首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Drought over a period threatens the water resources, agriculture, and socioeconomic activities. Therefore, it is crucial for decision makers to have a realistic anticipation of drought events to mitigate its impacts. Hence, this research aims at using the standardized precipitation index (SPI) to predict drought through time series analysis techniques. These adopted techniques are autoregressive integrating moving average (ARIMA) and feed-forward backpropagation neural network (FBNN) with different activation functions (sigmoid, bipolar sigmoid, and hyperbolic tangent). After that, the adequacy of these two techniques in predicting the drought conditions has been examined under arid ecosystems. The monthly precipitation data used in calculating the SPI time series (SPI 3, 6, 12, and 24 timescales) have been obtained from the tropical rainfall measuring mission (TRMM). The prediction of SPI was carried out and compared over six lead times from 1 to 6 using the model performance statistics (coefficient of correlation (R), mean absolute error (MAE), and root mean square error (RMSE)). The overall results prove an excellent performance of both predicting models for anticipating the drought conditions concerning model accuracy measures. Despite this, the FBNN models remain somewhat better than ARIMA models with R?≥?0.7865, MAE?≤?1.0637, and RMSE?≤?1.2466. Additionally, the FBNN based on hyperbolic tangent activation function demonstrated the best similarity between actual and predicted for SPI 24 by 98.44%. Eventually, all the activation function of FBNN models has good results respecting the SPI prediction with a small degree of variation among timescales. Therefore, any of these activation functions can be used equally even if the sigmoid and bipolar sigmoid functions are manifesting less adjusted R2 and higher errors (MAE and RMSE). In conclusion, the FBNN can be considered a promising technique for predicting the SPI as a drought monitoring index under arid ecosystems.  相似文献   

2.
The accuracies of three different evolutionary artificial neural network (ANN) approaches, ANN with genetic algorithm (ANN-GA), ANN with particle swarm optimization (ANN-PSO) and ANN with imperialist competitive algorithm (ANN-ICA), were compared in estimating groundwater levels (GWL) based on precipitation, evaporation and previous GWL data. The input combinations determined using auto-, partial auto- and cross-correlation analyses and tried for each model are: (i) GWL t?1 and GWL t?2; (ii) GWL t?1, GWL t?2 and P t ; (iii) GWL t?1, GWL t?2 and E t ; (iv) GWL t?1, GWL t?2, P t and E t ; (v) GWL t?1, GWL t?2 and P t?1 where GWL t , P t and E t indicate the GWL, precipitation and evaporation at time t, individually. The optimal ANN-GA, ANN-PSO and ANN-ICA models were obtained by trying various control parameters. The best accuracies of the ANN-GA, ANN-PSO and ANN-ICA models were obtained from input combination (i). The mean square error accuracies of the ANN-GA and ANN-ICA models were increased by 165 and 124% using ANN-PSO model. The results indicated that the ANN-PSO model performed better than the other models in modeling monthly groundwater levels.  相似文献   

3.
Increased frequency and severity of droughts, as well as growing human freshwater demands, in the Apalachicola-Chattahoochee-Flint River Basin are expected to lead to a long-term decrease in freshwater discharge to Apalachicola Bay (Florida). To date, no long-term studies have assessed how river discharge variability affects the Bay’s phytoplankton community. Here a 14-year time series was used to assess the influence of hydrologic variability on the biogeochemistry and phytoplankton biomass in Apalachicola Bay. Data were collected at 10 sites in the bay along the salinity gradient and include drought and storm periods. Riverine dissolved inorganic nitrogen and phosphate inputs were correlated to river discharge, but chlorophyll a (Chl a) was similar between periods of drought and average/above-average river discharge in most of the Bay. Results suggest that the potentially negative impact of decreased riverine nutrient input on Bay phytoplankton biomass is mitigated by the nutrient buffering capacity of the estuary. Additionally, increased light availability, longer residence time, and decreased grazing pressures may allow more Chl a biomass to accumulate during drought. In contrast to droughts, tropical cyclones and subsequent increases in river discharge increased flushing and reduced light penetration, leading to reduced Chl a in the Bay. Analysis of the time series revealed that Chl a concentrations in the Bay do not directly mirror the effect of riverine nutrient input, which is masked by multiple interacting mechanisms (i.e., nutrient loading and retention, grazing, flushing, light penetration) that need to be considered when projecting the response of Bay Chl a to changes in freshwater input.  相似文献   

