首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrahigh temperature (UHT) granulites in the Eastern Ghats Province (EGP) have a complex P–T–t history. We review the P–T histories of UHT metamorphism in the EGP and use that as a framework for investigating the P–T–t history of Mg–Al‐rich granulites from Anakapalle, with the express purpose of trying to reconcile the down‐pressure‐dominated P–T path with other UHT localities in the EGP. Mafic granulite that is host to Mg–Al‐rich metasedimentary granulites at Anakapalle has a protolith age of c. 1,580 Ma. Mg–Al‐rich metasedimentary granulites within the mafic granulite at Anakapalle were metamorphosed at UHT conditions during tectonism at 960–875 Ma, meaning that the UHT metamorphism was not the result of contact metamorphism from emplacement of the host mafic rock. Reworking occurred during the Pan‐African (c. 600–500 Ma) event, and is interpreted to have produced hydrous assemblages that overprint the post‐peak high‐T retrograde assemblages. In contrast to rocks elsewhere in the EGP that developed post‐peak cordierite, the metasedimentary granulites at Anakapalle developed post‐peak, generation ‘2’ reaction products that are cordierite‐absent and nominally anhydrous. Therefore, rocks at Anakapalle offer the unique opportunity to quantify the pressure drop that occurred during so‐called M2 that affected the EGP. We argue that M2 is either a continuation of M1 and that the overall P–T path shape is a complex counter‐clockwise loop, or that M1 is an up‐temperature counter‐clockwise deviation superimposed on the M2 path. Therefore, rather than the rocks at Anakapalle having a metamorphic history that is apparently anomalous from the rest of the EGP, we interpret that other previously studied localities in the EGP record a different part of the same P–T path history as Anakapalle, but do not preserve a significant record of pressure decrease. This is due either to the inability of refractory rocks to extensively react to produce a rich mineralogical record of pressure decrease, or because the earlier high‐P part of the rocks history was erased by the M1 loop. Irrespective of the specific scenario, models for the tectonic evolution of the EGP must take the substantial pressure decrease during M2 into account, as it is probable the P–T record at Anakapalle is a reflection of tectonics affecting the entire province.  相似文献   

2.
Regularly oriented orthopyroxene (opx) and forsterite (fo) inclusions occur as opx + rutile (rt) or fo + rt inclusion domains in garnet (grt) from Otrøy peridotite. Electron diffraction characterization shows that forsterite inclusions do not have any specific crystallographic orientation relationships (COR) with the garnet host. In contrast, orthopyroxene inclusions have two sets of COR, that is, COR‐I: <111>grt//<001>opx and {110}grt~//~{100}opx (~13° off) and COR‐II: <111>grt//<011>opx and {110}grt~//~{100}opx (~14° off), in four garnet grains analysed. Both variants of orthopyroxene have a blade‐like habit with one pair of broad crystal faces parallel/sub‐parallel to {110}grt plane and the long axis of the crystal, <001>opx for COR‐I and <011>opx for COR‐II, along <111>grt direction. Whereas the lack of specific COR between forsterite and garnet, along with the presence of abundant infiltrating trails/veinlets decorated by fo + rt at garnet edges, provide compelling evidence for the formation of forsterite inclusions in garnet through the sequential cleaving–infiltrating–precipitating–healing process at low temperatures, the origin of the epitaxial orthopyroxene inclusions in garnet is not so obvious. In this connection, the reported COR, the crystal habit and the crystal growth energetics of the exsolved orthopyroxene in relict majoritic garnet were reviewed/clarified. The exsolved orthopyroxene in a relict majoritic garnet follows COR‐III: {112}grt//{100}opx and <111>grt//<001>opx. Based on the detailed trace analysis on published SEM images, these exsolved orthopyroxene inclusions are shown to have the crystal habit with one pair of broad crystal faces parallel to {112}grt//{100}opx and the long crystal axis along <111>grt//<001>opx. Such a crystal habit can be rationalized by the differences in oxygen sub‐lattices of both structures and represents the energetically favoured crystal shape of orthopyroxene inclusions in garnet formed by solid‐state exsolution mechanism. Considering the very different COR, crystal habit, as well as crystal growth direction, the orthopyroxene inclusions in garnet of the present sample most likely had been formed by mechanism(s) other than solid‐state exsolution, regardless of their regularly oriented appearance in garnet and the COR specification between orthopyroxene and garnet. In fact, the crystallographic characteristics of orthopyroxene and the similar chemical compositions of garnet at opx + rt inclusion domains, fo + rt inclusion domains/trails and garnet rim suggest that the orthopyroxene inclusions in the garnet are most likely formed by similar cleaving‐infiltration process as forsterite inclusions, though probably at an earlier stage of metamorphism. This work demonstrates that the oriented inclusions in host minerals, with or without specific COR, can arise from mechanism(s) other than solid‐state exsolution. Caution is thus needed in the interpretation of such COR, so that an erroneous identification of exhumation from UHP depths would not be made.  相似文献   

