首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
穆大鹏  闫昊明 《地球物理学报》2018,61(12):4758-4766
在确定海平面上升速率时,传统方法是利用最小二乘拟合获取特定时间段内的平均速率.事实上,由于海平面是一种非稳态变化,其速率随着时间变化.本文使用集成经验模态分解获取海平面变化在2002-2014年间的非线性趋势,然后通过三次样条函数平滑拟合非线性趋势得到连续的一阶导数,即为海平面变化的瞬时速率.结果表明,全球平均海平面的瞬时速率先降后升:从2002的2.7 mm·a-1缓慢下降至2010年的2.5 mm·a-1,然后上升至2014年的3.8 mm·a-1.通过分析海平面上升各个贡献成分的瞬时速率,发现该上升主要由海水质量增加引起.在2002-2014年间,格陵兰岛冰川消融对海平面上升瞬时速率的贡献从0.51 mm·a-1上升至0.85mm·a-1,南极冰川消融的贡献则从0.12 mm·a-1上升至0.34 mm·a-1.陆地水储量对海平面上升起抑制作用,但该抑制作用呈下降趋势,其瞬时速率从-0.24 mm·a-1增加到0.03 mm·a-1.比容海平面的瞬时速率表现为下降趋势,从1.6 mm·a-1减小至1.0 mm·a-1.这表明在全球尺度上,海水质量对海平面上升的贡献正在增加,截止到2014年,海水质量的贡献已经接近70%.  相似文献   

2.
过去几十年间,全球冰川物质亏损的加速趋势日益显著,而这种加速趋势将对全球海平面上升、流域水资源以及冰冻圈灾害等方面产生深远的影响.针对目前关于冰川物质亏损加速度的研究仍然比较贫乏的问题,本研究利用实测冰川物质平衡记录和最新的融合实测资料与大地测量法表面高程变化的冰川物质变化数据,对全球冰川物质亏损加速度进行研究.结果表明,1961~2016年全球冰川物质亏损经历了显著的加速过程.在全球尺度上,冰川物质亏损加速度分别为(5.76±1.35)Gt a-2(冰量损失加速度)和(0.0074±0.0016)m w.e.a-2(单位面积冰量损失加速度).在区域尺度上,冰川主要分布区(除南极冰盖边缘地区)的冰量损失加速度大于冰川储量较小的区域,其中阿拉斯加地区的冰量损失加速度最大((1.33±0.47)Gt a-2).对单位面积冰量变化而言,冰川分布面积较小的区域和几个主要冰川分布区都呈现出较大的冰川消融加速度,其中欧洲中部的冰川单位面积物质亏损的加速度最大((0.024±0.0088)m w.e.a-2).全球气候变暖是冰川物质亏损加速的主要驱动力.通过对比研究,发现格陵兰冰盖和南极冰盖对全球海平面上升贡献的加速度均大于冰川.本研究将有助于提升对冰川变化机理的认识,为应对冰川变化的影响提供科学依据.  相似文献   

3.
鉴于卫星测高技术在南极周边海域会受到海面浮冰影响,且在利用测高序列分析海平面周期性动态变化时还会受到潮汐周期混叠效应的影响,为此,本文开展了基于GPS和验潮数据联合的南极大陆附近海域从1994-2014年间海平面的绝对变化研究.研究结果显示:在围绕南极大陆及附近海域的15个验潮站中,海平面绝对变化速度最大的是Diego Ramirez验潮站,达到11.10±0.04 mm·a-1;在西南极南极半岛的德雷克海峡,海平面变化最为活跃,变化均值在8.31±0.05 mm·a-1;在东南极,从Syowa站依次到Casey站,海平面的绝对变化速度相对平稳,四个潮位站海平面变化均值为3.35±0.04 mm·a-1;在罗斯冰架右下侧的罗斯岛附近,由于冰川崩解入海导致Scott Base站处的海平面上升速度较快,达到了9.61±0.07 mm·a-1.综合15个验潮站计算结果可得南极半岛德雷克海峡和罗斯岛附近海域,海平面绝对变化速度要高于同期南大洋海平面绝对变化速度,而东南极4个潮位站海平面绝对变化均值则与其相当.这也进一步反映了南极不同海域间海平面变化的差异性,相比较于对南大洋海平面变化的一个整体研究,分区研究海平面变化更具针对性,能更好地了解南极不同区域冰盖、冰架崩解和消融的情况.  相似文献   