4.
In this paper, multivariate adaptive regression splines (MARS) was developed as a novel soft-computing technique for predicting longitudinal dispersion coefficient (DL) in rivers. As mentioned in the literature, experimental dataset related to DL was collected and used for preparing MARS model. Results of MARS model were compared with multi-layer neural network model and empirical formulas. To define the most effective parameters on DL, the Gamma test was used. Performance of MARS model was assessed by calculation of standard error indices. Error indices showed that MARS model has suitable performance and is more accurate compared to multi-layer neural network model and empirical formulas. Results of the Gamma test and MARS model showed that flow depth (H) and ratio of the mean velocity to shear velocity (u/u?) were the most effective parameters on the DL.  相似文献   

5.
Stable isotope data of precipitation (δ18Op and deuterium excess), drip water (δ18Od), and modern calcite precipitates (δ18Oc and δ13Cc) from Yongxing Cave, central China, are presented, with monthly sampling intervals from June 2013 to September 2016. Moderate correlations between the monthly variation of δ18Op values (from ??11.5 to ??0.7‰) and precipitation amount (r = ??0.59, n?=?34, p?<?0.01) and deuterium excess (r?=?0.39, n?=?31, p?<?0.01) imply a combined effect of changes in precipitation amount and atmospheric circulation. At five drip sites, the δ18Od values have a much smaller variability (from ??9.1 to ??7.5‰), without seasonal signals, probably a consequence of the mixing in the karst reservoir with a deep aquifer. The mean δ18Od value (??8.4‰) for all drip waters is significantly more negative than the mean δ18Op value (??6.9‰) weighted by precipitation amount, but close to the wet season (May to September) mean value (??8.3‰), suggesting that a threshold of precipitation amount must be exceeded to provide recharge. Calculation based on the equilibrium fractionation factor indicates that the δ18Oc values are not in isotopic equilibrium with their corresponding drip waters, with a range of disequilibrium effects from 0.4 to 1.4‰. The δ18Oc and δ13Cc values generally increase progressively away from the locus of precipitation on glass plates. The disequilibrium effects in the cave are likely caused by progressive calcite precipitation and CO2 degassing related to a high gradient of CO2 concentration between drip waters and cave air. Our study provides an important reference to interpret δ18Oc records from the monsoon region of China.  相似文献   

6.
This study quantifies the influence of various intrinsic soil properties including particle roundness, R, sphericity, S, 50% size by weight, D 50, coefficient of uniformity, C u, and the state property of relative density, D r, on the compression and recompression indices, C c and C r, of sands of various geologic origins at pre-crushing stress levels. Twenty-four sands exhibiting a wide range of particle shapes, gradations, and geologic origins were collected for the study. The particle shapes were determined using a computational geometry algorithm which allows characterization of a statistically large number of particles in specimens. One dimensional oedometer tests were performed on the soils. The new data was augmented with many previously published results. Through statistical analyses, simple functional relationships are developed for C c and C r. In both cases, the models utilized only R and D r since other intrinsic properties proved to have lesser direct influence on the compression indices. However, previous studies showed that the contributions of S and C u are felt through their effects on index packing void ratios and thus on D r. The accuracy of the models was confirmed by comparison of predicted and observed C c and C r values.  相似文献   

7.
In this study, the preprocessing of the gamma test was used to select the appropriate input combination into two models including the support vector regression (SVR) model and artificial neural networks (ANNs) to predict the stream flow drought index (SDI) of different timescales (i.e., 3, 6, 9, 12, and 24 months) in Latian watershed, Iran, which is one of the most important sources of water for the large metropolitan Tehran. The variables used included SDI t , SDI t ? 1, SDI t ? 2, SDI t ? 3, and SDI t ? 4 monthly delays. Two variables including SDI t and SDI t ? 1 with lower gamma values were identified as the most optimal combination of variables in all drought timescales. The results showed that the gamma test was able to correctly identify the right combination for the forecasting of 6, 9, and 12 months SDI using the ANN model. Also, the gamma test was considered in selecting the appropriate inputs for identifying the values of 9, 12, and 24 months SDI in SVR. The support vector machine approach showed a better efficiency in the forecast of long-term droughts compared to the artificial neural network. In total, among forecasts made for 30 scenarios, the support vector machine model only in scenario 3 of SDI3, scenario 1 of SDI6, and scenarios 2 and 3 of SDI24 represented poorer efficiency compared to the artificial neural network (MLP layer), but in other scenarios, the results of SVR had better efficiency.  相似文献   