3.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

4.
Rare ultrahigh‐temperature–(near)ultrahigh‐pressure (UHT–near‐UHP) crustal xenoliths erupted at 11 Ma in the Pamir Mountains, southeastern Tajikistan, preserve a compositional and thermal record at mantle depths of crustal material subducted beneath the largest collisional orogen on Earth. A combination of oxygen‐isotope thermometry, major‐element thermobarometry and pseudosection analysis reveals that, prior to eruption, the xenoliths partially equilibrated at conditions ranging from 815 °C at 19 kbar to 1100 °C at 27 kbar for eclogites and granulites, and 884 °C at 20 kbar to 1012 °C at 33 kbar for garnet–phlogopite websterites. To reach these conditions, the eclogites and granulites must have undergone mica‐dehydration melting. The extraction depths exceed the present‐day Pamir Moho at ~65 km depth and suggest an average thermal gradient of ~12–13 °C km?1. The relatively cold geotherm implies the introduction of these rocks to mantle depths by subduction or gravitational foundering (transient crustal drip). The xenoliths provide a window into a part of the orogenic history in which crustal material reached UHT–(U)HP conditions, partially melted, and then decompressed, without being overprinted by the later post‐thermal relaxation history.  相似文献   

5.
In this study, sapphirine‐bearing granulites and sapphirine‐absent garnet–sillimanite gneisses from the Tuguiwula area in the eastern segment of the Khondalite Belt, North China Craton (NCC) are interpreted to show a PT evolution involving cooling at pressures of 8–9 kbar from >960°C to the solidus (~820°C) and late subsolidus decompression. This interpretation is based on the sequence of mineral appearance and thermodynamic modelling of phase equilibria. Sapphirine is observed to coexist with spinel within the peak assemblages. This observation conflicts with the traditional view that spinel generally appears prior to sapphirine and thus indicates pre‐Tmax compression. For ultrahigh‐temperature (UHT) metapelites at Tuguiwula, a clockwise PT path may be more likely, which would be consistent with the clockwise PT evolution of the extensive “normal” granulites (Tmax <900°C) and UHT granulites at other localities in the eastern segment of the Khondalite Belt. At Tuguiwula, for UHT metapelites with low bulk‐rock Mg/(Mg+FeT), the oxidation state/Fe3+ content is interpreted to be a significant factor in controlling the mineral assemblages. We find that these compositions tend to contain sapphirine under oxidized conditions but spinel (without sapphirine) under reduced conditions. This difference may account for the simultaneous presence of both sapphirine‐bearing UHT granulites and sapphirine‐absent garnet–sillimanite UHT gneisses at Tuguiwula. LA‐ICP‐MS U–Pb dating of metamorphic zircon in the UHT metapelites yields mean 207Pb/206Pb ages of c. 1.92 Ga (two samples), which are interpreted to record the timing of cooling of the UHT rocks to the solidus. The UHT metamorphism is interpreted to have been generated by mantle upwelling and emplacement of mafic magmas within a post‐orogenic setting.  相似文献   