4.
利用ICESat数据解算南极冰盖冰雪质量变化   总被引:5,自引:4,他引:1       下载免费PDF全文
南极冰盖冰雪质量变化反映了全球气候变化,并且直接影响着全球海平面变化.ICESat测高卫星的主要任务之一就是要确定南北两极冰盖的质量变化情况并评估其对全球海平面变化的影响.本文利用2003年10月至2008年12月的ICESat测高数据,针对南极DEM分辨率有限的特殊性,通过求解坡度改正值,解决重复轨道地面脚点不重合的问题,计算了南极大陆(86°S以北区域,后文所述南极冰盖均不包括86°S以南区域)在这5年里的冰雪质量变化情况,得到东南极冰盖的质量变化为-18±20Gt/a,西南极-26±6Gt/a,南极冰盖的冰雪质量变化为-44±21Gt/a,对全球海平面上升的影响约为0.12mm·a~(-1).解算结果表明,南极冰盖质量亏损主要集中在西南极阿蒙森海岸附近冰川以及东南极波因塞特角区域.  相似文献   

5.
本文基于CSR最新公布的GRACE RL06版本数据,采用Slepian空域反演法估算了南极冰盖27个流域的质量变化.Slepian空域反演法结合了Slepian空间谱集中法和空域反演法的技术优势,能够有效降低GRACE在小区域反演时信号出现的严重泄漏和衰减,进而精确获得南极冰盖在每个流域的质量变化.相对于GRACE RL05版本数据,RL06在条带误差的控制上要更加优化,获得的南极冰盖质量变化时间序列也更加平滑,但在趋势估算上差别并不明显(小于10Gt/a).本文的估算结果显示:在2002年4月至2016年8月期间,整个南极冰盖质量变化速率为-118.6±16.3Gt/a,其中西南极为-142.4±10.5Gt/a,南极半岛为-29.2±2.1Gt/a,东南极则为52.9±8.6Gt/a.南极冰盖损失最大的区域集中在西南极Amundsen Sea Embayment(流域20-23),该地区质量变化速率为-203.5±4.1Gt/a,其次为南极半岛(流域24-27)以及东南极Victoria-Wilkes Land (流域13-15),质量变化速率分别为-29.2±2.1Gt/a和-19.0±4.7Gt/a,其中Amundsen Sea Embayment和南极半岛南部两个地区的冰排放呈现加速状态.南极冰盖质量显著增加的区域主要有西南极的Ellsworth Land(流域1)和Siple Coast(流域18和19)以及东南极的Coats-Queen Maud-Enderby Land (流域3-8),三个地区质量变化速率分别为17.2±2.4Gt/a、43.9±1.9Gt/a和62.7±3.8Gt/a,质量增加大多来自降雪累积,比如:Coats-Queen Maud-Enderby Land在2009年和2011年发生的大规模降雪事件,但也有来自冰川的增厚,如:Siple Coast地区Kamb冰流的持续加厚.此外,对GRACE估算的南极冰盖质量变化年际信号进行初步分析发现,GRACE年际信号与气候模型估算的冰盖表面质量平衡年际信号存在显著的线性相关关系,但与主要影响南极气候年际变化的气候事件之间却不存在线性相关关系,这说明南极冰盖质量变化的年际信号主要受冰盖表面质量平衡的支配,而气候事件对冰盖表面质量平衡的影响可能是复杂的非线性耦合过程.  相似文献   

6.
验潮站能够观测海平面长期变化,并被用于重构全球平均海平面上升.然而,中国沿海区域的海平面长期变化尚未被揭示.本文构建了一种数据同化方法,可以重构中国沿海地区1950年以来的海平面上升.该方法以全球验潮站观测为约束,同时利用气候模式输出的动态海平面和陆地水质量迁移导致的海平面指纹效应.本文重构的全球平均海平面上升与之前的研究结果接近.中国沿海地区20个验潮站的重构结果显示,1950~2020年中国沿海平均海平面上升速率为(1.95±0.33)mm a-1,高于同时期的全球平均上升速率(1.71±0.17)mm a-1.此外,本文还发现,中国沿海平均海平面上升速率在1980年以后是之前速率的3倍以上,速率从1950~1980年的(0.84±0.28)mm a-1增加到1980~2020年的(3.12±0.21)mm a-1.该发现说明中国沿海海平面存在显著的加速上升,这些结果增进了对中国沿海海平面长期变化的理解与认识.  相似文献   

