首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
两种精化的对流层延迟改正模型   总被引:7,自引:1,他引:6       下载免费PDF全文
对流层延迟是全球导航卫星系统(Global Navigation Satellite System,GNSS)导航定位中的重要误差源,其量值主要受气象条件影响.采用传统对流层建模思路,利用GPT2模型来提供相对准确的气温、气压和相对湿度,然后利用Saastamoinen模型来计算天顶对流层延迟,由此构建了GPT2+Saas模型;采用新的对流层建模思路,直接针对天顶对流层延迟的时空特性建模,构建了与GPT2+Saas模型相匹配的GZTDS格网模型.以GGOS Atmosphere格网数据为参考,GPT2+Saas模型(Bias:0.2cm;RMS:4.2cm)和GZTDS模型(Bias:0.2cm;RMS:3.7cm)较UNB3m模型精度分别提升34%和43%.以IGS(International GNSS Service)数据为参考,GPT2+Saas(Bias:0.5cm;RMS:4.7cm)和GZTDS(Bias:-0.3cm;RMS:3.8cm)相对UNB3m模型精度分别提升10%和27%.针对GPT2+Saas模型在少数测站出现精度异常的情况进行了研究,探讨了可能的原因.在两种不同思路构建的精化对流层模型中,GZTDS模型不仅表现出更高的精度,而且在时间稳定性和地理稳定性上也表现出优越性.  相似文献   

2.
对流层延迟是影响高精度卫星导航定位的关键因素,也是大气科学研究的重要数据.针对已有全球对流层延迟模型的模型方程未同时顾及高程、纬度和季节变化以及模型构建时仅使用单一格网点数据等问题,本文提出了一种对流层天顶延迟(ZTD)全球模型构建的新方法,即引入滑动窗口算法将全球剖分为大小一致的规则窗口,利用2008—2015年全球大地观测系统(GGOS)大气格网产品构建每个窗口同时顾及高程、纬度和季节因子的全球ZTD新模型(GGZTD模型).联合未参与建模的2016年全球GGOS格网产品和2016年全球316个IGS站精密ZTD产品,检验了GGZTD模型的精度和适用性.结果表明:以GGOS大气格网ZTD产品和IGS站ZTD产品为参考值,GGZTD模型在全球的精度分别为3.58 cm和3.62 cm,相对于UNB3m模型和目前标称精度最优的GPT2w模型计算的ZTD信息,GGZTD模型在全球表现出了最优的精度和稳定性,其精度相对于UNB3m模型具有显著的提升(精度提高了30%以上),相对于GPT2w模型仍具有一定的改善;在ZTD计算时GGZTD模型相对于GPT2w模型显著地减少了模型参数,尤其相对于GPT2w-1(减少了99%).GGZTD模型只需输入位置与时间和依赖相对较少的模型参数则能在全球获得高精度和稳定的ZTD信息,极大地提升了模型的计算效率.  相似文献   

3.
一种新的全球对流层天顶延迟模型GZTD   总被引:14,自引:3,他引:11       下载免费PDF全文
对流层延迟是GNSS导航定位主要误差源之一,主要受气象参数(如总气压、温度和水汽压等)的影响,具有变化随机性强的特点.本文利用 GGOS Atmosphere提供的2002-2009年全球天顶对流层延迟格网时间序列研究了全球对流层天顶延迟的时空变化特征.并以此为基础对全球天顶对流层延迟(Zenith Troposphere Delay, ZTD)进行建模,提出了一种基于球谐函数的全球非气象参数对流层天顶延迟改正模型--GZTD模型.实验对比结果表明考虑ZTD经纬向变化的GZTD模型内符合精度全球统计结果(bias:0.2 cm,RMS:3.7 cm)优于只考虑ZTD纬向变化的UNB3m (bias:3.4 cm,RMS:6.0 cm)、UNB4 (bias:4.7 cm,RMS:7.4 cm)、UNB3 (bias:4.0 cm,RMS:7.0 cm)和EGNOS (bias:4.5 cm,RMS:6.9 cm)等模型.使用全球385个IGS站进行外符合检验,统计结果表明GZTD模型(bias:-0.02 cm,RMS:4.24 cm)同样优于其它模型.GZTD模型具有改正效果良好、使用简单、所需参数少等优点.  相似文献   