6.
The South Altyn orogen in West China contains ultra high pressure (UHP) terranes formed by ultra‐deep (>150–300 km) subduction of continental crust. Mafic granulites which together with ultramafic interlayers occur as blocks in massive felsic granulites in the Bashiwake UHP terrane, are mainly composed of garnet, clinopyroxene, plagioclase, amphibole, rutile/ilmenite, and quartz with or without kyanite and sapphirine. The kyanite/sapphirine‐bearing granulites are interpreted to have experienced decompression‐dominated evolution from eclogite facies conditions with peak pressures of 4–7 GPa to high pressure (HP)–ultra high temperature (UHT) granulite facies conditions and further to low pressure (LP)–UHT facies conditions based on petrographic observations, phase equilibria modelling, and thermobarometry. The HP–UHT granulite facies conditions are constrained to be 2.3–1.6 GPa/1,000–1,070°C based on the observed mineral assemblages of garnet+clinopyroxene+rutile+plagioclase+amphibole±quartz and measured mineral compositions including the core–rim increasing anorthite in plagioclase (XAn = 0.52–0.58), core–rim decreasing jadeite in clinopyroxene (XJd = 0.20–0.15), and TiO2 in amphibole (TiM2/2 = 0.14–0.18). The LP–UHT granulite facies conditions are identified from the symplectites of sapphirine+plagioclase+spinel, formed by the metastable reaction between garnet and kyanite at <0.6–0.7 GPa/940–1,030°C based on the calculated stability of the symplectite assemblages and sapphirine–spinel thermometer results. The common granulites without kyanite/sapphirine are identified to record a similar decompression evolution, including eclogite, HP–UHT granulite, and LP–UHT granulite facies conditions, and a subsequent isobaric cooling stage. The decompression under HP–UHT granulite facies is estimated to be from 2.3 to 1.3 GPa at ~1,040°C on the basis of textural records, anorthite content in plagioclase (XAn = 0.25–0.32), and grossular content in garnet (XGrs = 0.22–0.19). The further decompression to LP–UHT facies is defined to be >0.2–0.3 GPa based on the calculated stability for hematite‐bearing ilmenite. The isobaric cooling evolution is inferred mainly from the amphibole (TiM2/2 = 0.14–0.08) growth due to the crystallization of residual melts, consistent with a temperature decrease from >1,000°C to ~800°C at ~0.4 GPa. Zircon U–Pb dating for the two types of mafic granulite yields similar protolith and metamorphic ages of c. 900 Ma and c. 500 Ma respectively. However, the metamorphic age is interpreted to represent the HP–UHT granulite stage for the kyanite/sapphirine‐bearing granulites, but the isobaric cooling stage for the common granulites on the basis of phase equilibria modelling results. The two types of mafic granulite should share the same metamorphic evolution, but show contrasting features in petrography, details of metamorphic reactions in each stage, thermobarometric results, and also the meaning of zircon ages as a result of their different bulk‐rock compositions. Moreover, the UHT metamorphism in UHP terranes is revealed to represent the lower pressure overprinting over early UHP assemblages during the rapid exhumation of ultra‐deep subducted continental slabs, in contrast to the cause of traditional UHT metamorphism by voluminous heat addition from the mantle.  相似文献   

7.
Lower crustal xenoliths erupted from an intraplate diatreme reveal that a portion of the New Zealand Gondwana margin experienced high‐temperature (HT) to ultrahigh‐temperature (UHT) granulite facies metamorphism just after flat slab subduction ceased at c. 110–105 Ma. PT calculations for garnet–orthopyroxene‐bearing felsic granulite xenoliths indicate equilibration at ~815 to 910°C and 0.7 to 0.8 GPa, with garnet‐bearing mafic granulite xenoliths yielding at least 900°C. Supporting evidence for the attainment of HT and UHT conditions in felsic granulite comes from re‐integration of exsolution in feldspar (~900–950°C at 0.8 GPa), Ti‐in‐zircon thermometry on Y‐depleted overgrowths on detrital zircon grains (932°C ± 24°C at aTiO2 = 0.8 ± 0.2), and correlation of observed assemblages and mineral compositions with thermodynamic modelling results (≥850°C at 0.7 to 0.8 GPa). The thin zircon overgrowths, which were mainly targeted by drilling through the cores of grains, yield a U–Pb pooled age of 91.7 ± 2.0 Ma. The cause of Late Cretaceous HT‐UHT metamorphism on the Zealandia Gondwana margin is attributed to collision and partial subduction of the buoyant oceanic Hikurangi Plateau in the Early Cretaceous. The halt of subduction caused the fore‐running shallowly dipping slab to rollback towards the trench position and permitted the upper mantle to rapidly increase the geothermal gradient through the base of the extending (former) accretionary prism. This sequence of events provides a mechanism for achieving regional HT–UHT conditions in the lower crust with little or no sign of this event at the surface.  相似文献   

