首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Under recent Arctic warming, boreal winters have witnessed severe cold surges over both Eurasia and North America, bringing about serious social and economic impacts. Here, we investigated the changes in daily surface air temperature (SAT) variability during the rapid Arctic warming period of 1988/89–2015/16, and found the daily SAT variance, mainly contributed by the sub-seasonal component, shows an increasing and decreasing trend over eastern Eurasia and North America, respectively. Increasing cold extremes (defined as days with daily SAT anomalies below 1.5 standard deviations) dominated the increase of the daily SAT variability over eastern Eurasia, while decreasing cold extremes dominated the decrease of the daily SAT variability over North America. The circulation regime of cold extremes over eastern Eurasia (North America) is characterized by an enhanced high-pressure ridge over the Urals (Alaska) and surface Siberian (Canadian) high. The data analyses and model simulations show the recent strengthening of the high-pressure ridge over the Urals was associated with warming of the Barents–Kara seas in the Arctic region, while the high-pressure ridge over Alaska was influenced by the offset effect of Arctic warming over the East Siberian–Chukchi seas and the Pacific decadal oscillation (PDO)–like sea surface temperature (SST) anomalies over the North Pacific. The transition of the PDO-like SST anomalies from a positive to negative phase cancelled the impact of Arctic warming, reduced the occurrence of extreme cold days, and possibly resulted in the decreasing trend of daily SAT variability in North America. The multi-ensemble simulations of climate models confirmed the regional Arctic warming as the driver of the increasing SAT variance over eastern Eurasia and North America and the overwhelming effect of SST forcing on the decreasing SAT variance over North America. Therefore, the regional response of winter cold extremes at midlatitudes to the Arctic warming could be different due to the distinct impact of decadal SST anomalies.  相似文献   

2.
Although there has been a considerable amount of research conducted on the East Asian winter-mean climate, subseasonal surface air temperature(SAT) variability reversals in the early and late winter remain poorly understood. In this study,we focused on the recent winter of 2014/15, in which warmer anomalies dominated in January and February but colder conditions prevailed in December. Moreover, Arctic sea-ice cover(ASIC) in September–October 2014 was lower than normal,and warmer sea surface temperature(SST) anomalies occurred in the Ni ?no4 region in winter, together with a positive Pacific Decadal Oscillation(PDO|+) phase. Using observational data and CMIP5 historical simulations, we investigated the PDO|+ phase modulation upon the winter warm Ni ?no4 phase(autumn ASIC reduction) influence on the subseasonal SAT variability of East Asian winter. The results show that, under a PDO|+ phase modulation, warm Ni ?no4 SST anomalies are associated with a subseasonal delay of tropical surface heating and subsequent Hadley cell and Ferrel cell intensification in January–February, linking the tropical and midlatitude regions. Consistently, the East Asian jet stream(EAJS) is significantly decelerated in January–February and hence promotes the warm anomalies over East Asia. Under the PDO|+ phase,the decrease in ASIC is related to cold SST anomalies in the western North Pacific, which increase the meridional temperature gradient and generate an accelerated and westward-shifted EAJS in December. The westward extension of the EAJS is responsible for the eastward-propagating Rossby waves triggered by declining ASIC and thereby favors the connection between ASIC and cold conditions over East Asia.  相似文献   

3.
冬季平流层北极涛动对江南气温的影响   总被引:3,自引:2,他引:1  
利用ERA—interim及NCEP—DOE两种再分析资料,分析了冬季北极涛动(Arctic Oscillation,AO)与我国江南地区地表气温相关的时空结构。结果表明:1)2月30hPa的Ao指数与江南地区地表气温的同期相关系数最高,这与AO指数和江南地区地表气温的标准差均在2月极大有关。2)30hPa的正AO事件加强时,贝加尔湖地区对流层易出现显著的正位势高度异常,有利于东亚地区出现向南、向下的异常风场,与之对应,西伯利亚高压向南扩展,有利于北方冷空气南侵至我国江南地区,造成局地气温负距平;反之亦然。  相似文献   

