首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peat is known as soft soil with low shear strength and high compressibility. Electrokinetic injection technique is being used by applying a direct electrical potential across the soil specimens to improve physicochemical characteristics of the peat. Such applications cause electrochemical effects on the soil, leading to changes in the soil’s chemical, physical, and mechanical properties. This paper presents the results of the undrained shear strength, pH, water content across the electrokinetic box after injecting the cationic grouts. Four cationic grouts namely; calcium chloride, calcium oxide, Aluminum hydroxide, and sodium silicates were selected as grout. The microstructures of the stabilized peats were investigated by scanning electron microscopy and energy dispersive X-ray spectrometer analysis. The result showed that the cationic stabilizer injected by the electrokinetic technique could significantly increase the peat soil’s shear strength. Furthermore, the result showed that the effect of calcium oxide was the highest on the shear strength of peat due to its physico-chemical properties. The shear strength, pH and moisture content of peats across the electrokinetic box also altered depending on the used electrolytes and time.  相似文献   

2.
Peat has been considered as an organics remnant that suffers decomposition process throughout times under overburden pressure. Composition of peats normally consists of organics materials which sometimes exceed 75% specifically from woods that grows in marshes and places in conditions where deficiencies of oxygen exist. Usually peat area related with swampy and normally a low shear strength region. High compressibility is significant and often related to problematic soil for construction purposes. In this article, extensive number of studies are reviewed to understand the behavior of the peat after being stabilized. New findings indicated that the peat contents differs from one location to another, thus inevitably gives different behavior. Many improvisation methods have been put forward such as chemical stabilization, cement stabilization, deep mixing and fiber reinforcement to name a few to enhance the strength properties of the peat. This is mainly for construction reliability purposes. However, the suitability of the ground improvement for peat thus depend on its fundamental properties and cost involve for any dedicated ground construction work. This paper review the properties of peat in Malaysia and reviewed recent development in the peaty soil stabilization in Malaysia. It is also compared the materials used for the peat stabilization and the expansive clay soils as the main two problematic soils.  相似文献   

3.
Field surveys indicate lateral variation in peat humification levels (von Post) in dominantly occurring fibric,fibric to hemic,sapric and hemie to sapric peats across a gradient from the margin towards the centre of tropical lowland peat domes.Cement-peat stabilisation can be enhanced by adding mineral soil fillers (silt,clays and fine sands) obtained from Quaternary floodplain deposits and residual soil (weathered schist).The unconfined compressive strength (UCS) of the stabilised cement-mineral soil fifler-peat mix increases with the increased addition of selected mineral soil filler.Lateral variation in the stabilised peat strength (UCS) in the top 0 to 0.5 m layer was found from the margin towards the centre of the tropical lowland peat dome.The variations in the UCS of stabilised tropical lowland peats along a gradient from the periphery towards the centre of the peat dome are most likely caused by a combination of factors due to variations in the mineral soil or ash content of the peat and horizontal zonation or lateral variation in the dominant species of the plant assemblages (due to successive vegetation zonation of the peat swamp forest from the periphery towards the centre of the tropical lowland peat dome).  相似文献   

4.
The aim of this paper was to determine the ultimate vertical bearing capacity of rectangular rigid footings resting on homogeneous peat stabilized by a group of cement deep mixing (CDM) columns. For this purpose, a series of physical modeling tests involving end-bearing and floating CDM columns were performed. Three length/depth ratios of 0.25, 0.5, and 0.75 and three area improvement ratios of 13.1, 19.6, and 26.2 % were considered. Bearing capacity of the footings was studied using different analytical procedures. The results indicated that compared to unimproved peat, the average ultimate bearing capacity (UBC) improvement of floating and end-bearing CDM columns were 60 and 223 %, respectively. The current study found that simple Brom’s method predicted the UBC of the peat stabilized with floating CDM columns with reasonable accuracy, but underestimated the UBC by up to 25 % in the case of end-bearing CDM columns. Published laboratory experiences of stabilizing soft soils using soil–cement columns were also collated in this paper.  相似文献   