8.
A combined study of petrology and geochemistry was carried out for granulites from the Tongbai orogen in central China. The results reveal the tectonic evolution from collisional thickening to extensional thinning of the lithosphere at the convergent plate boundary. Petrographic observations, zircon U–Pb dating, and pseudosection calculations indicate that the granulites underwent four metamorphic stages, which are categorized into two cycles. The first cycle occurred at 490–450 Ma and involves high-P (HP) metamorphism (M1) at 785–815°C and 10–14 kbar followed by decompressional heating to 840–880°C and 8–9 kbar for medium-pressure granulite facies metamorphism (M2), defining a clockwise PT path. The high pressure is indicated by the occurrence of inclusions of rutile+kyanite+K-feldspar in the garnet mantle. The second cycle occurred at c. 440 Ma and shows an anticlockwise PT path with continuous heating to ultrahigh-temperature (UHT) metamorphism (M3) at 890–980°C and 9–11 kbar, followed by decompressional cooling to 740–880°C and 7–9 kbar (M4) till 405 Ma. The HP metamorphism is synchronous with the ultrahigh-pressure eclogite facies metamorphism in the Qinling orogen, indicating its relevance to the continental collision in the Cambrian. The UHT metamorphism took place at reduced pressures, indicating thinning of the collision-thickened orogenic lithosphere. Therefore, the Tongbai orogen was initially thickened by the collisional orogeny and then thinned, possibly as a result of foundering of the orogenic root. Such tectonic evolution may be common in collisional orogens where compression during continental collision switched to extension during continental rifting.  相似文献   

9.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

10.
The island of Seram, part of the northern limb of the Banda Arc in eastern Indonesia, exposes an extensive Mio‐Pliocene granulite facies migmatite complex (the Kobipoto Complex) comprising voluminous leucosome‐rich diatexites and scarcer Al–Fe‐rich residual granulites. The migmatites are intimately associated with ultramafic rocks of predominantly lherzolitic composition that were exhumed by substantial lithospheric extension beneath low‐angle detachment faults; heat supplied by the lherzolites was evidently a major driver for the granulite facies metamorphism and accompanying anatexis. Residual garnet–sillimanite granulites sampled from the Kobipoto Mountains, central Seram, contain scarce garnet‐hosted inclusions of hercynite spinel (~1.5 wt% ZnO) + quartz (± ilmenite) in direct grain‐boundary contact – an assemblage potentially indicative of metamorphism under ultrahigh‐temperature (UHT) conditions. thermocalc ‘Average PT’ reactions and melanosome‐specific thermocalc , TMO, and PT pseudosections in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) chemical system, supported by Ti‐in‐garnet thermobarometry, are permissive of the rock having experienced a clockwise PT path peaking at 925 °C and 9 kbar – thus narrowly reaching UHT conditions – before undergoing near‐isothermal decompression to ~750 °C and ~4 kbar. Spinel + quartz assemblages are interpreted to have formed at or just after the metamorphic peak from localized reactions between sillimanite, ilmenite and surrounding garnet. Further decompression of the rock resulted in the formation of complex reaction microstructures comprising cordierite ± plagioclase coronae around garnet, and symplectic intergrowths of cordierite + spinel + ilmenite around sillimanite. Small grains of sapphirine + corundum developed subsequently within spinel by localized quartz‐absent reactions. The post‐peak evolution of the granulites may be related to previously published U–Pb zircon and 40Ar/39Ar ages of c. 16 Ma, further substantiating the claim for the Kobipoto Complex granulites having recorded Earth's youngest‐identified episode of UHT metamorphism, albeit at slightly lower temperature and higher pressure than previously inferred. The Kobipoto Complex granulites demonstrate how UHT conditions may be achieved in the ‘modern’ Earth by extreme lithospheric extension, which, in this instance, was driven by slab rollback of the Banda Arc.  相似文献   