4.
对流层延迟是无线电导航定位的主要误差源之一,其值对目标高程的变化敏感.在动态导航定位中,由于目标高程变化随机性强,延迟改正实时性需求高,已有的对流层延迟模型难以满足应用需求.本文利用2005到2006年ERA-Interim再分析气象资料积分方法计算的对流层天顶总延迟(ZTD)、天顶静力学延迟(ZHD)以及天顶非静力学延迟(ZWD)的垂直剖面研究了ZTD随高程变化的最佳拟合形式,并以此为基础建立了全球ZTD改正模型SHAO-H.该模型以大气中水汽的垂直分布规律为依据,将ZTD表示为高程的分段函数,进而再模制每段函数中各参数随时间的变化.精度评估显示:与积分ZTD相比,SHAO-H模型计算的ZTD在不同等压层上的平均bias大部分在±1 mm以内,随着高度的上升,平均RMS由39 mm减小至不足1 mm;与IGS (International GNSS Service)实测ZTD相比,SHAO-H模型的精度(bias为7.02 mm,RMS为38.50 mm)优于UNB3m模型(bias为14.67 mm, RMS为51.95 mm).SHAO-H模型具有精度稳定、计算简便等优点,适宜任意高度的用户使用.  相似文献   

5.
对流层延迟是卫星导航定位的主要误差源,气象观测的数值预报资料可用来计算对流层延迟改正量.本文通过分布于亚洲地区的49个GPS台站一年的实测ZTD资料,对利用欧洲中尺度天气预报中心(ECMWF)分析资料、美国国家环境预报中心(NCEP)再分析资料和NCEP预报资料,计算对流层天顶延迟(ZTD)改正的有效性和可能达到的精度进行了评估,分析了ECMWF和NCEP在亚洲地区的适用程度和其分辨率对计算ZTD精度的影响.研究结果表明:(1)相对于 GPS实测ZTD,用ECMWF资料计算ZTD的bias和rms分别为-1.0 cm 和2.7 cm,优于NCEP再分析资料,可用于高精度ZTD研究和应用;NCEP预报数据计算ZTD的bias和rms分别为2.4 cm 和 6.8 cm,足以满足广大GNSS实时导航定位用户对流层延迟改正的需要.(2)bias和rms呈现明显的季节性变化,总体上夏季大,冬季小;在空间分布上随着纬度的变化不明显,但随高度的增加rms总体上有递减趋势.另外还发现,亚洲东部地区夏季日平均bias和rms和南部热带地区冬季的日平均bias和rms变化相对较大.(3)ECMWF2.5°和0.5°的资料进行了对比分析,发现0.5°分辨率资料的rms比2.5°减小1~5 mm.这些结果,为在亚洲地区的空间大地测量、导航定位和INSAR等工作中,应用ECMWF/NCEP的资料进行对流层大气延迟改正的有效性和可能达到的精度提供了重要参考.  相似文献   

6.
利用神经网络算法挖掘海量数据的规律已成为科技发展的一种趋势,本文针对卫星信号的天顶对流层延迟进行建模.对流层延迟是影响卫星定位精度的重要因素之一,建立精密区域对流层模型对高精度定位有着重要的意义.对区域测站对流层延迟数据的分析,考虑到实时建模中传统BP(Back Propagation)神经网络计算量大,易出现"过拟合"现象、不稳定等因素,通过改进的BP神经网络建立了区域精密对流层模型.详细介绍了新模型的建立过程,并与常用的对流层区域实时模型进行了对比.还讨论了建模测站数目对预报精度的影响.相比现有的其他对流层延迟模型,基于改进的BP神经网络构建的区域精密对流层延迟模型无论在拟合和预报方面都有较好的精度,且随着测站数目的增加模型精度趋于平稳.改进的模型参数较少,可以进行实时的区域精密对流层延迟改正;需要播发的信息量小,适用于连续运行参考站系统(Continuously Operating Reference Stations,CORS)的应用.研究表明:改进的BP神经网络模型能够更好的充分利用大规模历史数据描述卫星信号对流层延迟的空间分布情况,适用于实时大区域精密对流层建模.基于日本地区2005年近1000多个测站的NCAR(National Center Atmospheric Research)对流层数据进行区域对流层延迟建模,结果表明改进的BP神经网络模型在拟合和预报精度上都有较大提升,RMSE(Root Mean Square Error)分别为:7.83 mm和8.52 mm,而四参数模型拟合、预报RMSE分别18.03 mm和16.60 mm.  相似文献   