7.
关中地区作为一带一路重要的工农业发达地区之一,开展针对该地区地下水储量变化的监测和分析工作对揭示地下水储量变化特征与经济社会发展具有重要现实意义.本文基于2003—2014年GRACE卫星重力场模型数据,采用组合滤波及单一尺度因子方法反演了关中地区陆地水储量变化,扣除GLDAS地表水平均结果,对关中地区地下水储量变化进行了监测分析.将陆地水储量变化与GLDAS进行相关性分析,将地下水储量变化与WGHM地下水模型及实测地下水位结果进行对比分析.研究结果表明:①关中地区陆地水变化与GLDAS模型结果具有较强的相关性,相关系数多数大于0.7,其中与模型平均结果的相关系数可达0.8.② 2003—2008年关中地区地下水呈正增长趋势,增加速率为0.25 cm·a-1,与同期实测数据变化趋势一致;但2003—2013年地下水存在长期亏损,亏损速率为-0.37 cm·a-1等效水高,这与同时期WGHM估算结果-0.35 cm·a-1十分吻合.③关中地区地下水存在明显的年变化特征,在2003—2014年期间地下水减少速率为-0.44 cm·a-1,与该地区降雨量有较好的一致性,在降雨偏少的2008、2012和2013年,地下水也显著减少.  相似文献   

8.
GRACE重力卫星探测南极冰盖质量平衡及其不确定性   总被引:6,自引:3,他引:3       下载免费PDF全文
2002年GRACE重力卫星的成功发射为南极冰盖质量平衡的研究提供了重力探测的新纪元.本文利用美国德克萨斯大学CSR公布的2003年1月到2013年12月期间的RL05版本GRACE月重力场数据,采用最优平均核函数法和组合滤波法两种GRACE后处理方法反演了南极冰盖质量的时空变化.结果表明:在2003—2013年期间南极冰盖物质平衡呈明显的负增长状态,质量变化趋势为-163±50Gt/a(GW13)、-129±41Gt/a(IJ05)、-81±27Gt/a(W12a),加速度为-8±10Gt/a2,质量消融的主要区域分布在西南极阿蒙森海岸和南极半岛的北部.另外本文还重点探讨了可能影响到估算结果的各项误差及不确定性,分析结果显示影响南极冰盖质量平衡估算结果的最大误差源为GIA改正.通过假设检验和信息准则对时间序列分析中拟合参数的合理选取进行了探讨和分析,在联合周年项、半年项和S2、K2、K1潮汐混频项进行拟合分析时发现K1项对拟合结果的加速度影响比其他周期项稍大,尽管考虑该项的合理性因当前GRACE数据时间序列长度有限而无法确切证实,但K1项的影响值得后续关注.对比两种GRACE后处理方法的结果发现:当采用的数据时间跨度一致,误差改正方法相同,两种相异的后处理方法,其估算结果也具有较好的一致性.  相似文献   

9.
联合GRACE和ICESat数据分离南极冰川均衡调整(GIA)信号   总被引:1,自引:1,他引:0       下载免费PDF全文
2002年发射的GRACE重力卫星为南极冰盖质量平衡提供了一种新的测量方式,但由于南极GIA模型的不确定较大,进而影响GRACE结果的可靠性.本文联合2003—2009年的GRACE和ICESat等数据实现了南极GIA信号的分离,联合方法所分离的GIA不依赖于不确定性很大的冰负荷等假设模型,而是直接基于卫星观测数据估算而来的,具有更大的可靠性.在分离过程中,本文提出了冰流速度加权改正法和GPS球谐拟合改正法对GIA结果进行精化,同时引入了南极GPS观测站的位移数据对分离的GIA进行详细的评估和验证,GPS验证表明经过冰流速度加权和GPS球谐拟合双改正后的GIA结果精度明显得到提高.最后本文利用所分离的GIA对GRACE和ICESat结果进行了改正,得到2003—2009年南极冰盖质量变化的趋势为-66.7±54.5 Gt/a(GRACE)和-77.2±21.5Gt/a(ICESat),相比采用其他的GIA模型,本文的GIA结果使GRACE和ICESat这两种不同观测技术得到的南极冰盖质量变化结果更加趋于一致.  相似文献   