8.
The north-south (N-S) asymmetry of the solar activity (A), which reflects differences in the behavior of the northern and southern hemispheres of the Sun, is studied using data on the brightness of the coronal green line, the total number and area of sunspots, and the net magnetic flux. The spatial and temporal distributions and correlations between the A values represented by these indices are considered. The characteristic time variations in A are similar for all the indices, on both long and short time scales. Quasibiennial oscillations (QBOs) can be traced in the asymmetries of all four indices. A detailed study of the QBOs is carried out based on spectral-variation and wavelet analyses. Long-term increases and decreases occur synchronously in the asymmetries of various indices and are much more pronounced in A than in the indices themselves. A negative correlation between the power of the QBOs and the asymmetry of A can be traced; it is most clearly manifest as a substantial diminishing of the QBOs during the mid-1960s, which coincided with an especially strong increase in A. Our analysis shows that the N-S asymmetry is probably a fundamental property that controls the coupling and degree of coincidence between the magnetic-field-generation mechanisms operating in the northern and southern hemispheres.  相似文献   

9.
The solar cycle can be described as a complex interaction of large-scale/global and local magnetic fields. In general, this approach agrees with the traditional dynamo scheme, although there are numerous discrepancies in the details. Integrated magnetic indices introduced earlier are studied over long time intervals, and the epochs of the main reference points of the solar cycles are refined. A hypothesis proposed earlier concerning global magnetometry and the natural scale of the cycles is verified. Variations of the heliospheric magnetic field are determined by both the integrated photospheric i(B r )ph and source surface i(B r )ss indices, however, their roles are different. Local fields contribute significantly to the photospheric index determining the total increase in the heliospheric magnetic field. The i(B r )ss index (especially the partial index ZO, which is related to the quasi-dipolar field) determines narrow extrema. These integrated indices supply us with a “passport” for reference points, making it possible to identify them precisely. A prominent dip in the integrated indices is clearly visible at the cycle maximum, resulting in the typical double-peak form (the Gnevyshev dip), with the succeeding maximum always being higher than the preceding maximum. At the source surface, this secondary maximum significantly exceeds the primary maximum. Using these index data, we can estimate the progression expected for the 23rd cycle and predict the dates of the ends of the 23rd and 24th cycles (the middle of 2007 and December 2018, respectively).  相似文献   

10.
A CCD BV R photometric study of the central region (15″ ≤ r ≤ 100″) of the globular cluster NGC 7006 based on color-magnitude diagrams is presented. We find for the main parameters of the cluster [Fe/H] = ?1.62, Y = 0.21, E B?V = 0.15 m , V HB = 18.84 m , M V HB =+0.56 m , R = 37.1 kpc). Two previously unknown RR Lyr variables were discovered in the central region of the cluster. The morphological index of the horizontal branch for the entire region studied indicates that the red stellar population dominates, consistent with previous studies: HB mi = ?0.13. Such anomalously negative morphological indices are possessed by a whole group of Ool clusters with intermediate metallicities, which also display a characteristic distribution of stars along the horizontal branch. There is a radial dependence for the horizontal-branch morphology, with the color becoming primarily blue with approach toward the cluster center. One possible origin for this behavior could be the effect of inner dynamical processes on the spatial distribution of hot stars.  相似文献   

11.
Accurate laboratory measurement of geo-engineering properties of intact rock including uniaxial compressive strength (UCS) and modulus of elasticity (E) involves high costs and a substantial amount of time. For this reason, it is of great necessity to develop some relationships and models for estimating these parameters in rock engineering. The present study was conducted to forecast UCS and E in the sedimentary rocks using artificial neural networks (ANNs) and multivariable regression analysis (MLR). For this purpose, a total of 196 rock samples from four rock types (i.e., sandstone, conglomerate, limestone, and marl) were cored and subjected to comprehensive laboratory tests. To develop the predictive models, physical properties of studied rocks such as P wave velocity (Vp), dry density (γd), porosity, and water absorption (Ab) were considered as model inputs, while UCS and E were the output parameters. We evaluated the performance of MLR and ANN models by calculating correlation coefficient (R), mean absolute error (MAE), and root-mean-square error (RMSE) indices. The comparison of the obtained results revealed that ANN outperforms MLR when predicting the UCS and E.  相似文献   

