首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈杰  管喆  蒋昌波 《水科学进展》2016,27(2):206-213
近年来频发的海啸灾害造成巨大损失,而红树林具有很好的减小海啸灾害的作用。实验采用PVC圆管来概化模拟红树林,以无黏性沙堆砌而成1/10~1/20组合坡概化岸滩,选取孤立波模拟海啸波。实验结果表明,红树林的存在对岸滩剖面变化产生了较大影响,适当增加植物分布密度,并优化植物的分布方式,可有效减小海啸波对岸滩的冲刷危害。在本次实验条件下,得到了岸滩冲刷坑尺度、淤积沙坝尺度、最大冲刷深度、最大淤积高度与红树林的分布方式和密度、海啸波波高、泥沙比重和岸滩坡度之间的关系式,揭示了沙质岸滩剖面变化与红树林、海啸波水动力特性、泥沙颗粒、岸滩坡度之间的内在联系,为减小海啸灾害提供科学依据。  相似文献   

2.
基于波浪水槽实验,以沿海公路为对象,对海啸波作用下建筑物局部冲刷机理开展研究。实验采用1/10与1/20的组合坡度,选取N波作为入射波。实验对波高、波浪的上爬、回落和水跃过程、每个波作用后的地形进行了测量和记录。实验结果表明,N波作用下地形发生冲淤变化,在回落水流所形成的螺旋流作用下,路基向海侧形成明显的冲刷坑。路基所在位置是最主要因素,波高是次要因素,路基深度影响较小。路基位于滩肩侵蚀发生处,则最大冲刷深度相对较大。  相似文献   

3.
海啸波作用下泥沙运动——Ⅰ.岸滩剖面变化分析   总被引:1,自引:0,他引:1  
在波浪水槽实验的基础上,对海啸波作用下的岸滩剖面演变规律开展研究。实验采用1/10~1/20的组合坡度,考虑3种不同的水深,选取N波作为入射波,同时采用规则波和非规则波进行对比研究。实验对波高、波浪的上爬、回落和水跃过程、每个波作用后的地形进行了测量和记录。研究结果表明,水动力特性的不同造成了N波与规则波和不规则波作用下不同的岸滩剖面演变特点。N波作用下发生了明显的岸滩冲刷和淤积,水流回落时滩肩发生冲刷,高速薄层回流和出渗水流作用是滩肩冲刷的主要原因,离岸区水跃发生水流挟沙力降低,泥沙淤积呈沙坝剖面。  相似文献   

4.
在波浪水槽实验的基础上,对海啸波作用下的床沙组成变化规律开展研究。实验采用1/10~1/20的组合坡度,选取N波作为入射波。实验对波高进行采集,对波浪的上爬、回落和水跃过程进行拍摄记录,对每个波作用后的地形进行测量,并对初始和最终的床面顶层泥沙进行采样筛分。实验结果表明,N波作用下泥沙在离岸区水跃发生区域堆积,淤积沙坝泥沙粒径呈粗化趋势。同时采用规则波和非规则波进行对比,波浪作用后形成岸滩也为沙坝剖面,淤积沙坝泥沙粒径呈细化趋势,结果均遵循Çelikoğlu提出的泥沙运动的基本规律,细颗粒泥沙会在强烈的紊动作用下从床面中被筛选出来,并被搬运到低紊动地区,此过程造成了剧烈紊动区泥沙的粗化。  相似文献   

5.
Tsunami-induced scour at coastal roadways: a laboratory study   总被引:1,自引:1,他引:0  
Coastal roads are lifelines for bringing emergency personnel and equipment into affected areas after tsunamis, thus careful thought should be given to how to make roadways safer from tsunamis. Scouring at roadways is the primary damage caused by tsunamis; however, tsunami-induced scouring and beach erosion are less understood compared to tsunami runup and tsunami inundation. A set of laboratory experiments are reported in this study on tsunami-induced scour at a road model situated on a sandy beach. Our experiments showed that the distance between the shoreline and a roadway, which varies with tides, was a key factor affecting the scour depth at the road. Having the coastal road at about half of the inundation distance is not the most ideal location. The depth of road embedment did not affect the scour depth in our experiments. It was also found that for typical tsunamis, the scour depth is unlikely to reach its equilibrium stage. The information reported in this study is useful for local authorities to assess potential tsunami damage of roads and to have a better plan for tsunami disaster relief.  相似文献   

