholds where sample size is relatively large (i.e., <20 mm h−1 for the summer), the two sets of CEPs bear close resemblance, with both showing a relatively weak, but nevertheless substantial dependence on the threshold value for S. These findings confirm the plausibility of the semi-parametric CEP values, and demonstrate the utility of S QPEs in improving the confidence in rainfall exceedance under this framework.  相似文献   

10.
It is well acknowledged that there are large uncertainties associated with radar-based estimates of rainfall. Numerous sources of these errors are due to parameter estimation, the observational system and measurement principles, and not fully understood physical processes. Propagation of these uncertainties through all models for which radar-rainfall are used as input (e.g., hydrologic models) or as initial conditions (e.g., weather forecasting models) is necessary to enhance the understanding and interpretation of the obtained results. The aim of this paper is to provide an extensive literature review of the principal sources of error affecting single polarization radar-based rainfall estimates. These include radar miscalibration, attenuation, ground clutter and anomalous propagation, beam blockage, variability of the ZR relation, range degradation, vertical variability of the precipitation system, vertical air motion and precipitation drift, and temporal sampling errors. Finally, the authors report some recent results from empirically-based modeling of the total radar-rainfall uncertainties. The bibliography comprises over 200 peer reviewed journal articles.  相似文献   

11.
Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.  相似文献   

12.
The aim of this study is to assess rainfall estimates by a dual polarized X-band radar. This study was part of the European project FRAMEA (Flood forecasting using Radar in Alpine and Mediterranean Areas). Two radars were set up near the small town of Collobrières in South Eastern France. The first radar was a dual polarized X-band radar (Hydrix®) associated with a ZPHI® algorithm while the second one was an S-band radar (Météo France). We compared radar rainfall data with measurements obtained by two rain gauge networks (Météo France and Cemagref). During the experiments from February 2006 to June 2007, four significant rainfall events occurred. The accuracy of the rain rate obtained with both S-band and X-band radars decreased significantly beyond 60 km, in particular for the X-band radar. At closer ranges, such as 30–60 km from the radars, the X-band and the S-band radar retrievals showed similar performance with Nash criteria around 0.80 for the X-band radar and 0.75 for the S-band radar. Furthermore, the X-band radar did not require calibration on rainfall records, which tends to make it a useful method to assess rainfall in areas without a rain gauge network.  相似文献   

13.
This paper reports the results of an investigation into flood simulation by areal rainfall estimated from the combination of gauged and radar rainfalls and a rainfall–runoff model on the Anseong‐cheon basin in the southern part of Korea. The spatial and temporal characteristics and behaviour of rainfall are analysed using various approaches combining radar and rain gauges: (1) using kriging of the rain gauge alone; (2) using radar data alone; (3) using mean field bias (MFB) of both radar and rain gauges; and (4) using conditional merging technique (CM) of both radar and rain gauges. To evaluate these methods, statistics and hyetograph for rain gauges and radar rainfalls were compared using hourly radar rainfall data from the Imjin‐river, Gangwha, rainfall radar site, Korea. Then, in order to evaluate the performance of flood estimates using different rainfall estimation methods, rainfall–runoff simulation was conducted using the physics‐based distributed hydrologic model, Vflo?. The flood runoff hydrograph was used to compare the calculated hydrographs with the observed one. Results show that the rainfall field estimated by CM methods improved flood estimates, because it optimally combines rainfall fields representing actual spatial and temporal characteristics of rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Intensity–duration–frequency (IDF) curves of extreme rainfall are used extensively in infrastructure design and water resources management. In this study, a novel regional framework based on quantile regression (QR) is used to estimate rainfall IDF curves at ungauged locations. Unlike standard regional approaches, such as index-storm and at-site ordinary least-squares regression, which are dependent on parametric distributional assumptions, the non-parametric QR approach directly estimates rainfall quantiles as a function of physiographic characteristics. Linear and nonlinear methods are evaluated for both the regional delineation and IDF curve estimation steps. Specifically, delineation by canonical correlation analysis (CCA) and nonlinear CCA (NLCCA) is combined, in turn, with linear QR and nonlinear QR estimation in a regional modelling framework. An exhaustive comparative study is conducted between standard regional methods and the proposed QR framework at sites across Canada. Overall, the fully nonlinear QR framework, which uses NLCCA for delineation and nonlinear QR for estimation of IDF curves at ungauged sites, leads to the best results.  相似文献   