5.
Petrographic studies indicate that lateral variations in the decomposition levels of peat are associated with the predominantly occurring peat macerals. Source Rock Analyzer (SRA) results indicate lateral variation in peat organic matter types from type II to III and back again to type II, occurring laterally within the top 0-m to 0.5-m layer at the basin margin to the midsection and further towards the near-center areas of the peat dome. This variation is most likely caused by a combination of factors: (a) Horizontal zonation and lateral variation of the dominant species of plant assemblages (b) Fibric (marginal) peats and hemic to sapric peats associated with type II organic matter (kerogen). Sample organic matter (coal-equivalent kerogen) typing indicates that the relative abundance of phytoclasts and palynomorphs generally supports the organic matter classification obtained by the SRA method. Lateral variations in the peat organic matter types may support the lateral vegetation variation concept. The classification of peat organic matter types (interpreted from visual analyses of palynological slides) occurring from the basin periphery to the mid-section and further towards the basin center yields organic matter of type II to type III and mixed types II to III (coal kerogen-equivalent), respectively.  相似文献   

6.
Small mounds of peat rise several metres above the level of the water‐table at Melaleuca Inlet and Louisa Plains on the buttongrass plains in southwest Tasmania. Possible origins of the peat mounds have been explored by pollen analysis and radiocarbon dating of a set of samples taken from a vertical section of one peat mound at Melaleuca. The peat accumulation is entirely of Holocene age although the mound is underlain by sapric peats preserving a cold climate palynoflora of probable Late Pleistocene age. Peats at and near the base of the mound accumulated under a heath sedgeland during the earliest Holocene while after about 7630 a BP the peat‐forming vegetation was shrub‐dominated. The radiocarbon data indicate two main phases of overall peat accumulation, between 7630 and 5340 a BP (Middle Holocene) and between 4450 and 450 a BP (Late Holocene), that were interrupted by a wildfire which burnt into the surface peats. The maintenance of high surface and internal levels of moisture almost certainly was the critical factor behind the low incidence of in situ fires burning into the surface peats on the mound. The perennial influx of groundwater below the mound is a possible origin that fits well with our observations, although the expansion and contraction of soils cannot be discounted as an initiating factor. Enhanced nutrient input from birds may have helped promote growth in the peat‐forming communities. The data do not support the mounds being eroded remnants of a former blanket peat cover or being due to periglacial activity. The peat mounds of southwest Tasmania deserve maximum protection because of their rarity in the Australian landscape and, it seems, elsewhere.  相似文献   

7.
刘鑫  范晓秋  洪宝宁 《岩土力学》2011,32(6):1676-1682
为研究水泥砂浆固化土剪切强度特性和合理确定水泥砂浆固化土工程应用的配比,从掺砂量、水泥掺入比、原料土含水率及砂料粒径入手,对水泥砂浆固化土进行了室内固结不排水三轴(CU)试验研究。结果表明,掺砂可以改善固化土强度;随掺砂量的增加,黏聚力和有效黏聚力先增加后减小,转折点的掺砂量为最佳掺砂量(10%左右),内摩擦角和有效内摩擦角不断增加,一定掺砂量下增加水泥掺入比可有效地提高固化土的强度;随着含水率的增加,固化土的黏聚力呈近似线性减小的关系,而内摩擦角几乎保持不变,采用水泥砂浆处理高含水率软弱地基时适当提高掺砂量,可以较大幅度改善固化土的力学性质;在掺料配比一定的情况下砂料粒径对固化土的抗剪强度指标存在一定的影响。采用单一粒径砂料的固化土抗剪强度更高,该单一粒径在固化土级配良好的前提下,不均匀系数Cu趋于最大、曲率系数Cc趋于最小  相似文献   

8.
淤泥质酸性土水泥土强度试验研究   总被引:10,自引:0,他引:10  
水泥搅拌桩加固有机质含量较高和呈酸性的土层时,我国规范建议采用现场试验的方法。通过深层搅拌法加固太湖应天河工程富含有机质的淤泥质酸性土地基的多组现场水泥土强度试验,分析了淤泥质酸性土中影响水泥土强度的各种因素。试验和工程实践表明,使用高标号水泥(525#)并掺入适量的外加剂可大幅提高酸性淤泥水泥土的强度, 复合地基承载力可达120 kPa以上,水泥搅拌桩可以加固淤泥质酸性土地基。  相似文献   