6.
Akimiski Island contains good examples of emergent coastal landscapes of a cold mesotidal inland sea. The Paleozoic reefal trend of the Attawapiskat Formation dictated the overall shape and the main structure of the island. Differential erosion and deposition by Pleistocene glaciers have fluted the island in a north-south direction. That surface was later modified by emergent landforms developed in the last 3500–4000 yrs.The modern steeper southern area reaches an elevation of 60 m approximately 3 km inland from the southern shoreline, and contains well-developed sandy and gravelly longitudinal beach ridges and spits, now inactive and covered by a lichen-rich taiga (boreal forest). The flatter, northern part of the island shows a wide transition between the primarily erosional, sand-starved, coastal marshland and the inland organic-rich fens. Partially paludified longitudinal and transversal beach ridges subdivide those northern flat wetlands forcing a straight course to the north-flowing streams.The vegetation zonations of the marshes are as varied as the coasts, facing different oceanographic conditions. Longshore and tidal currents affect the western and southern coasts greatly. Tides, waves and sea ice affect the others more. The marshes resemble those of the mainland in having well-defined Puccinellia phryganodes lower marsh, Carex subspathacea upper marsh, and peat-forming coastal fens. Some components of the marshes of the island, such as isolated mounds with vegetation minisequences, incipient permafrost features generated by seasonal frozen ground conditions, and intense grazing by large populations of geese, are typical of cold settings, more commonly found along mainland coasts farther to the north in James Bay and Hudson Bay.  相似文献   

7.
Yin  Kai  Xu  Sudong  Huang  Wenrui  Li  Rui  Xiao  Hong 《Natural Hazards》2019,95(3):783-804

For the Xiamen coast where typhoon frequently occurs, beaches are subject to severe erosion during typhoons. To investigate storm-induced beach profile changes at Xiamen coast, four inner XBeach models were applied using typhoon Dan as a case study. These numerical simulations utilized hydrodynamic and wave conditions determined from larger-scale outer and middle coupled Delft3D-FLOW and SWAN models. The models were validated against historic measurements of tidal level, storm tide, storm surge and beach profiles, thus showing the accuracy of outer and middle models to provide boundary conditions and the reliability of inner models to reflect beach profile changes during a typhoon process. The applicability of this modeling approach to Xiamen coast was verified. The results also demonstrated that an enormous amount of dune face erosion occurred at the selected beaches during the typhoon Dan process and the slopes in the vicinity of zero elevation for the chosen four beach profiles all turned out to be gentler after typhoon Dan. Nevertheless, these beaches suffered different impact degrees and processes during the typhoon influence period. Compared to swash and collision regimes, overwash and inundation regimes have the ability to alter beach profile rapidly in short time. Post-storm beach profile with and without vegetation indicated that vegetation is capable of protecting coastal beaches to some extent. By running the nested models, the simulated results can be employed in the management of the beach system and the design of beach nourishment projects at Xiamen coast.

  相似文献   

8.
Coastal ecosystems such as mangroves fringing tropical coastlines have been recognized as natural protectors of the coastal areas against destructive attack of a tsunami. In this paper, the authors aim to investigate the interaction of a tsunami wave on a typical mangrove forest and to determine its performance in reducing the run-up. A laboratory experiment using a hydraulic flume with a mangrove forest model was carried out in which tests were conducted by varying the vegetation widths of 0, 1, 2 and 3?m and average densities of 8, 6 and 4 trees per 100?cm2 using a scale ratio of 1:100. Two conditions of water levels were considered in the experiments at several tsunami wave heights between 2.4 and 14?cm. The dam break method used in the experiments produced two types of waves. At low water condition, a bore was developed and subsequently, a solitary wave was produced during high water. The results of the experiments showed that in general, vegetation widths and densities demonstrate a dampening effect on tsunami run-up. A larger vegetation width was found to be more effective in dissipating the wave energy. The first 1?m width of mangrove forest could reduce 23?C32?% during high water and 31?C36?% during low water. Increasing the mangrove forest width to 2 and 3?m could further increase the average percentage of run-up reduction by 39?C50?% during high water and 34?C41?% during low water condition. It was also observed that densities of the mangrove forest do not influence the run-up reduction as significantly as the forest widths. For mangrove forest densities to be significantly enough to reduce more tsunami run-up, an additional density of 4 trees/100?m2 needs to be provided. The experiments also showed that mangrove roots are more effective in reducing the run-up compared to the trunks and canopies. The experiments managed to compare and present the usefulness of mangrove forests in dissipating wave energy and results produced are beneficial for initiating design guidelines in determining setback limits or buffer zones for development projects in mangrove areas.  相似文献   