4.
The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies(SSTAs) over the South Pacific Ocean(SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn,not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.  相似文献   

5.
刘毓赟  陈文 《大气科学》2012,36(2):423-432
利用NCEP/NCAR再分析资料和我国160站地表面气温和降水的观测资料, 首先采用旋转经验正交函数 (REOF) 方法定义了冬季欧亚遥相关型 (EU), 并计算了冬季的欧亚遥相关型指数 (EU指数), 在此基础上分析了欧亚遥相关型的时间和空间变化特征, 并进一步研究了与欧亚遥相关型异常相联系的东亚冬季风系统变化以及我国冬季气温和降水的异常。针对欧亚遥相关型的分析结果表明, 在欧亚大陆上空, 大气内部存在与EU相联系的波列从北大西洋传播到乌拉尔山以东的欧亚大陆地区。在时间变化上, 冬季EU以为年际变率为主, 年代际变化的分量不明显, 其显著周期表现为2~4年。当冬季EU处于正位相时, 与之相关联的东亚大气环流异常表现为: 东亚地区高空的急流增强、 东亚大槽加深, 导致东亚冬季风偏强, 东亚地区温度偏低, 从而使得我国东部降温、 降水减少; 反之, 当冬季EU处于负位相时, 我国东部增温、 降水增加。  相似文献   

6.
Land–sea surface air temperature (SAT) contrast, an index of tropospheric thermodynamic structure and dynamical circulation, has shown a significant increase in recent decades over East Asia during the boreal summer. In Part I of this two-part paper, observational data and the results of transient warming experiments conducted using coupled atmosphere–ocean general circulation models (GCMs) are analyzed to examine changes in land–sea thermal contrast and the associated atmospheric circulation over East Asia from the past to the future. The interannual variability of the land–sea SAT contrast over the Far East for 1950–2012 was found to be tightly coupled with a characteristic tripolar pattern of tropospheric circulation over East Asia, which manifests as anticyclonic anomalies over the Okhotsk Sea and around the Philippines, and a cyclonic anomaly over Japan during a positive phase, and vice versa. In response to CO2 increase, the cold northeasterly winds off the east coast of northern Japan and the East Asian rainband were strengthened with the circulation pattern well projected on the observed interannual variability. These results are commonly found in GCMs regardless of future forcing scenarios, indicating the robustness of the East Asian climate response to global warming. The physical mechanisms responsible for the increase of the land–sea contrast are examined in Part II.  相似文献   

7.
This study analyzes the impact of the winter North Pacific Oscillation(NPO) on the surface air temperature(SAT)variations over Eurasia and North America based on six different NPO indices. Results show that the influences of the winter NPO on the SAT over Eurasia and North America are sensitive to the definition of the NPO index. The impact of the winter NPO on the SAT variations over Eurasia(North America) is significant(insignificant) when the anticyclonic anomaly associated with the NPO index over the North Pacific midlatitudes shifts westward and pronounced northerly wind anomalies appear around Lake Baikal. By contrast, the impact of the winter NPO on the SAT variations over Eurasia(North America)is insignificant(significant) when the anticyclonic anomaly over the North Pacific related to the NPO index shifts eastward and the associated northerly wind anomalies to its eastern flank extend to North America. The present study suggests that the NPO definition should be taken into account when analyzing the impact of the winter NPO on Eurasian and North American SAT variations.  相似文献   

8.
冬季乌拉尔山阻塞与东亚冬季风的联系分析   总被引:1,自引:0,他引:1  
利用美国国家环境预报中心和美国大气科学研究中心(NCEP/NCAR)1948/1949~2012/2013年的逐日再分析资料,从年际变化和季节内演变两种时间尺度分析了冬季乌拉尔山阻塞与东亚冬季风的联系。结果表明,从年际变化角度,东亚冬季风综合指数(EAWMII)与冬季乌拉尔山阻塞频数显著相关,且两者的线性趋势与周期一致。当乌拉尔山阻塞频繁发生时,对流层中层西伯利亚反气旋异常,东亚大槽加深;对流层低层表现为贝加尔湖及东亚沿岸北风显著加强,中亚和东亚大部分地区地表温度降低,东亚冬季风较常年加强。乌拉尔山阻塞的由强盛到崩溃的过程对应着西伯利亚高压由加强到减弱东移的季节内演变,850 h Pa风场对应为异常北风由贝加尔湖以北逐渐影响至低纬度菲律宾以东的演变特征。  相似文献   