9.
Cement-Stabilization of Sabkha Soils from Al-Auzayba,Sultanate of Oman   总被引:2,自引:1,他引:1  
Sabkha soils are salt-bearing formations that are formed in arid regions. In their in situ states the sabkha soils have high compressibility and low shear strength. These soils are also heterogeneous and their properties depend on the type and amount of salt present. Thus, these soils are not suitable for support of infrastructures without the risk of high settlement and/or bearing capacity failure. This paper investigates the possibility of using cement to improve the shear strength of sabkha soils for possible use as a foundation-bearing soil. The sabkha soil used in this study is a sandy sabkha obtained from the coastal plains at Al-Auzayba, Sultanate of Oman. Cement was added in percentages of 2.5, 5, 7.5 and 10%, by dry weight of soil. The soil-stabilizer mixers were allowed to cure for 7, 14 and 28 days. Laboratory tests such as compaction, unconfined compression, consolidated undrained triaxial and durability tests were performed to measure the engineering characteristics of the stabilized material. The results showed substantial improvements in the shear strength of the sabkha–cement mixtures and the mixtures are also durable with small weight loss after 12 wetting/drying cycles. Thus, cement can be used to improve the shear strength of sabkha soils. Furthermore, the effective stress path and the tress-strain relation of the sabkha–cement mixtures follow trends similar to those of cemented calcareous soils.  相似文献   

10.
In 2008, the very extensive tropical peats were estimated to be about 182 million ha spanning South America, Asia and Africa. About 20.3%(36.9 million ha) of this area exist in Asia. Peats are classified based on their degree of decomposition, namely Fibrists, Hemists, Saprists and Folists. This makes them different in characteristics. The activities of microorganisms vary in different types of peat due to, for example, the sapric layer of well humified peat can provide water and food to microorganisms during heat stress. In another scenario, deeper peat is older and typically has lower levels of labile carbon to provide substrate for microbes compared to surface peat. A complete understanding of the microbial communities in different layers of peat is essential as microorganisms play major roles in peat decomposition and are important to ecosystem processes. These peats are a very important global carbon(C)store or reserve and could severely impact climate change if not managed well. Peatlands can store as much as 40 to 90 Gt C. Mis-management of peats could severely impact the environment particularly the emission of carbon into the atmosphere. For instance, clearing of peatlands using fire has been reported to release an estimated 88 t C ha~(-1) to the atmosphere. There are several factors which influence the environmental consequences of tropical peat especially in relation to climate change. The main influences are:(i) changes in temperature,(ii) changes in precipitation or rainfall,(iii) changes in atmospheric composition, and(iv) fire and haze. This paper is a brief review on these four influences in relation to climate change. It is apparent from the brief review that there is a need for continued short and long-term research to better understand tropical peats and how they affect our climate. This will hopefully provide the basis for predicting better what could happen under various scenarios.  相似文献   

11.
土工格室加筋土的大尺寸直剪试验研究   总被引:4,自引:0,他引:4  
刘炜  汪益敏  陈页开  周刚  余继东  黄放军 《岩土力学》2008,29(11):3133-3138
采用自行研制的500 mm?500 mm?400 mm(长?宽?高)大尺寸直剪仪,对土工格室加筋土以及土工格室加筋水泥稳定土的剪切性能进行了试验研究。通过大尺寸直剪试验模拟土工格室加筋土的剪切作用过程,得出加筋土剪切应力与剪切应变关系为非线性确定了土工格室加筋土的抗剪强度指标以及土工格室对土的抗剪强度增强机理,土工格室加筋土的黏聚力提高较大,内摩擦角变化相对较小。通过对素土和掺入量为5 %的水泥稳定土进行常规直剪试验、大尺寸直剪试验和三轴压缩试验对比分析,探讨不同试验方法对抗剪强度指标的影响,得出3种试验方法对应的抗剪强度指标及其相对大小;即素土的摩擦角大小依次为:三轴试验小于大尺寸直剪试验小于常规直剪试验,素土的黏聚力大小依次为:大尺寸直剪试验小于三轴试验小于常规直剪试验;水泥稳定土的摩擦角大小为:三轴试验小于大尺寸直剪试验,黏聚力结果比较大小依次为:三轴试验小于大尺寸直剪试验。  相似文献   