9.
 Impacts on nearshore sedimentation arising from potential sea level change of the magnitude predicted in Intergovernmental Panel on Climatic Change scenarios associated with global warming are reviewed. For sandy duned coasts, the obvious sedimentation impacts include potential erosion of coastal dunes with implied deposition of the eroded material in the nearshore, possible deepening of embayments, and flooding of wetlands. For the sandy coasts a number of two-dimensional models are available for predicting shoreline change, but there are significant difficulties in applying Bruun-type models for dune erosion and assessment of sediment redistribution over the inner shelf, and for predicting the amount of shoreline retreat for a given rate of sea level rise. If the beach profile contains excessive sand relative to its equilibrium profile, sensu Dean (1991), then shoreline retreat may not occur upon sea level rise. From the evidence of Kiel Bay, at least in these semi-enclosed basin types, it is during major transgressions that maximum deposition in adjacent basins occurs, due to the sea eroding weakly consolidated and weathered surface regolith. But at the same time climatic patterns were re-adjusting and probably contributed to maximum deposition in adjacent shelf and basins below wave base. Received: 16 June 1995 / Accepted: 29 January 1996  相似文献   

10.
In the present study, laboratory experiments were conducted to validate the applicability of a numerical model based on one-dimensional nonlinear long-wave equations. The model includes drag and inertia resistance of trees to tsunami flow and porosity between trees and a simplified forest in a wave channel. It was confirmed that the water surface elevation and flow velocity by the numerical simulations agree well with the experimental results for various forest conditions of width and tree density. Further, the numerical model was applied to prototype conditions of a coastal forest of Pandanus odoratissimus to investigate the effects of forest conditions (width and tree density) and incident tsunami conditions (period and height) on run-up height and potential tsunami force. The modeling results were represented in curve-fit equations with the aim of providing simplified formulae for designing coastal forest against tsunamis. The run-up height and potential tsunami forces calculated by the curve-fit formulae and the numerical model agreed within ± 10% error.  相似文献   

11.
基于Boussinesq方程耦合泥沙运动和地形演变模型,建立海啸作用下泥沙运动数学模型。地形演变模型采用WENO差分格式,并将WENO差分格式与Lax-Wendroff格式和FTBS格式进行对比分析。运用Synolakis、Kobayashi和Young的实验数据分别对水动力模块和地形演变模块进行验证,数值模拟结果与实验数据吻合良好,模型能够很好地模拟海啸波的传播、破碎、上爬、回落过程以及岸滩的冲淤变化过程,该数学模型能够运用到海啸作用下的岸滩演变研究和预测中。  相似文献   

12.
Predicting erosion and accretion of sand beaches in estuaries is important to managing shoreline development and identifying potential relationships between biological productivity and beach change. Wave, sediment and profile data, gathered over twenty-nine days on an estuarine sand beach in Delaware Bay, New Jersey, were used to evaluate the performance of four criteria that predict beach erosion and accretion due to wave-induced cross-shore sediment movement (Dean 1973; Sunamura and Horikawa 1974; Hattori and Kawamata 1980; Kraus et al. 1991). Each criterion defines a relation, between a wave and sediment parameter, and includes a coefficient that discriminates beach erosion and accretion events. Relations, based on small-scale laboratory and field data, were evaluated for predicting erosion or accretion at the study site. Significant wave heights at the study site, monitored near high water, ranged from 0.08 to 0.52 m with periods of 2.4 to 12.8 s. Median grain sizes of sediments on the beach foreshore, gathered at low water, ranged from 0.33 to 0.73 mm. All four criteria showed a clustering of erosion and accretion events. Relations derived from small-scale laboratory data were better predictors of erosion on the profile at the field site than those derived from field data gathered on exposed ocean environments. The planar profile and dominance of incident waves of low height and short period are similar to laboratory conditions characterized by initial planar beach slopes and monochromatic waves. Decreasing the value of the empirical coefficient to account for the differences in the magnitude of wave energy and grain size increases the performance of the criteria tested to predict erosion of the profile.  相似文献   