15.
Abstract

Given that radar-based rainfall has been broadly applied in hydrological studies, quantitative modelling of its uncertainty is critically important, as the error of input rainfall is the main source of error in hydrological modelling. Using an ensemble of rainfall estimates is an elegant solution to characterize the uncertainty of radar-based rainfall and its spatial and temporal variability. This paper has fully formulated an ensemble generator for radar precipitation estimation based on the copula method. Each ensemble member is a probable realization that represents the unknown true rainfall field based on the distribution of radar rainfall (RR) error and its spatial error structure. An uncertainty model consisting of a deterministic component and a random error factor is presented based on the distribution of gauge rainfall conditioned on the radar rainfall (GR|RR). Two kinds of copulas (elliptical and Archimedean copulas) are introduced to generate random errors, which are imposed by the deterministic component. The elliptical copulas (e.g. Gaussian and t-copula) generate the random errors based on the multivariate distribution, typically of decomposition of the error correlation matrix using the LU decomposition algorithm. The Archimedean copulas (e.g. Clayton and Gumbel) utilize the conditional dependence between different radar pixels to obtain random errors. Based on those, a case application is carried out in the Brue catchment located in southwest England. The results show that the simulated uncertainty bands of rainfall encompass most of the reference raingauge measurements with good agreement between the simulated and observed spatial dependences. This indicates that the proposed scheme is a statistically reliable method in ensemble radar rainfall generation and is a useful tool for describing radar rainfall uncertainty.
Editor D. Koutsoyiannis; Associate editor S. Grimaldi  相似文献   

16.
This study aims at evaluating the uncertainty in the prediction of soil moisture (1D, vertical column) from an offline land surface model (LSM) forced by hydro-meteorological and radiation data. We focus on two types of uncertainty: an input error due to satellite rainfall retrieval uncertainty, and, LSM soil-parametric error. The study is facilitated by in situ and remotely sensed data-driven (precipitation, radiation, soil moisture) simulation experiments comprising a LSM and stochastic models for error characterization. The parametric uncertainty is represented by the generalized likelihood uncertainty estimation (GLUE) technique, which models the parameter non-uniqueness against direct observations. Half-hourly infra-red (IR) sensor retrievals were used as satellite rainfall estimates. The IR rain retrieval uncertainty is characterized on the basis of a satellite rainfall error model (SREM). The combined uncertainty (i.e., SREM + GLUE) is compared with the partial assessment of uncertainty. It is found that precipitation (IR) error alone may explain moderate to low proportion of the soil moisture simulation uncertainty, depending on the level of model accuracy—50–60% for high model accuracy, and 20–30% for low model accuracy. Comparisons on the basis of two different sites also yielded an increase (50–100%) in soil moisture prediction uncertainty for the more vegetated site. This study exemplified the need for detailed investigations of the rainfall retrieval-modeling parameter error interaction within a comprehensive space-time stochastic framework for achieving optimal integration of satellite rain retrievals in land data assimilation systems.  相似文献   