12.
红粘土地区水泥土强度的试验研究   总被引:7,自引:0,他引:7  
红粘土是亚热带气候条件下形成的一种特殊土质。含有红粘土的地基多具有上硬下软的特点,下部红粘土为天然地基软弱下卧层。采用深层搅拌法处理,可充分发挥上部硬塑红粘土的作用,形成复合地基。通过试验得到了水泥红粘土的基本力学参数。在对试验结果进行回归分析后,给出了水泥土强度的影响因素及其与强度的关系,以及不同水泥掺量、龄期水泥土之间的强度推算公式。  相似文献   

13.
Compressibility Behavior of Fibrous Peat Reinforced with Cement Columns   总被引:1,自引:1,他引:0  
This paper presents the compressibility of fibrous peat reinforced with cylindrical cement columns. The effects of the cement column diameter on the compressibility have been investigated in this study. The results indicated that compressibility index C c and C α decreased with increasing diameter of the cement column. Specimens with 45 mm (area ratio = 0.09) diameter and 60 mm (area ratio = 0.16) diameter of cement columns were cured for 7, 14 and 28 days, after which they were subjected to Rowe Cell consolidation test. Results are also presented from tests conducted on groups of cement columns using four (area ratio = 0.04) and nine (area ratio = 0.09) columns of 15 mm diameter each to investigate the influence of the number of cement columns on compressibility of peat. Apart from that various proportions of cement were used to form cement columns in order to study the influence. Based on the results obtained, it shows that cement columns can successfully reduce the compressibility of fibrous peat.  相似文献   

14.
Iron filling and iron filling–cement mixture were used to improve the shear strength characteristics of Irbid clayey soil. For this purpose, five types of Irbid clay soils were obtained and mixed with iron filling and iron filling–cement mixture at different percentages. Two sets of prepared samples were mixed with the admixture. The first set was prepared by mixing the soil samples with iron filling alone at 2.5, 5.0, 7.5, and 10% by dry weight of the soil. The second set was prepared by mixing with iron filling–cement mixture at equal ratio of the same percentages of the first set. An unconfined compression test was performed in this study to measure the shear strength properties of the soils. The test results showed that the increase in the percentages of the iron filling and iron filling–cement mixture up to 10% will result in increasing the maximum dry density of the soil and increase the unconfined compressive strength and the secant of modulus of elasticity of the clayey soil. Also, the addition of iron filling–cement mixture increased the unconfined compressive strength and secant modulus of elasticity of the clayey soil higher than the addition of iron filling alone.  相似文献   

15.
The South Sumatra basin is among the most important coal producing basins in Indonesia. Results of an organic petrography study on coals from Tanjung Enim, South Sumatra Basin are reported. The studied low rank coals have a mean random huminite reflectance between 0.35% and 0.46% and are dominated by huminite (34.6–94.6 vol.%). Less abundant are liptinite (4.0–61.4 vol.%) and inertinite (0.2–43.9 vol.%). Minerals are found only in small amounts (0–2 vol.%); mostly as iron sulfide.Based on maceral assemblages, the coals can be grouped into five classes: (1) humotelinite-rich group, (2) humodetrinite-rich group, (3) humocollinite-rich group, (4) inertinite-rich group and (5) humodetrinite–liptinite-rich group. Comparing the distribution of maceral assemblages to the maceral or pre-maceral assemblages in modern tropical domed peat in Indonesia reveals many similarities. The basal section of the studied coal seams is represented typically by the humodetrinite–liptinite-rich group. This section might be derived from sapric or fine hemic peat often occurring at the base of modern peats. The middle section of the seams is characterized by humotelinite-rich and humocollinite-rich groups. The precursors of these groups were hemic and fine hemic peats. The top section of the coal seams is typically represented by the humodetrinite-rich or inertinite-rich group. These groups are the counterparts of fibric peat at the top of the modern peats. The sequence of maceral assemblages thus represents the change of topogenous to ombrogenous peat and the development of a raised peat bog.A comparison between the result of detailed maceral assemblage analysis and the paleodepositional environment as established from coal maceral ratio calculation indicates that the use of coal maceral ratio diagrams developed for other coal deposits fails to deduce paleo-peat development for these young tropical coals. In particular, mineral distribution and composition should not be neglected in coal facies interpretations.  相似文献   