10.
全球平均海平面年际变化中最突出的信号是由厄尔尼诺-南方涛动(ENSO)引起的.本文利用卫星测高、GRACE卫星重力、Argo海洋温盐实测数据、冰川消融质量数据和MEI指数,研究了全球海平面长期变化和年际变化的成因以及ENSO现象对海平面年际变化的影响.本文发现冰川消融贡献了海水质量变化的长期变化部分,其中格陵兰和南极洲的冰盖消融起主导作用.2003-2014年间,几次较大的厄尔尼诺以及拉尼娜现象均引起了海平面年际变化的响应.由于2010年强烈的拉尼娜现象,导致全球海平面下降了8 mm左右,同时期质量引起的海平面变化下降了6 mm,而比容海平面下降了2 mm.同时间段内,总的海平面年际变化、海水质量年际变化部分和比容海平面年际变化部分均与ENSO存在较高的相关性,测高得到的海平面年际变化、GRACE得到的海水质量年际变化和Argo浮标得到的比容海平面年际变化与MEI的相关系数分别达到0.41、0.48和0.56(置信度95%).经过对Argo分层实测数据分析,发现ENSO现象能够影响赤道太平洋区域0~300 m的海深的海水温度.  相似文献   

11.
两极冰盖消融及其质量变化作为全球气候变化的重要指标之一,一直是联合国政府间专门气候委员会IPCC(Intergovernmental Panel on Climate Change)报告的重点关注内容.GRACE(Gravity Recovery and Climate Experiment,2002年4月-2017年...  相似文献   

12.
利用ICESat数据确定格陵兰冰盖高程和体积变化   总被引:1,自引:0,他引:1       下载免费PDF全文
两极冰盖消融是造成海平面上升的重要原因,作为世界第二大冰盖,格陵兰冰盖消融速度在进入21世纪以后明显加快,引起了广泛关注.本文利用ICESat卫星激光测高数据,探讨了坡度改正的方法,通过改进平差模型解决了病态问题,并采用重复轨道方法计算了2003年9月至2009年10月间格陵兰冰盖的体积和高程变化趋势,对格陵兰冰盖各冰川流域系统的变化情况进行了详细分析.结果表明,格陵兰冰盖在这6年间平均高程变化趋势为-16.79±0.84cm·a^-1,体积变化速率为-301.37±15.16km^3·a^-1,体积流失主要发生在冰盖边缘,其中DS1、DS8等流域的体积损失正在加剧,而高程在2000m以上的冰盖内陆地区表现出高程积聚的状态,但增长速度明显减缓.与现有研究成果的对比表明,算法优化后的本文结果更具可靠性.  相似文献   

13.
Thirteen years of GRACE data provide an excellent picture of the current mass changes of Greenland and Antarctica, with mass loss in the GRACE period 2002–2015 amounting to 265 ± 25 GT/year for Greenland (including peripheral ice caps), and 95 ± 50 GT/year for Antarctica, corresponding to 0.72 and 0.26 mm/year average global sea level change. A significant acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight decrease in short-term mass loss trend. The yearly mass balance estimates, based on point mass inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic adjustment processes, especially for Antarctica, leakage from unmodelled ocean mass changes, and (for Greenland) difficulties in separating mass signals from the Greenland ice sheet and the adjacent Canadian ice caps. The limited resolution of GRACE affects the uncertainty of total mass loss to a smaller degree; we illustrate the “real” sources of mass changes by including satellite altimetry elevation change results in a joint inversion with GRACE, showing that mass change occurs primarily associated with major outlet glaciers, as well as a narrow coastal band. For Antarctica, the primary changes are associated with the major outlet glaciers in West Antarctica (Pine Island and Thwaites Glacier systems), as well as on the Antarctic Peninsula, where major glacier accelerations have been observed after the 2002 collapse of the Larsen B Ice Shelf.  相似文献   