17.
The infrared‐microwave rainfall algorithm (IMRA) was developed for retrieving spatial rainfall from infrared (IR) brightness temperatures (TBs) of satellite sensors to provide supplementary information to the rainfall field, and to decrease the traditional dependency on limited rain gauge data that are point measurements. In IMRA, a SLOPE technique (ST) was developed for discriminating rain/no‐rain pixels through IR image cloud‐top temperature gradient, and 243K as the IR threshold temperature for minimum detectable rainfall rate. IMRA also allows for the adjustment of rainfall derived from IR‐TB using microwave (MW) TBs. In this study, IMRA rainfall estimates were assessed on hourly and daily basis for different spatial scales (4, 12, 20, and 100 km) using NCEP stage IV gauge‐adjusted radar rainfall data, and daily rain gauge data. IMRA was assessed in terms of the accuracy of the rainfall estimates and the basin streamflow simulated by the hydrologic model, Sacramento soil moisture accounting (SAC‐SMA), driven by the rainfall data. The results show that the ST option of IMRA gave accurate satellite rainfall estimates for both light and heavy rainfall systems while the Hessian technique only gave accurate estimates for the convective systems. At daily time step, there was no improvement in IR‐satellite rainfall estimates adjusted with MW TBs. The basin‐scale streamflow simulated by SAC‐SMA driven by satellite rainfall data was marginally better than when SAC‐SMA was driven by rain gauge data, and was similar to the case using radar data, reflecting the potential applications of satellite rainfall in basin‐scale hydrologic modelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Urban river systems are particularly sensitive to precipitation‐driven water temperature surges and fluctuations. These result from rapid heat transfer from low‐specific heat capacity surfaces to precipitation, which can cause thermally polluted surface run‐off to enter urban streams. This can lead to additional ecological stress on these already precarious ecosystems. Although precipitation is a first‐order driver of hydrological response, water temperature studies rarely characterize rain event dynamics and typically rely on single gauge data that yield only partial estimates of catchment precipitation. This paper examines three precipitation measuring methods (a statutory automatic weather station, citizen science gauges, and radar estimates) and investigates relationships between estimated rainfall inputs and subhourly surges and diurnal fluctuations in urban river water temperature. Water temperatures were monitored at 12 sites in summer 2016 in the River Rea, in Birmingham, UK. Generalized additive models were used to model the relationship between subhourly water temperature surges and precipitation intensity and subsequently the relationship between daily precipitation totals and standardized mean water temperature. The different precipitation measurement sources give highly variable precipitation estimates that relate differently to water temperature fluctuations. The radar catchment‐averaged method produced the best model fit (generalized cross‐validation score [GCV] = 0.30) and was the only model to show a significant relationship between water temperature surges and precipitation intensity (P < 0.001, R2 = 0.69). With respect to daily metrics, catchment‐averaged precipitation estimates from citizen science data yielded the best model fit (GCV score = 0.20). All precipitation measurement and calculation methods successfully modelled the relationship between standardized mean water temperature and daily precipitation (P < 0.001). This research highlights the potential for the use of alternative precipitation datasets to enhance understanding of event‐based variability in water quality studies. We conclude by recommending the use of spatially distributed precipitation data operating at high spatial (<1 km2) and temporal (<15 min) resolutions to improve the analysis of event‐based water temperature and water quality studies.  相似文献   

19.
Seth Rose 《水文研究》1994,8(5):481-496
Major-ion variability related to discharge was analysed in a forested 187 km2 mafic Piedmont Province watershed using statistical (both parametric and non-parametric), graphical (box-plots) and curve-fitting (log concentration-log discharge) techniques. Baseflow alkalinity and base cation concentrations show systematic temporal variations as a result of the influx of additional water that occurs during the late autumn to early spring. Regression analyses indicate that storm-related discharge and baseflow generated during periods of water surplus are characterized by similar dilution slopes. Mass balance estimates indicate that the additional water, which comprises storm/recession discharge and base-flow from late autumn to early spring, is between about 30 and 80% as concentrated as summer low-flow. The thick clay-rich soil mantle represents a key control on solute concentrations in that it stores water for periods of time sufficient for a high degree of water-mineral interaction to occur. Hence solute-discharge relationships (C = aQb, where b is typically < 0) are characterized by relatively low slope values and there is ample acid neutralizing capacity throughout the range of discharge. Owing to the predominance of amphibolite, solute efflux related to rock weathering from the Falling Creek watershed is much greater than other more felsic locations within the region. Statistical analyses (Mest and the non-parametric Mann-Whitney-Wilcoxon test), along with accompanying box-plot representations, provide a useful method of describing systematic annual hydrochemical variation within streamflow. These methods are particularly effective for those instances in which a long-term data set exists, but is limited to relatively few sampling periods per year.  相似文献   

20.
Rainfall products can contain significantly different spatiotemporal estimates, depending on their underlying data and final constructed resolution. Commonly used products, such as rain gauges, rain gauge networks, and weather radar, differ in their information content regarding intensities, spatial variability, and natural climatic variability, therefore producing different estimates. Landscape evolution models (LEMs) simulate the geomorphic changes in landscapes, and current models can simulate timeframes from event level to millions of years and some use rainfall inputs to drive them. However, the impact of different rainfall products on LEM outputs has never been considered. This study uses the STREAP rainfall generator, calibrated using commonly used rainfall observation products, to produce longer rainfall records than the observations to drive the CAESAR-Lisflood LEM to examine how differences in rainfall products affect simulated landscapes. The results show that the simulation of changes to basin geomorphology is sensitive to the differences between rainfall products, with these differences expressed linearly in discharges but non-linearly in sediment yields. Furthermore, when applied over a 1500-year period, large differences in the simulated long profiles were observed, with the simulations producing greater sediment yields showing erosion extending further downstream. This suggests that the choice of rainfall product to drive LEMs has a large impact on the final simulated landscapes. The combination of rainfall generator model and LEMs represents a potentially powerful method for assessing the impacts of rainfall product differences on landscapes and their short- and long-term evolution. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号