16.
砾状煤系土改良性能的试验研究   总被引:2,自引:0,他引:2  
针对广梧高速公路沿线的砾状煤系土不能满足路基填料要求的问题,采用室内试验的方法,对其提出了分别掺加生石灰和水泥两种改良方案并进行改良试验对比研究。研究结果表明:经水泥改良后的砾状煤系土的压实性能、承载比和水稳性等方面效果明显优于经石灰改良的;经水泥改良后的抗剪性能、无侧限抗压强度和抗变形能力均有较大程度的提高;在影响砾状煤系土强度的因素中,水泥掺入比的影响最显著,其次是龄期和含水率,并根据无侧限抗压强度试验结果提出了多因素影响拟合公式。砾状煤系土掺加约3%水泥改良后直接作为路基填料可满足要求,为煤系土地区路基处理提供借鉴依据。  相似文献   

17.
本文通过室内试验验证了深层搅拌桩施工可以引起周围土体的物理,化学及力学性质的变化.其影响机理为高灵敏度粘土的触变性,土体劈裂,化学加固剂的侵入与渗透,胶结作用及固结压密.室内模型试验证明搅拌桩施工可以在周围土体引起约2倍桩径的土性变化领域.在此领域内含水量降低,pH值上升.此领域内先是强度下降,但7天内强度恢复,28天后强度增加3成.  相似文献   

18.
黄巍  肖维民  田梦婷  张林浩 《岩土力学》2020,41(7):2349-2359
结合Voronoi图随机模拟和3D打印技术制备不规则柱状节理网络模型,采用白水泥浆类岩石相似模型材料浇筑模型并拆模,然后分别采用白乳胶和502胶水作为黏结剂黏结柱体得到两组不规则柱状节理岩体试件,通过对其进行室内单轴压缩试验研究不规则柱状节理岩体强度特性和破坏模式。试验结果表明:不规则柱状节理岩体试件单轴抗压强度随柱体倾角的变化曲线呈现近似“J”型,表现出显著各向异性特征;不规则柱状节理岩体试件典型破坏模式包括沿柱状节理面的劈裂破坏、沿柱状节理面的剪切破坏和沿柱体的压裂破坏等3种,其部分破坏形态有异于规则柱状节理岩体试件。同时,通过与采用净水泥浆作为黏结剂的柱状节理岩体试验结果进行比较,结果表明:采用白乳胶和502胶水作为黏结剂时柱体间黏结强度更低,能够较好反映柱状节理面的弱化效应,试件力学响应与真实柱状节理岩体更为一致。  相似文献   

19.
Sidewalk failures associated with top soil of low shear strength are a common problem in urban areas. Mixing top soil with granite chips can be used to increase its permeability and shear strength. The effects of mixing granite chips with top soils on the hydraulic properties and shear strength under saturated and unsaturated conditions were investigated in this study. The results showed that the mixing top soils with granite chips caused changes in several key parameters of the soil–water characteristic curve (e.g., the air-entry value, the residual matric suction, and the residual volumetric water content) and the unsaturated permeability of the top soils. The saturated permeability and shear strength of the soil mixture increased with increasing content of granite chips.  相似文献   

20.
采用无侧限抗压强度试验和直剪试验,从单轴抗压强度、黏聚力、内摩擦角的角度探求了淤泥固化土重塑时导致的强度折减和重塑后土的强度恢复特性,并分析了重塑前养护龄期(T)、重塑后养护龄期(T)、水泥掺灰比(ac)的影响。试验结果表明,重塑时机的选择对淤泥固化土的强度折减程度有显著的影响:T越长,破碎过程带来的强度折减越严重,且大致满足ac越大、强度折减越严重的规律。从强度恢复特性来看:小水泥掺灰比的固化淤泥土经过T,其强度恢复较好;大掺灰比的重塑土其强度则较难恢复至固化土的水平,T越长,强度恢复越不利。从而得出了大掺灰比固化土宜早重塑,小掺灰比的重塑时间可适当延长的规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号