12.
A technique for IR spectroscopic determination of the total nitrogen content N S in the form of A-and B 1-defects is suggested. It provides for the computer processing and decomposition of IR spectra into constituent bands, calculation of the total absorption band area S N and individual areas S A and S B1 and their normalization with respect to the total area of the diamond intrinsic absorption S 0, with the normalization coefficients K S , K A , and K B1 being calculated. Based on the analysis of the IR spectra of 60 octahedral diamond crystals from the Mir and Yubileinaya pipes (Sakha-Yakutiya), the empirical functions N S = 911.85 K S 0.9919 ppm (R 2 = 0.9859), N A = 1185.6 K A 1.1511 ppm (R 2 = 0.8703), and N B1 = 911.85 K S 0.9919 ? 1185.6 K A 1.1511 ppm have been defined.  相似文献   

13.
The stress regime in a Rotliegend reservoir of the Northeast German Basin   总被引:2,自引:0,他引:2  
In-situ stresses have significant impact, either positive or negative, on the short and long term behaviour of fractured reservoirs. The knowledge of the stress conditions are therefore important for planning and utilization of man-made geothermal reservoirs. The geothermal field Groß Schönebeck (40 km north of Berlin/Germany) belongs to the key sites in the northeastern German Basin. We present a stress state determination for this Lower Permian (Rotliegend) reservoir by an integrated approach of 3D structural modelling, 3D fault mapping, stress ratio definition based on frictional constraints, and slip-tendency analysis. The results indicate stress ratios of the minimum horizontal stress S hmin being equal or increasing 0.55 times the amount of the vertical stress S V (S hmin ≥ 0.55S V ) and of the maximum horizontal stress S Hmax ≤ 0.78–1.00S V in stress regimes from normal to strike slip faulting. Thus, acting stresses in the 4,100-m deep reservoir are S V  = 100 MPa, S hmin = 55 MPa and S Hmax = 78?100 MPa. Values from hydraulic fracturing support these results. Various fault sets of the reservoir are characterized in terms of their potential to conduct geothermal fluids based on their slip and dilatation tendency. This combined approach can be adopted to any other geothermal site investigation.  相似文献   

14.
The improvement in the capabilities of Landsat-8 imagery to retrieve bathymetric information in shallow coastal waters was examined. Landsat-8 images have an additional band named coastal/aerosol, Band 1: 435–451 nm in comparison with former generation of Landsat imagery. The selected Landsat-8 operational land image (OLI) was of Chabahar Bay, located in the southern part of Iran (acquired on February 22, 2014 in calm weather and relatively low turbidity). Accurate and high resolution bathymetric data from the study area, produced by field surveys using a single beam echo-sounder, were selected for calibrating the models and validating the results. Three methods, including traditional linear and ratio transform techniques, as well as a novel proposed integrated method, were used to determine depth values. All possible combinations of the three bands [coastal/aerosol (CB), blue (B), and green (G)] have been considered (11 options) using the traditional linear and ratio transform techniques, together with five model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The standard error of the estimates, correlation coefficients (R 2 ) for both calibration and validation points, and root mean square errors (RMSE) were calculated for all cases. When compared with the ratio transform method, the method employing linear transformation with a combination of CB, B, and G bands yielded more accurate results (standard error = 1.712 m, R 2 calibration = 0.594, R 2 validation = 0.551, and RMSE =1.80 m). Adding the CB band to the ratio transform methodology also dramatically increased the accuracy of the estimated depths, whereas this increment was not statistically significant when using the linear transform methodology. The integrated transform method in form of Depth = b 0  + b 1 X CB  + b 2 X B  + b 5 ln(R CB )/ln(R G ) + b 6 ln(R B )/ln(R G ) yielded the highest accuracy (standard error = 1.634 m, R 2 calibration = 0.634, R 2 validation = 0.595, and RMSE = 1.71 m), where R i (i = CB, B, or G) refers to atmospherically corrected reflectance values in the i th band [X i  = ln(R i -R deep water)].  相似文献   

15.
Previously, similarity of source spectra of Kamchatka earthquakes with respect to the common corner frequency fc1 and the expressed deviations from similarity for the second fc2 and the third fc3 corner frequencies were revealed. The value of fc3 reflects the characteristic size Lis of fault surface; correspondingly, LisvrTis, where vr is the rupture speed and Tis ≈ 1/fc3 is characteristic time. The estimates of fc3 are used for normalizing fc1 and fc2. In this way one obtains dimensionless rupture temporal parametres τ1 and τ2 and can further study the dependence τ21). The growth of a rupture is considered as a process of aggregation of elementary fault spots of the size Lis. The dimensionless width of the random front of aggregation is on the order of τ2. The relationship τ21) approximately follows power law with exponent β. The estimates of β derived from earthquake populations of Kamchatka, USA and Central Asia (β = 0.35–0.6) agree with values expected from the known Eden’s theory of random aggregation growth and from its generalizations.  相似文献   