11.
High‐pressure basic granulites are widely distributed as enclaves and sheet‐like blocks in the Huaian TTG gneiss terrane in the Sanggan area of the Central Zone of the North China craton. Four stages of the metamorphic history have been recognised in mineral assemblages based on inclusion, exsolution and reaction textures integrated with garnet zonation patterns as revealed by compositional maps and compositional profiles. The P–T conditions for each metamorphic stage were obtained using thermodynamically and experimentally calibrated geothermobarometers. The low‐Ca core of growth‐zoned garnet, along with inclusion minerals, defines a prograde assemblage (M1) of garnet + clinopyroxene + plagioclase + quartz, yielding 700 °C and 10 kbar. The peak of metamorphism at about 750–870 °C and 11–14.5 kbar (M2) is defined by high‐Ca domains in garnet interiors and inclusion minerals of clinopyroxene, plagioclase and quartz. Kelyphites or coronas of orthopyroxene + plagioclase ± magnetite around garnet porphyroblasts indicate garnet breakdown reactions (M3) at conditions around 770–830 °C and 8.5–10.5 kbar. Garnet exsolution lamellae in clinopyroxene and kelyphites of amphibole + plagioclase around garnet formed during the cooling process at about 500–650 °C and 5.5–8 kbar (M4). These results help define a sequential P–T path containing prograde, near‐isothermal decompression (ITD) and near‐isobaric cooling (IBC) stages. The clockwise hybrid ITD and IBC P–T paths of the HP granulites in the Sanggan area imply a model of thickening followed by extension in a collisional environment. Furthermore, the relatively high‐pressures (6–14.5 kbar) of the four metamorphic stages and the geometry of the P–T paths suggest that the HP granulites, together with their host Huaian TTG gneisses, represent the lower plate in a crust thickened during collision. The corresponding upper‐plate might be the tectonically overlying Khondalite series, which was subjected to medium‐ to low‐pressure (MP/LP: 7–4 kbar) granulite facies metamorphism with a clockwise P–T path including an ITD segment. Both the HP and the MP/LP granulite facies events occurred contemporaneously at c. 1.90–1.85 Ga in a collisional environment created by the assembly process of the North China craton.  相似文献   

12.
The Jining Group occurs as the eastern segment of the Khondalite Belt, North China Craton and is dominated by a series of granulite facies rocks involving ‘normal’ pelitic granulites recording peak temperatures of ~850 °C and ultrahigh‐temperature (UHT) pelitic granulites recording peak temperatures of 950–1100 °C. The PT paths and ages of these two types of granulites are controversial. Three pelitic granulite samples in the Jining Group comprising two sillimanite–garnet gneiss samples (J1208 and J1210) and one spinel–garnet gneiss sample (J1303) were collected from Zhaojiayao, where ‘normal’ pelitic granulites occur, for determination of their metamorphic evolution and ages. Samples J1208 and J1210 are interpreted to record cooling paths from the Tmax stages with PT conditions respectively of ~870–890 °C/7–8 kbar and >840 °C/>7.5 kbar constrained from the stability fields of the observed mineral assemblages and the isopleths of plagioclase, garnet and biotite compositions in pseudosections. Sample J1303 is interpreted to record pre‐Tmax decompression from the kyanite‐stability fields to the Tmax stage of 950–1020 °C/8–9 kbar and a post‐Tmax cooling path revealed mainly from the stability field of the observed mineral assemblage, the plagioclase zoning and the biotite composition isopleth in pseudosections. The post‐Tmax cooling stage can be divided into suprasolidus and subsolidus stages. The suprasolidus cooling may not result in an equilibrium state at the solidus in a rock. Therefore, different minerals may record different PT conditions along the cooling path; the inferred maximum temperature is commonly higher than the solidus as well as different solidi being recorded for different samples from the same outcrop but experiencing different degrees of melt loss. Plagioclase compositions, especially its zoning in plagioclase‐rich granulites, are predicted to be useful for recording the higher temperature conditions of a granulite's thermal history. The three samples studied seem to record the temperature range covering those of the ‘normal’ and UHT pelitic granulites in the Jining Group, suggesting that UHT conditions may be reached in ‘normal’ granulites without diagnostic UHT indicators. LA‐ICP‐MS zircon U–Pb data provide a continuous trend of concordant 207Pb/206Pb ages from 1.89 to 1.79 Ga for sample J1210, and from 1.94 to 1.80 Ga for sample J1303. These continuous and long age spectrums are interpreted to represent a slow cooling and exhumation process corresponding to the post‐Tmax cooling PT paths recorded by the pelitic granulites, which may have followed the exhumation of deeply buried rocks in a thickened crust region resulted from a collision event at c. 1.95 Ga as suggested by the pre‐Tmax decompression PT path.  相似文献   