13.
Laboratory experiments were carried out to study tsunami flow dynamics in the presence of patchy macro-roughness, representing coastal forest, on a 1:10 steep beach. The experimental setup included four cross-shore rows of roughness patches affixed to the dry beach in a staggered array, such that 12 % of the staggered array region had higher roughness. The flow field during run-up and withdrawal was quantified using point measurements of velocity and flow depth at 20 locations, while high-resolution video was used to track bore position during run-up. Data analysis revealed that while inundated area was marginally impacted when patchy roughness was present, flow depths and flow force were, respectively, increased by more than 40 and 30 % in some areas within the patch array; a decrease in flow force was also observed in some areas. Alongshore variation in flow depth, induced by the roughness patches, was most pronounced during withdrawal. These findings suggest that patchy macro-roughness, like that created by coastal forest, will simultaneously lead to increased protection in some areas and decreased protection in others.  相似文献   

14.
从海啸波作用下岸滩演变、床沙组成变化、建筑物周围淘刷和数值模拟研究4个方面,总结分析了国内外的研究现状和最新进展,指出可控环境下的实验和数值模拟研究相对较少、床沙组成变化缺乏关注、建筑物周围局部冲刷机理认识不足、缺少多尺度数值模拟计算等是当前研究存在的主要不足。在特大型波浪水槽内开展实验研究、发展多尺度混合数学模型、完善海啸波作用下的泥沙输移计算理论等是未来研究取得突破的关键方向。  相似文献   

15.
河北省沙质岸滩存在海岸侵蚀现象,对沙滩旅游、海滩工程建设造成严重威胁,制约河北省海洋经济社会发展。海岸侵蚀监测结果显示,区域海滩滩面受波浪、潮流影响较大,时冲时淤,摆动频繁,沙质岸滩整体处于侵蚀状态,各区段蚀淤情况有所差异,高潮线以上有所淤高,海滩坡度开始变陡,呈下蚀状态。海岸侵蚀灾害已引起沙滩沙质粗化、滩肩变窄、滩坡变陡及基岩裸露比率增多等问题。针对这一突出问题,通过定点测量与遥感监测相结合的方式,研究了河北省海岸线动态演变特征,经计算,河北省各侵蚀岸段海岸侵蚀速率达1.0~4.0m/a,单宽体积侵蚀量-1.42~-19.08m~3/m·a。综合分析显示,人类海岸工程建设、区域海洋水文条件及输砂量减少,是河北省发生海岸侵蚀发生的主要原因。  相似文献   

16.
受波浪及沿岸流影响,在滨岸地区形成的滩坝砂体是滨海(湖)带发育的主要砂体类型。目前国内外学者对滩坝沉积砂体的认识多来自于现代沉积和油气地质特征,对滩坝砂体的沉积机制和内部结构研究相对较弱。基于沉积水槽实验,采用规则波浪对沙质斜坡滨岸带进行模拟实验,观测波浪作用下滨岸带滩坝形成过程和波浪运动特征,记录波浪作用下滨岸带沙质滩坝在不同浪带平面时空演化规律。实验结果显示:波浪是改造湖岸原有沉积物的关键驱动力,波浪作用下沙质岸滩床面泥砂将发生输移运动,而滩坝是陆湖(海)泥沙在水动力驱动下搬运沉积的结果,水动力的强弱及水流结构引起泥沙在空间上的不均匀输运和分布,进而塑造不同的滩坝形态。与强波浪相关的高水位可以加速滩坝系统的形成并最终形成大规模的滩坝砂;相比之下,与较弱波浪相关的低水位只能略微改变初始沉积物形态。根据不同的沉积物特征可将实验中的滩坝系统分为三类:冲浪带和碎浪带滩坝系统近端部分的大规模厚层坝砂,破浪带和升浪带滩坝系统中部分布广泛的薄滩砂,以及位于滩坝系统中远端的弧形或平行排列的脊状、砂纹坝砂。建立了水槽实验模式下滩坝沉积模式,可用于指导油气勘探开发。  相似文献   