7.
受制于对流层延迟建模方法和建模背景场精度及时空分辨率的影响,目前实时对流层延迟模型的精度和稳定性都有待进一步改善.本文利用甘肃及周围地基共计184个GNSS (Global Navigation Satellite System)站估算的ZTD (Zenith Troposphere Delay),构建了空间分辨率为0.25°×0.25°的甘肃地区实时ZTD网格模型.针对传统的高程归化模型及水平内插模型精度低的问题,本文提出了利用高斯指数函数模型将不同高程的GNSS/ZTD归化到统一的高度,再基于BP神经网络模型从网格顶点周围统一高度后的GNSS/ZTD中内插出网格顶点处的ZTD.为了验证甘肃ZTD网格模型的精度,选取2022年甘肃地区8个未参与建模的陆态网GNSS测站的数据进行了实验.统计结果显示:与事后PPP (Precise Point Positioning)处理GNSS估算的ZTD相比,甘肃ZTD网格模型与真值偏差的RMS优于1.52 cm.此外,将构建的实时ZTD格网模型用于约束PPP处理,对于PPP浮点解施加ZTD约束后U方向精度提升22.9%,U方向收敛时间缩短26.4...  相似文献   

8.
基于HJ-CCD和MODIS的吉林省中西部湖泊透明度反演对比   总被引:2,自引:0,他引:2  
水体透明度能够反映光在水体中的穿透程度,影响水生植被及以光为依赖条件的水生生物的分布,获取透明度的传统方法是采用透明度盘进行测量,但也可以通过遥感方法获得.环境减灾卫星是专门用于环境与灾害监测预报的小卫星星座,影像覆盖范围广,空间、时相分辨率较高,可以为水环境遥感提供较好的数据源.MODIS数据在近岸水体和内陆大型湖泊水环境监测中也有广泛应用,它的时相分辨率也很高,但空间分辨率低.利用HJ-1A卫星CCD数据和MODIS日反射率产品(MOD09GA),以2012年9月吉林省石头口门水库、二龙湖、查干湖、月亮泡等地的实测透明度为基础(实测点数74个,最小值为0.134 m,最大值为1.410 m,平均值为0.488 m),根据灰色关联度选取构建模型的波段组合,建立水体透明度反演模型.HJ1A-CCD数据与MOD09GA数据建立的模型R2分别为0.639和0.894,均方根误差(RMSE)分别为0.248和0.135,模型验证的平均相对误差(MRE)分别为17.1%和9.5%,RMSE分别为0.207和0.089.MODIS数据以其较高的辐射分辨率使模型精度较高,但是HJ数据在应用于透明度小于1 m的水体时精度也较高(MRE=13.5%,RMSE=0.066).HJ-CCD数据在空间分辨率上的优势使其能够获得透明度空间分布的细节信息.比较两者反演得到的湖泊平均透明度,结果较为一致.  相似文献   

9.
对流层延迟对导航定位精度有着重要的影响,而再分析资料提供的高精度气象参数计算的对流层延迟可应用于定位过程中以提升定位精度.本文针对三种再分析资料计算的对流层延迟进行精度评估,并将其应用在精密单点定位中,分析其对定位精度的影响.首先,利用2020年全球范围内125个IGS(International GNSS Service)站的对流层天顶总延迟(Zenith Total Delay, ZTD)作为真值对三种再分析资料(ERA5、MERRA2、CRA40)计算的ZTD进行了精度评估,并分析其时空分布特性.研究结果表明:ERA5-ZTD的均方根误差(RMS)最小(12.1 mm),其次为CRA40-ZTD(15.8 mm)和MERRA2-ZTD(16.9 mm),整体上ERA5-ZTD的精度最高;据所选的IGS站点的比较结果发现赤道平均偏差(BIAS)呈现负值,在中高纬度地区CRA40的精度优于MERRA2,在低纬度地区则相反,而ERA5在各纬度平均精度均为最优;当考虑季节因素时,三者计算的ZTD-RMS在夏秋季较大,其中ERA5的RMS季节变化最稳定.之后还利用180个探空站点对三者计算...  相似文献   