13.
The Cretaceous Yuhuashan igneous complex contains abundant xenoliths of high‐grade metamorphic rocks, with the assemblage garnet ± hypersthene + biotite + plagioclase + K‐feldspar + quartz. The biotite in these samples has high TiO2 (>3.5%), indicating high‐T metamorphism (623–778 °C). P–T calculations for two felsic granulites indicate that the peak metamorphism took place at 880–887 °C and 0.64–0.70 GPa, in the low pressure/high temperature (LP‐HT) granulite facies. Phase equilibrium modelling gives equilibrium conditions for the peak assemblage of a felsic granulite of >0.6 GPa and >840 °C, consistent with the P–T calculations, and identifies an anticlockwise P–T–t path. LA‐ICPMS U–Pb dating of metamorphic and detrital zircon from one xenolith reveals that the granulite facies metamorphism took place at 273.6 ± 2.2 Ma, and the protolith was a sedimentary rock deposited later than 683 Ma. This represents the first Late Palaeozoic (Variscan) granulite facies event identified in the South China Block (SCB). Coupled with other geological observations, the LP‐HT metamorphic conditions and anticlockwise P–T–t path suggest that Variscan metamorphism probably occurred in a post‐orogenic or intraplate extensional tectonic setting associated with the input of external heat, related to the underplating of mantle‐derived magma. Based on P–T estimates and the comparison of the protolith composition with mid‐ to low‐grade metamorphic rocks in the area, it is suggested that the mid‐lower crust under the Xiangshan–Yuhuashan area consists mainly of these felsic granulites and gneisses, whose protoliths were probably subducted to these depths during the Early Palaeozoic orogeny in the SCB, and underwent two episodes of metamorphism during Early Palaeozoic and Late Palaeozoic time.  相似文献   

14.
A new quantitative approach to constraining mineral equilibria in sapphirine‐bearing ultrahigh‐temperature (UHT) granulites through the use of pseudosections and compatibility diagrams is presented, using a recently published thermodynamic model for sapphirine. The approach is illustrated with an example from an UHT locality in the Anápolis–Itauçu Complex, central Brazil, where modelling of mineral equilibria indicates peak metamorphic conditions of about 9 kbar and 1000 °C. The early formed, coarse‐grained assemblage is garnet–orthopyroxene–sillimanite–quartz, which was subsequently modified following peak conditions. The retrograde pressure–temperature (PT) path of this locality involves decompression across the FeO–MgO–Al2O3–SiO2 (FMAS) univariant reaction orthopyroxene + sillimanite = garnet + sapphirine + quartz, resulting in the growth of sapphirine–quartz, followed by cooling and recrossing of this reaction. The resulting microstructures are modelled using compatibility diagrams, and pseudosections calculated for specific grain boundaries considered as chemical domains. The sequence of microstructures preserved in the rocks constrains a two‐stage isothermal decompression–isobaric cooling path. The stability of cordierite along the retrograde path is examined using a domainal approach and pseudosections for orthopyroxene–quartz and garnet–quartz grain boundaries. This analysis indicates that the presence or absence of cordierite may be explained by local variation in aH2O. This study has important implications for thermobarometric studies of UHT granulites, mainly through showing that traditional FMAS petrogenetic grids based on experiments alone may overestimate PT conditions. Such grids are effectively constant aH2O sections in FMAS‐H2O (FMASH), for which the corresponding aH2O is commonly higher than that experienced by UHT granulites. A corollary of this dependence of mineral equilibria on aH2O is that local variations in aH2O may explain the formation of cordierite without significant changes in PT conditions, particularly without marked decompression.  相似文献   

