首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
2.
There are large uncertainties associated with radar estimates of rainfall, including systematic errors as well as the random effects from several sources. This study focuses on the modeling of the systematic error component, which can be described mathematically in terms of a conditional expectation function. The authors present two different approaches: non-parametric (kernel-based) and parametric (copula-based). A large sample (more than six years) of rain gauge measurements from a dense network located in south-west England is used as an approximation of the true ground rainfall. These data are complemented with rainfall estimates by a C-band weather radar located at Wardon Hill, which is about 40 km from the catchment. The authors compare the results obtained using the parametric and non-parametric schemes for four temporal scales of hydrologic interest (5 and 15 min, hourly and three-hourly) by means of several different performance indices and discuss the strengths and weaknesses of each approach.  相似文献   

3.
This study presents spatio-temporal analysis of droughts in one of the most drought prone region in India–western Rajasthan and develops drought intensity-area-frequency curves for the region. The meteorological drought conditions are analyzed using 6-month standardized precipitation index (SPI-6) estimated at spatial resolution of 0.5° × 0.5°. Spatio-temporal analysis of SPI-6 indicates increase in frequency of droughts at the central part of the region. The non-parametric Mann–Kendall test for seasonal trend analysis showed increase in number of grids under drought during the study period. Further, bivariate frequency analysis of drought characteristics—intensity and areal extent is carried out using copula methods. For modeling joint dependence between drought variables, three copula families namely Gumbel-Hougaard, Frank and Plackett copulas are evaluated. Based on goodness-of-fit as well as upper tail dependence tests, it is found that the Gumbel-Hougaard copula best represents the drought properties. The copula-based joint distribution is used to compute conditional return periods and drought intensity–area–frequency (I–A–F) curves. The I–A–F curves could be helpful in risk evaluation of droughts in the region.  相似文献   

4.
Extreme rainfall events are of particular importance due to their severe impacts on the economy, the environment and the society. Characterization and quantification of extremes and their spatial dependence structure may lead to a better understanding of extreme events. An important concept in statistical modeling is the tail dependence coefficient (TDC) that describes the degree of association between concurrent rainfall extremes at different locations. Accurate knowledge of the spatial characteristics of the TDC can help improve on the existing models of the occurrence probability of extreme storms. In this study, efficient estimation of the TDC in rainfall is investigated using a dense network of rain gauges located in south Louisiana, USA. The inter-gauge distances in this network range from about 1 km to 9 km. Four different nonparametric TDC estimators are implemented on samples of the rain gauge data and their advantages and disadvantages are discussed. Three averaging time-scales are considered: 1 h, 2 h and 3 h. The results indicate that a significant tail dependency may exist that cannot be ignored for realistic modeling of multivariate rainfall fields. Presence of a strong dependence among extremes contradicts with the assumption of joint normality, commonly used in hydrologic applications.  相似文献   

5.
Quantification of rainfall and its spatial and temporal variability is extremely important for reliable hydrological and meteorological modeling. While rain gauge measurements do not provide reasonable areal representation of rainfall, remotely sensed precipitation estimates offer much higher spatial resolution. However, uncertainties associated with remotely sensed rainfall estimates are not well quantified. This issue is important considering the fact that uncertainties in input rainfall are the main sources of error in hydrologic processes. Using an ensemble of rainfall estimates that resembles multiple realizations of possible true rainfall, one can assess uncertainties associated with remotely sensed rainfall data. In this paper, ensembles are generated by imposing rainfall error fields over remotely sensed rainfall estimates. A non-Gaussian copula-based model is introduced for simulation of rainfall error fields. The v-transformed copula is employed to describe the dependence structure of rainfall error estimates without the influence of the marginal distribution. Simulations using this model can be performed unconditionally or conditioned on ground reference measurements such that rain gauge data are honored at their locations. The presented model is implemented for simulation of rainfall ensembles across the Little Washita watershed, Oklahoma. The results indicate that the model generates rainfall fields with similar spatio-temporal characteristics and stochastic properties to those of observed rainfall data.  相似文献   