10.
GPS定位中对流层折射率随机模型的研究   总被引:4,自引:1,他引:4  
分析了GPS相对定位中对流层折射的特点,概述了目前所采用的几种确定性参数对流层折射估计和随机过程参数对流层折射估计方法,根据实测数据处理结果,分析比较了几种确定性模型和随机过程模型对GPS相对定位精度的改善作用。结果表明:对流层折射的多参数确定性模型和随机参数模型对基线分量的重复性,特别是高分程分量的重复性有明显改善,在大多数情况下,尤以随机参数模型为佳,其垂直分量的重复性精度较单参数模型可提高一  相似文献   

11.
重新研究了中性大气折射延迟映射函数的近似母函数.在此基础上,本文得到了一个新的天文大气折射的理论公式,即映射函数形式的表达式.数值计算表明,利用本文公式和利用普尔科沃大气折射表公式计算的蒙气差相差很小.在天顶距小于30°的情况下,二者之差小于0″.05,在天顶距小于65°的情况下,二者之差小于0″.11;在天顶距大于65°的情况下,二者之差却不增反降,直至在天顶距75°处出现负值,但也就是在天顶距75°处,二者之差的绝对值又开始增加;但总体上,在天顶距小于75°时二者之差的绝对值小于0″.11.可见,以映射函数形式的蒙气差公式取代复杂的普尔科沃大气折射表公式是可行的,也可以利用天文大气折射测定值来建立大气延迟模型.  相似文献   

12.
基于2011和2012年陆态网GPS连续观测数据,分析了GPS水平速度场数据解算过程中,不同对流层延迟参数个数与初始坐标偏差对解算精度的影响;利用重采样方法模拟生成多组不同时间间隔的流动数据,分析了不同时间间隔的流动观测模式下的解算精度。通过实验证实,为了得到高精度的GPS单日松弛解,必须进行对流层延迟估计,对流层参数个数设置为2,7,13时解算精度存在少量差别,表现为随着参数增多解算精度有所提高;初始坐标误差在10m时可以得到精度较高的时间序列结果,误差在30m及50m时不能得到可用的时间序列;当流动观测时间间隔大于1年时,可以获得较为可靠的水平速度场结果;时间间隔短于1年时,水平速度场解算精度较低。  相似文献   

13.
冯彦  蒋勇  孙涵  安振昌  黄娅 《地球物理学报》2018,61(4):1352-1365
利用149个地面实测数据以及12个子午工程测点数据,50个CHAMP卫星高度实测数据,并结合高空180 km处的50个IGRF12数据点,基于这三个高度的数据首次建立了中国地区地磁场三维曲面Spline(3D Spline)模型.在境外添加了39个测点以控制边界效应.通过CM4模型将所有测点的场源进行分离,统一通过主磁场值建模分析.通过将模拟结果与实测值、曲面Spline(2D Spline)以及Taylor(2D Taylor)、三维Taylor(3D Taylor)模型及IGRF12模型相比较,结果显示3D Spline模型的空间分布与其他模型整体趋势一致,但更为曲折,随着高度上升,3D Spline模型的要素Y的强度逐渐减弱.通过比较3D Spline、2D和3D Taylor模型对于不同高度6个缺测点的模拟值,残差和均方根偏差(RMSE),3D Spline模型的模拟效果最好,要素Y、Z和总强度F的RMSE值要比其他模型低50%以上.3D Spline模型在不同高度处的模拟效果主要取决于该高度附近的实测值数量和精度.  相似文献   