9.
李言蹊  陈海山 《大气科学》2021,45(4):889-900
利用1979~2019年NCEP-DOE再分析资料,分析了亚洲中纬度冬季极端低温事件发生频次与巴伦支—喀拉海异常增暖的联系及可能机制。研究表明:巴伦支—喀拉海异常增暖通常对应西伯利亚高压异常增强及亚洲中纬度极端低温频发。进一步分析发现,伴随巴伦支—喀拉海异常增暖,新地岛、乌拉尔山附近出现位势高度正异常,在位势高度正异常的东侧、南侧对应显著的冷平流及下沉运动异常,并在近地面出现异常辐散气流,使得西伯利亚高压增强且向东南延伸。热力学方程诊断的结果表明:西伯利亚高压异常南侧东北风导致的异常冷平流、偏东风异常经过地形造成的异常上升运动以及辐射、感热、潜热交换造成的异常非绝热冷却导致亚洲中纬度近地面温度季节循环振幅增大,有利于极端低温频发。  相似文献   

10.
段升妮  姜智娜 《气象学报》2021,79(2):209-228
基于ERA-Interim再分析资料,借助大气模式CAM4,分析了北半球冬季不同月份的平均大气对巴伦支海不同振幅及不同季节海冰扰动的敏感性,并考察了中高纬度典型大气模态的分布变化情况.结果表明,冬季巴伦支海海冰的减少,会导致湍流热通量异常向上、局地异常变暖及水汽含量的异常升高,且相关异常的强度和范围随着海冰减少幅度的减...  相似文献   

11.
 This study investigated the ocean-atmosphere interaction effect on the winter surface air temperature in Taiwan. Temperature fluctuations in Taiwan and marine East Asia correlated better with a SST dipole in the western North Pacific than the SST in the central/eastern equatorial Pacific. During the warm (cold) winters, a positive (negative) SST anomaly appears in marine East Asia and a negative (positive) SST anomaly appears in the Philippine Sea. The corresponding low-level atmospheric circulation is a cyclonic (anticyclonic) anomaly over the East Asian continent and an anticyclonic (cyclonic) circulation in the Philippine Sea during the warm (cold) winters. Based on the results of both numerical and empirical studies, it is proposed that a vigorous ocean-atmosphere interaction occurring in the western North Pacific modulates the strength of the East Asian winter monsoon and the winter temperature in marine East Asia. The mechanism is described as follows. The near-surface circulation anomalies, which are forced by the local SST anomaly, strengthen (weaken) the northeasterly trade winds in the Philippine Sea and weaken (strengthen) the northeasterly winter monsoon in East Asia during warm (cold) winters. The anomalous circulation causes the SST to fluctuate by modulating the heat flux at the ocean surface. The SST anomaly in turn enhances the anomalous circulation. Such an ocean-atmosphere interaction results in the rapid development of the anomalous circulation in the western North Pacific and the anomalous winter temperature in marine East Asia. This interaction is phase-locked with the seasonal cycle and occurs most efficiently in the boreal winters. Received: 22 October 1999 / Accepted: 5 June 2000  相似文献   

12.
利用中国东北地区1981—2018年166个地面气象观测站资料, 定义了中国东北地区秋冬季霾日指数, 分析了年际尺度上该地区霾日数与同期大气环流异常的内在关系。结果表明: 中国东北地区秋冬季霾日指数存在显著的年际变化特征, 欧亚—太平洋遥相关型(Eurasia-Pacific Teleconnection Pattern, EUP)负位相、东亚大槽偏弱等大气环流异常配置导致中国东北地区秋冬季霾的发生频次增加。巴伦支海与喀拉海北部海域是影响中国东北地区秋冬季霾日年际变化的海冰关键区, 该区域海冰面积与霾日数呈显著负相关, 北极海冰通过改变大气环流间接影响中国东北地区秋冬季霾日发生频次, 当北极海冰异常偏少时, 东亚冬季风偏弱, 近地面风速偏低, 环境湿度偏高, 中国东北地区受东北亚异常反气旋西侧的异常偏南风控制, 且受“EUP”负位相模态影响, 东亚大槽减弱, 有利于大气污染物和水汽向中国东北地区输送, 该地区秋冬季霾的发生频次增加。  相似文献   