6.
: The knowledge of the volume and duration of low-flow events in river channels is essential for water management and the design of hydraulics structures. In this study, both preceding characteristics, X 1 and X 2, are considered simultaneously via two types of bivariate distributions whose marginals are exponential. One of these bivariate distributions has been presented by Nagao and Kadoya (1971) and the other has been used by Singh and Singh (1991) to the study of rainfall intensity and rainfall depth. The results are applied to the low-flow series (“peaks-below-threshold”) of Lepreau River (station 01AQ001) in New Brunswick, Canada. These results show that the model that was successfully employed by Singh and Singh (1991) to study rainfall, presents certain difficulties when a very strong correlation, ρ, between the two random variables X 1 and X 2, exists. The model by Nagao and Kadoya (1971) seems to be more satisfactory for such situations, although this model seems also to be quite sensitive to variations in ρ.  相似文献   

7.
A bivariate analysis of the volume and duration of low-flow events   总被引:2,自引:0,他引:2  
: The knowledge of the volume and duration of low-flow events in river channels is essential for water management and the design of hydraulics structures. In this study, both preceding characteristics, X 1 and X 2, are considered simultaneously via two types of bivariate distributions whose marginals are exponential. One of these bivariate distributions has been presented by Nagao and Kadoya (1971) and the other has been used by Singh and Singh (1991) to the study of rainfall intensity and rainfall depth. The results are applied to the low-flow series (“peaks-below-threshold”) of Lepreau River (station 01AQ001) in New Brunswick, Canada. These results show that the model that was successfully employed by Singh and Singh (1991) to study rainfall, presents certain difficulties when a very strong correlation, ρ, between the two random variables X 1 and X 2, exists. The model by Nagao and Kadoya (1971) seems to be more satisfactory for such situations, although this model seems also to be quite sensitive to variations in ρ.  相似文献   

8.
Depth–duration–frequency curves estimate the rainfall intensity patterns for various return periods and rainfall durations. An empirical model based on the generalized extreme value distribution is presented for hourly maximum rainfall, and improved by the inclusion of daily maximum rainfall, through the extremal indexes of 24 hourly and daily rainfall data. The model is then divided into two sub-models for the short and long rainfall durations. Three likelihood formulations are proposed to model and compare independence or dependence hypotheses between the different durations. Dependence is modelled using the bivariate extreme logistic distribution. The results are calculated in a Bayesian framework with a Markov Chain Monte Carlo algorithm. The application to a data series from Marseille shows an improvement of the hourly estimations thanks to the combination between hourly and daily data in the model. Moreover, results are significantly different with or without dependence hypotheses: the dependence between 24 and 72 h durations is significant, and the quantile estimates are more severe in the dependence case.  相似文献   

9.
The French Mediterranean area is subject to intense rainfall events which might cause flash floods, the main natural hazard in the area. Flood-risk rainfall is defined as rainfall with a high spatial average and encompasses rainfall which might lead to flash floods. We aim to compare eight multivariate density models for multi-site flood-risk rainfall. In particular, an accurate characterization of the spatial variability of flood-risk rainfall is crucial to help understand flash flood processes. Daily data from eight rain gauge stations at the Gardon at Anduze, a small Mediterranean catchment, are used in this work. Each multivariate density model is made of a combination of a marginal model and a dependence structure. Two marginal models are considered: the Gamma distribution (parametric) and the Log-Normal mixture (non-parametric). Four dependence structures are included in the comparison: Gaussian, Student t, Skew Normal and Skew t in increasing order of complexity. They possess a representative set of theoretical properties (symmetry/asymmetry and asymptotic dependence/independence). The multivariate models are compared in terms of three types of criteria: (1) separate evaluation of the goodness-of-fit of the margins and of the dependence structures, (2) model selection with a leave-one-out evaluation of the Anderson-Darling and Cramer-Von Mises statistics and (3) comparison in terms of two hydrologically interpretable quantities (return periods of the spatial average and conditional probabilities of exceedances). The key outcome of the comparison is that the Skew Normal with the Log-Normal mixture margins outperform significantly the other models. The asymmetry introduced by the Skew Normal is an added-value with respect to the Gaussian. Therefore, the Gaussian dependence structure, although widely used in the literature, is not recommended for the data in this study. In contrast, the asymptotically dependent models did not provide a significant improvement over the asymptotically independent ones.  相似文献   