14.
气压、温度和水汽含量等大气物理参数的时空变化导致的对流层延迟是制约合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,InSAR)高精度应用的重要因素之一.最新研究显示气象再分析资料在补偿对流层延迟影响方面具有巨大的应用潜力,这促使我们对其有效性和鲁棒性做进一步的研究和探索.本文首先推导了利用气象再分析资料对InSAR进行对流层延迟校正的算法;然后以美国南加州地区的ENVISAT ASAR数据为例,分析了基于两种气象再分析资料(ERA-Interim和North American Regional Reanalysis,NARR)校正InSAR对流层延迟改正的效果;通过与MERIS水汽延迟改正结果比较,验证了该方法的有效性.实验结果表明:(1)不能简单忽略干延迟,可通过气象再分析资料进行有效估计;(2)通过与MERIS水汽产品获得的对流层延迟比较发现,气象再分析资料能够取得接近于MERIS的改善效果;(3)对ERA-Interim和NARR两种气象再分析资料而言,虽然后者具有更高的时间和空间分辨率,但在改正InSAR对流层延迟方面并没有表现出比前者更明显的优势;(4)气象再分析资料可以很好地估计与地形强相关的垂直分层延迟,但对于小尺度的湍流混合延迟的捕捉能力有限.综合分析认为,气象再分析资料的优势在于其数据可随时获得、免费和全球覆盖,它可以显著减弱大尺度的垂直分层延迟对干涉图相位的影响,从而有助于InSAR获取更真实可靠的地形高程和地表形变信息.  相似文献   

15.
针对对流层主要污染物(对流层臭氧、NO_2、SO_2及HCHO)的高分辨率、高频次监测需求,开展了基于静止轨道卫星监测中国大气污染物的模拟观测实验.在参考现有极轨卫星载荷的遥感监测能力和仪器参数基础上,根据静止卫星观测模型,利用正演辐射传输模式模拟观测光谱.根据最优估计反演理论,分析光谱仪的主要指标参数对各目标气体的反演敏感性和反演误差.基于各目标气体反演精度需求,提出光谱仪的观测波段、光谱分辨率和信噪比等关键指标参数的建议方案.为评估选定的光谱仪参数能否满足需求,利用大气化学输送模式模拟中国区域大气成分的三维分布,进行中国区域的模拟反演实验.结果表明,针对各目标气体,满足反演需求的实验数目均达到90%左右.臭氧总量和平流层臭氧的反演精度可达到2%,且各气体反演在太阳天顶角高于70°范围内仍可以获得有效数据.因此,我们所提出的静止卫星观测方案和仪器参数方案具有一定可行性,为优化将来中国静止轨道卫星光谱仪仪器指标提供了理论依据和模拟工具.  相似文献   

16.
基于微波亮温及集合Kalman滤波的土壤湿度同化方案   总被引:4,自引:0,他引:4       下载免费PDF全文
基于集合Kalman滤波及SCE-UA(shuffled complex evolution)算法发展了能够直接同化微波亮温的土壤湿度同化方案. 该方案以陆面过程模式CLM 3.0中的土壤水模型作为预报算子, 以辐射传输模型作为观测算子. 整个同化过程分为参数优化和土壤湿度同化两个阶段, 利用SCE-UA算法优化辐射传输模型中难以确定的植被光学厚度参数和地表粗糙度参数, 并利用优化参数作为观测算子的模型参数进行同化. 通过人工理想试验表明该同化方案可以明显改善表层土壤湿度的模拟精度, 并且对深层土壤湿度的模拟也有一定程度的改善; 利用AMSR-E亮温(10.65 GHz垂直极化)所进行的实际同化试验表明顶层(0~10 cm)土壤湿度同化结果与观测的均方根误差(RMSE)由模拟的0.05052减小到0.03355, 相对减小了33.6%, 而较深层(10~50 cm)平均减小了20.9%. 这些同化试验显示该同化方案的合理性.  相似文献   