13.
吴磊  陈海山  周洋 《气象科学》2019,39(4):427-436
本文分析了夏季东亚中纬度近地面温度和春、夏北极海冰时空变化特征,探讨了格陵兰海、巴伦支海海冰异常变化与夏季东亚中纬度陆面热力异常在年际上的可能联系。结果表明:(1)1950—2014年,东亚中纬度夏季近地面温度明显增暖,并伴有明显的年际变化,年际变率最大值的区域主要位于40°N以北至贝加尔湖地区;春、夏格陵兰海和巴伦支海的海冰也呈现明显的减少趋势,同时表现出较强的年际变化特征。(2)春、夏格陵兰海、巴伦支海海冰异常对东亚中纬度夏季陆面热力异常具有一定的指示作用:春、夏格陵兰海、巴伦支海海冰异常偏多,通常对应夏季东亚中纬度近地面的东亚中纬度夏季增暖现象;反之亦然。(3)春、季格陵兰海、巴伦支海北极海冰指数(Arctic Sea Ice Index,ASII)高值年(海冰异常偏多年份),贝加尔湖及西南的蒙古高原地区通常为大范围的异常高压控制,有利于近地面温度升高;同时由于乌拉尔山阻塞高压减弱,极地南下的冷空气减弱,有利于东亚中纬度区域的温度升高。而ASII低值年的情形则相反,贝加尔湖以南地区受异常低压控制,乌拉尔山阻塞高压增强,冷空气易向南侵袭,不利于东亚中纬度近地面升温。  相似文献   

14.
赵平  张人禾 《大气科学》2006,30(2):307-316
利用美国NCEP/NCAR的月平均再分析资料,研究东亚-太平洋地区地面气压的耦合模态与东亚副热带季风异常的关系,结果表明:在亚洲大陆和北半球太平洋之间气压场的偶极子模态主要反映了东亚地区东西向气压梯度的异常.从20世纪60年代到70年代中期,东亚-太平洋的这种偶极子表现为蒙古地区气压偏低和太平洋地区气压偏高的特征,而从20世纪70年代后期到90年代,则表现为蒙古地区气压偏高和太平洋地区气压偏低的特征.在偶极子指数值较高的年份,冬季(或夏季)蒙古高压(或蒙古低压)和太平洋阿留申低压(或太平洋副热带高压)较强  相似文献   

15.
In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes.Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east–west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific–Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.  相似文献   

16.
我国前冬和后冬气温年际变化的特征与联系   总被引:7,自引:1,他引:6  
韦玮  王林  陈权亮  刘毓赟 《大气科学》2014,38(3):524-536
基于我国160个台站观测的月平均地面气温资料,通过考察冬季各月气温之间的联系将11月和12月划分为前冬,次年的1月至3月划分为后冬,并利用160站资料和NCEP/NCAR再分析资料,通过经验正交函数 (EOF,empirical orthogonal function)分解和依赖于季节的EOF(SEOF,season-reliant EOF)分解对近62年来我国前冬和后冬气温各自的年际变化特征、它们之间的联系以及对应的大气环流进行了分析。结果表明,我国前冬和后冬气温年际变化的前两个EOF模态在空间上均表现为全国一致的变化和南北相反的变化;其时间系数的分布表明,当前冬出现全国性偏暖(冷)或北冷(暖)南暖(冷)的气温异常时,后冬出现类似气温异常和相反气温异常的概率均在50%左右。进一步,通过SEOF分解得到了年际变化时间尺度上我国冬季气温演变的两个主要模态。第一模态(SEOF1)为前冬到后冬同相演变型,即前冬全国一致偏暖(冷)时后冬亦全国一致偏暖(冷),该模态在20世纪80年代中期有明显的年代际增暖;第二模态(SEOF2)表现为前冬到后冬反相演变型,即前冬全国一致偏冷(暖)而后冬全国一致偏暖(冷),该模态以年际变化为主。对环流场的分析表明,中纬度大气过程特别是大气遥相关型的变化是同向和反向两种演变模态产生的主要原因。SEOF1的环流表现为对流层中层斯堪的纳维亚遥相关型在整个冬季的持续性同号异常,与此相伴的海陆气压差强度和东亚高空急流强度的变化使得前、后冬中的东亚冬季风环流呈一致加强或减弱,从而引起同相演变模态。SEOF2的环流在前冬表现为欧亚遥相关型的特征,整个对流层的变化都很显著,而后冬的环流信号主要在对流层中低层显著,此时表现为类似斯堪的纳维亚遥相关型的特征且符号发生了反转,从而引起反相演变模态。  相似文献   