10.
Certain bivariate densities constructed from marginals have recently been suggested as models of hydrologic variates such as rainfall intensity and depth. It is pointed out that (i) these densities belong to the families of the Farlie-Gumbel-Morgenstern densities and the Farlie polynomial densities, which have been extensively studied in the statistical literature, and that (ii) these densities have a limited potential applicability in hydrology since they can model only weakly associated variates, whose product-moment correlationR is within the range |R|1/3, under the first family of densities, and |R|1/2 under the second family.  相似文献   

11.
Certain bivariate densities constructed from marginals have recently been suggested as models of hydrologic variates such as rainfall intensity and depth. It is pointed out that (i) these densities belong to the families of the Farlie-Gumbel-Morgenstern densities and the Farlie polynomial densities, which have been extensively studied in the statistical literature, and that (ii) these densities have a limited potential applicability in hydrology since they can model only weakly associated variates, whose product-moment correlationR is within the range |R|1/3, under the first family of densities, and |R|1/2 under the second family.  相似文献   

12.
The paper aims to develop researches on the spatial variability of heavy rainfall events estimation using spatial copula analysis. To demonstrate the methodology, short time resolution rainfall time series from Stuttgart region are analyzed. They are constituted by rainfall observations on continuous 30 min time scale recorded over a network composed by 17 raingages for the period July 1989–July 2004. The analysis is performed aggregating the observations from 30 min up to 24 h. Two parametric bivariate extreme copula models, the Husler–Reiss model and the Gumbel model are investigated. Both involve a single parameter to be estimated. Thus, model fitting is operated for every pair of stations for a giving time resolution. A rainfall threshold value representing a fixed rainfall quantile is adopted for model inference. Generalized maximum pseudo-likelihood estimation is adopted with censoring by analogy with methods of univariate estimation combining historical and paleoflood information with systematic data. Only pairs of observations greater than the threshold are assumed as systematic data. Using the estimated copula parameter, a synthetic copula field is randomly generated and helps evaluating model adequacy which is achieved using Kolmogorov Smirnov distance test. In order to assess dependence or independence in the upper tail, the extremal coefficient which characterises the tail of the joint bivariate distribution is adopted. Hence, the extremal coefficient is reported as a function of the interdistance between stations. If it is less than 1.7, stations are interpreted as dependent in the extremes. The analysis of the fitted extremal coefficients with respect to stations inter distance highlights two regimes with different dependence structures: a short spatial extent regime linked to short duration intervals (from 30 min to 6 h) with an extent of about 8 km and a large spatial extent regime related to longer rainfall intervals (from 12 h to 24 h) with an extent of 34 to 38 km.  相似文献   

13.
A procedure is presented for developing a rainfall intensity–duration–frequency (IDF) relationship that is consistent with bivariate normal distribution modeling. The Box–Cox transformation was used to derive the relation and two methods of determining the parameters of this transformation were evaluated. To assess the uncertainty of the parameters, a confidence interval was constructed and verified with the non-parametric bootstrap method. Additionally, the effect of sample size on the bivariate normality assumption was examined. Case studies, based on data from significant gauge stations in Korea, were performed. The result shows that the use of the bivariate normal model as an IDF relationship is particularly recommended when the available data size is small.  相似文献   

14.
A rainfall intensity–duration–frequency (IDF) relationship was generated by pooling annual maximum rainfall series from 14 recording rain gauges in southern Taiwan. Dimensionless frequency curves, plotted by the growth curve method, can be well fitted by regression equations for a duration ranging from 10 mins to 24 hours. As the parameters in regression equations have a good statistical relationship with average annual rainfall, a generalized regional IDF formula was then formulated. The formula, based on average annual rainfall as an index, can be easily applied to non-recording rain gauges. This paper further applies the mean value first-order second moment (MFOSM) method to estimate the uncertainty of the proposed regional IDF formula. From a stochastic viewpoint, the generalized regional IDF formula can accurately simulate the IDF relationship developed using frequency analysis (EV1) at individual stations. The method can provide both rainfall intensity and variance isohyetal maps for various rainfall durations and return periods over the study area. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
The goal of this study is to investigate the uncertainty of an urban sewer system’s response under various rainfall and infrastructure scenarios by applying a recently developed nonparametric copula-based simulation approach to extreme rainfall fields. The approach allows for Monte Carlo simulation of multiple variables with differing marginal distributions and arbitrary dependence structure. The independent and identically distributed daily extreme rainfall events of the corresponding urban area, extracted from nationwide high resolution radar data stage IV, are the inputs of the spatial simulator. The simulated extreme rainfall fields were used to calculate excess runoff using the Natural Resources Conservation Service’s approach. New York City is selected as a case study and the results highlight the importance of preserving the spatial dependence of rainfall fields between the grids, even for simplified hydrologic models. This study estimates the probability of combined sewer overflows under extreme rainfall events and identifies the most effective locations in New York City to install green infrastructure for detaining excess stormwater runoff. The results of this study are beneficial for planners working on stormwater management and the approach is broadly applicable because it does not rely on extensive sewer system information.  相似文献   