14.
Ice Sheets and Sea Level: Thinking Outside the Box   总被引:1,自引:0,他引:1  
Until quite recently, the mass balance (MB) of the great ice sheets of Greenland and Antarctica was poorly known and often treated as a residual in the budget of oceanic mass and sea level change. Recent developments in regional climate modelling and remote sensing, especially altimetry, gravimetry and InSAR feature tracking, have enabled us to specifically resolve the ice sheet mass balance components at a near-annual timescale. The results reveal significant mass losses for both ice sheets, caused by the acceleration of marine-terminating glaciers in southeast, west and northwest Greenland and coastal West Antarctica, and increased run-off in Greenland. At the same time, the data show that interannual variability is very significant, masking the underlying trends.  相似文献   

15.
高亚洲冰川质量变化趋势的卫星重力探测   总被引:3,自引:2,他引:1       下载免费PDF全文
利用高亚洲地区32个Mascon,基于GRACE RL05时变重力场模型频域和空域上的两种计算方法有效分离并提取出高亚洲冰川及其毗邻地区的等效水质量变化,得到2002—2013年期间高亚洲地区更为可靠的Mascon质量变化.高亚洲冰川质量变化的空间特征是:青藏高原内陆地区以正增长为主,边缘地区以负增长为主,在藏东南的最边缘地区冰川质量损失最为严重.天山地区、帕米尔和昆仑山地区、喜马拉雅山和喀喇昆仑山地区、青藏高原内陆地区冰川质量的平均变化趋势分别为-2.8±0.9Gt/a、-3.3±1.5Gt/a、-9.9±2.1Gt/a和5.0±0.8Gt/a,高亚洲冰川质量整体的平均变化趋势为-11.0±2.9Gt/a.印度等北部平原地区地下水平均变化趋势为-35.0±4.2Gt/a,该地区地下水信号泄漏是影响GRACE研究高亚洲冰川质量变化的关键因素,频域法和空域法能有效改正该地区地下水信号泄漏的影响.  相似文献   

16.
We have used satellite solutions to the low degree zonal harmonics of the Earth's gravitational potential, and rates of surface accumulation to partially constrain, by means of repeated forward solution, the time rates of thickness change over the Antarctic and Greenland Ice Sheets (dTA and dTG respectively). In addition to the observed zonal coefficients j2 through j5 we impose only one other constraint: That dTA and dTG are proportional to surface accumulation. The lagged response of the Earth to secular changes in ice thickness spanning recent time periods (up to 2000 years before present) and the late Pleistocene is accounted for by means of two viscoelastic rebound models. The sea level contributions from the ice sheets, calculated from dTA and dTG, lower mantle viscosity, and the start time of present-day thickness change are all variables subject to the constraints. For a given set of post glacial rebound inputs, a family of solutions that have similar characteristics and that agree well with observation are obtained from the large number of forward solutions. The off axis position of the Greenland ice sheet makes its contribution to the low degree zonal coefficients less sensitive to the spatial details of the mass balance than to the overall sea level contribution. dTG is therefore modeled as surface mass balance offset by a uniform and constant mass loss. Though dTA varies widely with choices of input parameters, the combined sea level contribution from both ice sheets is reasonably well constrained by the gravity coefficients, and is predicted to range from -0.9 to +1.6 mm yr-1. The sign of the slope of the low degree zonal coefficients versus sea level contribution for Greenland is positive, but for Antarctica, the sign of the slope is positive for even degree and negative for odd degree harmonics. By using this property of the zonal coefficients, it is possible to determine the individual sea level contributions for Greenland and Antarctica. They vary from -0.6 to +0.3 mm yr-1 for the Greenland Ice Sheet, and from -0.3 to +1.3 mm yr-1 for the Antarctic Ice Sheet.  相似文献   

17.
The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979?C2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40?km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60?km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495?km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4?mm/year. For Antarctica there is an increase in the positive surface mass balance of 285?km3/year corresponding to a sea level fall by 0.8?mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7?cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号