17.
电离层延迟是空间大地测量数据处理中一项重要误差源.电离层延迟可以根据电子含量分布图(IM)以及映射函数模型计算得到.本文以IGS、JPL和NOAA提供的电子含量分布图为例,比较了这些电子含量分布图在给定台站的不同观测高度角穿刺点上的天顶电子含量,并比较了采用单层和双层球壳映射函数模型获得的斜路径电子含量.分析结果显示两种映射函数模型在计算斜路径的影响差别不大.JPL的天顶电子含量影响总要比IGS的大约3TECU左右,呈现出明显的系统差.NOAA与IGS的系统差则相对不明显,个别台站的差值较大.表明不同GPS数据分析中心获得的电子含量分布图模型存在一定的系统差,在实际运用中应考虑这些差异.  相似文献   

18.
延迟是全球卫星导航定位中重要的误差源之一,提高电离层TEC建模和预报精度对改善卫星导航定位精度至关重要.本文构建了以太阳辐射通量指数F10.7、地磁活动指数Dst、地理坐标和中国科学院(Chinese Academy of Sciences, CAS)GIM数据为输入参数的NeuralProphet神经网络模型(NP模型),实现在2015年3月特大磁暴期中国区域电离层TEC短期预报.为验证NP模型的预报精度,本文同时构建了长短期记忆神经网络(Long Short-term Memory Neural Network, LSTM)模型进行对比分析.结果统计分析表明,NP模型在磁暴期(2015年DOY076-078)TEC预报值RMSE和RD分别为0.83 TECU和3.13%,绝对和相对精度较LSTM模型分别提高1.49 TECU和10.25%;且NP模型RMSE优于1.5 TECU的比例达97.24%,远高于LSTM模型.NP模型预报值与CAS具有较好一致性和无偏性,偏差均值仅为-0.01 TECU,而LSTM模型预报值的均值偏大,偏差均值为1.49 TECU.从...  相似文献   

19.
基于无线电探空仪和掩星的对流层顶观测虽然可以揭示对流层顶高度和温度的一些特性,但是在某一个地点的时间分辨率较低,资料的时间分辨率几乎都是以天计,同时所获得的对流层顶信息也不能直接反映对流层顶的产生、发展和消亡过程.借助于MST雷达具有高时间分辨率和连续性这一显著优势,实时、连续地获得对流层顶雷达回波,通过构建普适性雷达对流层顶判读模型,可以更好地研究对流层顶高度和结构形态的时空演化过程.探空仪对比实验表明:雷达方法观测对流层顶高度与气象学方法观测对流层顶高度相差约2 km,这应该和二者的探测机制相关.统计分析2012年全年雷达对流层顶回波差异值可以发现,雷达对流层顶高度的年平均值为13.3 km,标准差为0.65 km;对流层顶回波差异平均值约为11.7 d B,标准差为4.3 d B,雷达对流层顶回波差异值直接反映了雷达对流层顶结构的稀疏状态.同时本文利用Lomb-Scargle谱分析方法检测了对流层顶结构形态的扰动周期,结果表明大气潮汐波和行星波分量会影响对流层顶的结构形态.  相似文献   

20.
符养  肖义国  韩英  马明 《地球物理学报》2006,49(6):1635-1643
自1992年8月10日TOPEX/POSEIDON卫星发射成功以来,其海面高观测数据已累积近10年,产生了空间分辨率为0.5°×0.5°、时间分辨率为10天的二级数据产品和空间分辨率1°×1°、时间分辨率为5天的三级数据产品.本文利用1992年10月~2002年8月TOPEX卫星测高时间序列数据,通过数据处理和小波分析获取了1°×1°网格全球SSHA升高及周年和半周年波动变化信息,并分析了全球以及各个洋面区域的SSHA波动规律.分析结果表明,全球海平面在1992年10月~2002年8月升高了24.2 mm,其中南半球升高26.9 mm,北半球升高19.0 mm;全球SSHA周年变化项振幅的平均值是28.8 mm,半周年项振幅平均值为8.8 mm,周年项运动明显大于半周年项的运动.北半球SSHA周年变化项平均振幅为40.3 mm,南半球为21.1 mm,北半球SSHA半周年变化项平均振幅为10.9 mm,南半球为7.3 mm.同时还发现在太平洋和大西洋南北赤道暖流区的周年波动存在位相突变现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号