17.
As leading modes of the planetary-scale atmospheric circulation in the extratropics, the Northern Hemisphere(NH)annular mode(NAM) and Southern Hemisphere(SH) annular mode(SAM) are important components of global circulation, and their variabilities substantially impact the climate in mid-high latitudes. A 35-yr(1979-2013) simulation by the climate system model developed at the Chinese Academy of Meteorological Sciences(CAMS-CSM) was carried out based on observed sea surface temperature and sea ice data. The ability of CAMS-CSM in simulating horizontal and vertical structures of the NAM and SAM, relation of the NAM to the East Asian climate, and temporal variability of the SAM is examined and validated against the observational data. The results show that CAMS-CSM captures the zonally symmetric and out-of-phase variations of sea level pressure anomaly between the midlatitudes and polar zones in the extratropics of the NH and SH. The model has also captured the equivalent barotropic structure in tropospheric geopotential height and the meridional shifts of the NH and SH jet systems associated with the NAM and SAM anomalies. Furthermore, the model is able to reflect the variability of northern and southern Ferrel cells corresponding to the NAM and SAM anomalies. The model reproduces the observed relationship of the boreal winter NAM with the East Asian trough and air temperature over East Asia. It also captures the upward trend of the austral summer SAM index during recent decades. However, compared with the observation, the model shows biases in both the intensity and center locations of the NAM's and SAM's horizontal and vertical structures. Specifically, it overestimates their intensities.  相似文献   

18.
In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the winter EASAT and East Asian minimum SAT(EAmSAT)display strong in-phase fluctuations and a significant 60-80-year multidecadal variability,apart from a long-term warming trend.The winter EASAT experienced a decreasing trend in the last two decades,which is consistent with the occurrence of extremely cold events in East Asia winters in recent years.The winter NAO leads the detrended winter EASAT by 12-18 years with the greatest significant positive correlation at the lead time of 15 years.Further analysis shows that ENSO may affect winter EASAT interannual variability,but does not affect the robust lead relationship between the winter NAO and EASAT.We present the coupled oceanic-atmospheric bridge(COAB)mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of~15 years on the Atlantic Multidecadal Oscillation(AMO)and Africa-Asia multidecadal teleconnection(AAMT)pattern.An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism,with good hindcast performance.The winter EASAT for 2020-34 is predicted to keep on fluctuating downward until~2025,implying a high probability of occurrence of extremely cold events in coming winters in East Asia,followed by a sudden turn towards sharp warming.The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.  相似文献   

19.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

20.
崔静  杨双艳  LI Tim 《气象》2021,(1):49-59
基于1979—2016年NCEP-NCAR逐日再分析资料研究了热带季节内振荡(MJO)和北半球冬季高纬地区地表气温(SAT)之间的联系.利用实时多变量MJO(RMM)指数,将MJO分为8个位相,其中位相2(位相6)对应于位于印度洋地区的正(负)对流.不同MJO位相下的SAT合成结果显示MJO第二位相后的5~15 d,北...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号