17.
Coastal erosion at Sagar Island of Sunderban delta, India, has been critically studied. The area is in the subtropical humid region. There are mainly three seasons viz: winter, summer and the monsoon. Different wave dynamic parameters were measured from theodolite observations with leveling staff and measuring gauges during lunar days at two sections of the western and eastern parts of the coastal zone during post-and pre-monsoons. A comparative study was made on the erosion/depositional pattern between the two sections in relation to different hydrodynamic parameters prevailing in these two sections. Plane table mapping was carried out to demarcate the different geomorphic units. The marine coastal landforms show dune ridges with intervening flats bordered by gently sloping beach on one side and a flat beach on the other side. The western part of the beach is mainly sandy; whereas the eastern part is silty and clayey with mud bank remnants. Actual field measurements indicate that the coastal dune belt has retreated to the order by about 20 m since 1985. The eastern part of the beach has lowered by about 2 m since 1985 and the western part was raised almost to the same tune. It is observed that accretion in the western and central parts of the beach took place; whereas severe erosion in the eastern part made the beach very narrow with remnants of mud banks and tree roots. Frequent embankment failures, submergence and flooding, beach erosion and siltation at jetties and navigational channels, cyclones and storm surges made this area increasingly vulnerable.  相似文献   

18.
《China Geology》2018,1(4):512-521
Shandong has more than 70% of natural coasts are under erosion. Coastal erosion started from the 1970’s and became a very serious problem at 1990’s. The dramatic decrease of sediment supplies from rivers caused rapid erosion at the delta and estuary areas, especially in the abandoned Yellow River Delta. Most sandy coasts along the Peninsula were eroded due to lack of sand supply and interruption of alongshore sediment drift, sand dredging from the beach or the offshore area caused serious erosion during short time. Sea-level rise causes slow but constant shoreline retreats and became a more serious threat. Different types of hard solutions for coastal protection against erosion were used in Shandong. Seawalls are most widely used, especially at the Yellow River Delta and city center waterfront. Groynes, jetties and breakwater are used on the north and east sandy coast of the Peninsula. Hard approaches are effective to protect the coast erosion but not change the erosion causes and led secondary impact on the coast. Soft engineering solution or the combined solutions are taken into acts. Beach nourishment is mostly considered as the better soft solution, especially to those tourists attracting sandy beaches along the Shandong coast. Long term monitoring and continuous lessons learning from the coastal erosion management will be adaptive for better coast solution in the future.  相似文献   

19.
通过在波浪水槽中进行一系列物理模型试验研究规则波作用下刚性挺水植物波生流特性,测试了2种水深和不同入射波况条件下的波生时均流速并对比了挺水植物有茎与无茎时波生流的情况,基于假设检验分别对挺水植物的拖曳力长度尺度、植物特征参数建立模型。研究结果表明:在茎密度为60株/m2时,波生流仍以根部作用为主要因素,对沉水植物公式进行拓展,据此提出挺水植物时均流速最大值预测公式;茎部对时均流速均方根具有衰减作用,且茎部在根部及根部上方区域产生的相对衰减强度,与厄塞尔数呈抛物线函数关系;在簇状根系分布下,茎部对垂向流速结构起稳定作用,尤其是在时均流速最大值所对应的量纲一垂直位置。  相似文献   

20.
波浪在斜坡沙质海床上破碎会加剧泥沙输移导致海床形态变化,研究破碎波作用下沙质海床形态变化机制对于岸滩演变分析极为重要。在波浪水槽中采用中值粒径0.47 mm原型沙铺设1∶20坡度的底床模型进行试验研究,测量不同波浪条件下床面形态和沙坝顶端悬浮泥沙浓度变化。通过测量和计算破碎带输沙率、沙坝尺度和沙坝移动速度,分析破碎波作用下沙质斜坡海床上床面形态变化规律。试验结果表明,破碎带沙坝顶端的悬浮泥沙浓度与水深和底部床面密切相关,在形成沙坝和沙坝水平方向移动时,悬浮泥沙浓度较大;斜坡上沙坝前后来回运动的周期大小具有随机性,沙坝既有向岸又有离岸移动;在多组波长时间作用后沙坝尺度趋于稳定,底床净输沙量趋于0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号