15.
A.G. Dessai  A. Markwick  H. Downes 《Lithos》2004,78(3):263-290
Granulite and pyroxenite xenoliths in lamprophyre dykes intruded during the waning stage of Deccan Trap volcanism are derived from the lower crust beneath the Dharwar craton of Western India. The xenolith suite consists of plagioclase-poor mafic granulites (55% of the total volume of xenoliths), plagioclase-rich felsic granulites (25%), and ultramafic pyroxenites and websterites (20%) with subordinate wehrlites. Rare spinel peridotite xenoliths are also present, representing mantle lithosphere. The high Mg #, low SiO2/Al2O3 and low Nb/La (<1) ratios suggest that the protoliths of the mafic granulites broadly represent cumulates of sub-alkaline magmas. All of the granulites are peraluminous and light rare-earth element-enriched. The felsic granulites may have resulted from anatexis of the mafic lower crustal rocks; thus, the mafic granulites are enriched in Sr whereas the felsic ones are depleted. Composite xenoliths consisting of mafic granulites traversed by veins of pyroxenite indicate intrusion of the granulitic lower crust by younger pyroxenites. Petrography and geochemistry of the latter (e.g. presence of phlogopite) indicate the metasomatised nature of the deep crust in this region.Thermobarometric estimates from phase equilibria indicate equilibration conditions between 650 and 1200 °C, 0.7-1.2 GPa suggestive of lower crustal environments. These estimates provide a spatial context for the sampled lithologies thereby placing constraints on the interpretation of geophysical data. Integration of xenolith-derived P-T results with Deep Seismic Soundings (DSS) data suggests that the pyroxenites and websterites are transitional between the lower crust and the upper mantle. A three-layer model for the crust in western India, derived from the xenoliths, is consistent with DSS data. The mafic nature of this hybrid lower crust contrasts with the felsic lower crustal composition of the south Indian granulite terrain.  相似文献   

16.
超高温变质作用:以华北内蒙古土贵乌拉地区为例   总被引:13,自引:0,他引:13  
刘守偈  李江海 《地学前缘》2007,14(3):131-137
超高温麻粒岩(富Mg-Al)是指温度高于900℃、压力为0.7~1.3GPa条件下形成的麻粒岩相变质岩,它记录了下地壳超高温极端变质作用的地质信息。富Mg-Al典型超高温矿物组合有:假蓝宝石+石英,尖晶石+石英,大隅石+石榴石,斜方辉石+夕线石+石英,高氟黑云母和钙镁闪石,刚玉+石英。目前世界上发现的超高温麻粒岩带(块)地区有非洲阿尔及利亚、南非、东南极、巴西中部、澳大利亚中部、印度南部和东南部等地。我们在华北克拉通北部内蒙古中南部地区孔兹岩区中发现了超高温麻粒岩,岩性主要为灰黑色条带状夕线石榴黑云片麻岩,其中含有尖晶石+石英、假蓝宝石+石英、斜方辉石+夕线石+石英以及刚玉+尖晶石+石榴石等超高温矿物组合,指示温度达1000℃,压力超过1.0GPa的变质作用。独居石定年获得了(1927±11)Ma以及(1819±11)Ma两个峰期年龄,代表变质年龄。华北克拉通北部超高温麻粒岩的发现对研究华北克拉通与哥伦比亚超大陆的演化关系有重要意义。  相似文献   

17.
High‐pressure granulites are generally characterized by the absence of orthopyroxene. However, orthopyroxene is reported in a few high‐pressure, felsic–metapelitic granulites, such as the Huangtuling felsic high‐pressure granulite in the North Dabie metamorphic core complex in east‐central China, which rarely preserves the high‐pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K‐feldspar + quartz. To investigate the effects of bulk‐rock composition on the stability of orthopyroxene‐bearing, high‐pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, a series of PTX pseudosections based on the melt‐reintegrated composition of the Huangtuling felsic high‐pressure granulite were constructed. Calculations demonstrate that the orthopyroxene‐bearing, high‐pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. This study also reveals that the XAl values in the residual felsic–metapelitic, high‐pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene‐bearing, high‐pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.  相似文献   