16.
Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.  相似文献   

17.
Intensity–duration–frequency (IDF) curves of extreme rainfall are used extensively in infrastructure design and water resources management. In this study, a novel regional framework based on quantile regression (QR) is used to estimate rainfall IDF curves at ungauged locations. Unlike standard regional approaches, such as index-storm and at-site ordinary least-squares regression, which are dependent on parametric distributional assumptions, the non-parametric QR approach directly estimates rainfall quantiles as a function of physiographic characteristics. Linear and nonlinear methods are evaluated for both the regional delineation and IDF curve estimation steps. Specifically, delineation by canonical correlation analysis (CCA) and nonlinear CCA (NLCCA) is combined, in turn, with linear QR and nonlinear QR estimation in a regional modelling framework. An exhaustive comparative study is conducted between standard regional methods and the proposed QR framework at sites across Canada. Overall, the fully nonlinear QR framework, which uses NLCCA for delineation and nonlinear QR for estimation of IDF curves at ungauged sites, leads to the best results.  相似文献   

18.
 The open literature reveals several types of bivariate exponential distributions. Of them only the Nagao–Kadoya distribution (Nagao and Kadoya, 1970, 1971) has a general form with marginals that are standard exponential distributions and the correlation coefficient being 0≤ρ<1. On the basis of the principle that if a theoretical probability distribution can represent statistical properties of sample data, then the computed probabilities from the theoretical model should provide a good fit to observed ones, numerical experiments are executed to investigate the applicability of the Nagao–Kadoya bivariate exponential distribution for modeling the joint distribution of two correlated random variables with exponential marginals. Results indicate that this model is suitable for analyzing the joint distribution of two exponentially distributed variables. The procedure for the use of this model to represent the joint statistical properties of two correlated exponentially distributed variables is also presented.  相似文献   

19.
Establishing the rainfall intensity–duration–frequency (IDF) relations by the conventional method, the use of parametric distribution models has the advantage of automatic compliance of monotonicity condition of rainfall intensity and frequency. However, fitting rainfall data to a distribution separately by individual duration may possibly produce undulation and crossover of IDF curves which does not comply physical reality. This frequently occurs when rainfall record length is relatively short which often is the case. To tackle this problem this study presents a methodological framework that integrates the third-order polynomial normal transform (TPNT) with the least squares (LS) method to establish rainfall IDF relations by simultaneously considering multi-duration rainfall data. The constraints to preserve the monotonicity and non-crossover in the IDF relations can be incorporated easily in the LS-based TPNT framework. Hourly rainfall data at Zhongli rain gauge station in Taiwan with 27-year record are used to establish rainfall IDF relations and to illustrate the proposed methodology. Numerical investigation indicates that the undulation and crossover behavior of IDF curves can be effectively circumvented by the proposed approach to establish reasonable IDF relations.  相似文献   

20.
In this work, the multifractal properties of hourly rainfall data recorded at a location in Southern Spain have been related to the scale properties of the corresponding intensity–duration–frequency (IDF) curves. Four parametric models for the IDF curves have been fitted to the quantiles of rainfall obtained using the generalized Pareto frequency distribution function with the extreme data series obtained for the same place. The scaling of the rainfall intensity moments has been analysed, and the empirical moments scaling exponent function has been obtained. The corresponding values of q1 and γ1 have been empirical and theoretically calculated and compared with some characteristics of the different IDF models. Thus, the scaling behaviour of IDF curves has been analysed, and the best model has been selected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号