18.
Some granulites from the Amessmessa area (south In Ouzzal unit, Hoggar) contain the peak assemblage gedrite+garnet+sillimanite+quartz that was used to estimate the P–T conditions of metamorphism. The rocks developed symplectites and corona textures by the breakdown of the primary paragenesis to orthopyroxene, cordierite and spinel. The successive parageneses formed in separate microdomains according to a clockwise P–T path. Geothermometry, geobarometry and phase diagram calculations indicate that the textures formed by decompression and cooling from 7–9 kbar and 850–900°C to 3.5–4.5 kbar and 700–800°C. This P–T evolution is consistent with low to medium aH2O, between 0.4 and 0.7, and is similar to the metamorphic conditions deduced in Al–Mg granulites from the north of In Ouzzal.  相似文献   

19.
Chloritoid–glaucophane‐bearing rocks are widespread in the high‐pressure belt of the north Qilian orogen, NW China. They are interbedded and cofacial with felsic schists originated from greywackes, mafic garnet blueschists and low‐T eclogites. Two representative chloritoid–glaucophane‐bearing assemblages are chloritoid + glaucophane + garnet + talc + quartz (sample Q5‐49) and chloritoid + glaucophane + garnet + phengite + epidote + quartz (sample Q5‐12). Garnet in sample Q5‐49 is coarse‐, medium‐ and fine‐grained and shows two types of zonation patterns. In pattern I, Xgrs is constant as Xpy rises, and in pattern II Xgrs decreases as Xpy rises. Phase equilibrium modelling in the NC(K)MnFMASH system with Thermocalc 3.25 indicates that pattern I can be formed during progressive metamorphism in lawsonite‐stable assemblages, while pattern II zonation can be formed with further heating after lawsonite has been consumed. Garnet growth in Q5‐49 is consistent with a continuous progressive metamorphic process from ~14.5 kbar at 470 °C to ~22.5 kbar at 560 °C. Garnet in sample Q5‐12 develops with pattern I zonation, which is consistent with a progressive metamorphic process from ~21 kbar at 540 °C to ~23.5 kbar at 580 °C with lawsonite present in the whole garnet growth. The latter sample shows the highest PT conditions of the reported chloritoid–glaucophane‐bearing assemblages. Phase equilibrium calculation in the NCKFMASH system with a recent mixing model of amphibole indicates that chloritoid + glaucophane paragenesis does not have a low‐pressure limit of 18–19 kbar as previously suggested, but has a much larger pressure range from 7–8 to 27–30 kbar, with the low‐pressure part being within the stability field of albite.  相似文献   

20.
Samples of a primitive mid-ocean ridge basalt (MORB) glass were encapsulated in a mixture of ol (Fo90) and opx (En90) and melted at 10, 15, and 20 kbar. After quenching, the basaltic glass was present as a pool within the ol+opx capsule, but its composition had changed so that it was saturated with ol and opx at the conditions of the experiment. By analyzing the quenched liquid, the location of the ol+opx cotectic in the complex, multicomponent system relevant to MORB genesis was determined.As pressure increases from 1 atm to 10 kbar, the dry ol+opx cotectic moves from quartz tholeiitic to olivine tholeiitic compositions. With further increases in pressure, the cotectic continues to move toward the ol-di-plag join (i.e., toward alkalic compositions). Between 15 and 20 kbar, ol+opx+di-saturated liquids change from tholeiitic to alkalic in character, although part of the ol+opx cotectic is still in the tholeiitic (i.e, hy-normative) part of composition space. At pressures of 10–15 kbar, tholeiitic liquids may be able to fractionate to alkalic liquids on the ol+di cotectic.Primitive MORB compositions come close to but do not actually lie on the ol+opx cotectic under any conditions studied. This suggests that not even the most primitive of known MORBs are primary melts of the mantle. The correspondence of most MORBs to the 1 atm ol+di+plag cotectic suggests that low pressure fractionation was involved in their genesis from parent liquids. Picritic liquids that have been proposed as parents to the MORB suite could equilibrate with harzburgite (or Iherzolite) at 15–20 kbar and thus could be primary. Fractionation of ol from these liquids could yield primitive MORB liquids, but other primary liquids or more complex fractionation paths involving others phases in addition to ol cannot be ruled out. The possibility that these picritic liquids could equilibrate with ol+opx at 25–30 kbar cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号