16.
The rock mass failure process can be divided into several distinct deformation stages: the compaction stage, elastic stage, stable failure stage, accelerated failure stage, and post-peak stage. Although each stage has been well studied, the relationship among the stages has not been established. Here, we establish two models which are the Strain model Q and Energy density model S by using the renormalization group theory and investigate the mechanical relationship between the volume dilatant point and peak stress point on the rock stress-strain curve. Our models show that the strain ratio (ε f /ε c ) and energy ratio (E f /E c ) at the volume dilatant point and peak stress point are solely functions of the shape parameter m. To verify our models, we further studied the failure process of rock specimens through several uniaxial compression experiments and found that the relationship between ε f /ε c or E f /E c and m shares a notably similar pattern to that from our theoretical model. However, the ε f /ε c and E f /E c values in our experiments are slightly smaller than those predicted by the models. In brief, we demonstrate that our models can be used to predict the failure process of the laboratory-scale hard brittle rock samples.  相似文献   

17.
This paper investigates, using the random field theory and Monte Carlo simulation, the effects of random field discretization on failure probability, p f, and failure mechanism of cohesive soil slope stability. The spatial sizes of the discretized elements in random field Δx, Δy in horizontal and vertical directions, respectively, are assigned a series of combinational values in order to model the discretization accuracy. The p f of deterministic critical slip surface (DCSS) and that of the slope system both are analyzed. The numerical simulation results have demonstrated that both the ratios of Δy/λ y (λ y  = scale of fluctuation in vertical direction) and Δx/λ x (λ x  = scale of fluctuation in horizontal direction) contribute in a similar manner to the accuracy of p f of DCSS. The effect of random field discretization on the p f can be negligible if both the ratios of Δx/λ x and Δy/λ y are no greater than 0.1. The normalized discrepancy tends to increase at a linear rate with Δy/λ y when Δx/λ x is larger than 0.1, and vice versa for p f of DCSS. The random field discretization tends to have more considerable influence on the p f of DCSS than on that of the slope system. The variation of p f versus λ x and λ y may exhibit opposite trends for the cases where the limit state functions of slope failure are defined on DCSS and on the slope system as well. Finally, the p f of slope system converges in a more rapid manner to that of DCSS than the failure mechanism does to DCSS as the spatial variability of soil property grows from significant to negligible.  相似文献   

18.
In semi-arid climates, phreatophytes draw on shallow aquifers, and groundwater evapotranspiration (ETG) is a principal component of groundwater budgets. Diurnal water table fluctuations, which often are a product of ETG, were monitored in the riparian zone of Red Canyon Creek, Wyoming, USA. These fluctuations were higher in a riparian wetland (2–36 mm) than a grass-covered meadow (1–6 mm). The onset and cessation of water-table fluctuations correspond to daily temperatures relative to freezing. Spatial differences were due to vegetation type and specific yield, while temporal changes were due to vegetation dormancy. Ratios of ETG to potential evapotranspiration (PET), K c,GW, were similar to ratios of actual evapotranspiration (ET) to PET, K c, in semi-arid rangelands. Before vegetation senescence, K c,GW increased between precipitation events, suggesting phreatophytes pull more water from the saturated zone as soil moisture decreases. In contrast, K c decreases with soil moisture following precipitation events as ET becomes increasingly water-limited. Error in ETG is primarily from estimates of specific yield (S y), which is difficult to quantify in heterogeneous sediments. ETG values may be more reliable because the range of acceptable S y is smaller than K c and S y does not change with vegetation type or soil moisture.  相似文献   

19.
It is shown that the approximation of the complex, tidally distorted shape of a star as a circular disc with local line profiles and a linear limb-darkening law, which is usually applied when deriving equatorial stellar rotation velocities from line profiles, leads to overestimation of the equatorial velocity V rot sin i and underestimation of the component mass ratio q = M x /M v . A formula enabling correction of the effect of these simplifying assumptions on the shape of a star is used to re-determine the mass ratios q and the masses of the black holes M x and visual components M v in low-mass X-ray binary systems containing black holes. Taking into account the tidal–rotational distortion of the stellar shape can significantly increase the mass ratios q = M x /M v , reducing M v , while M x changes only slightly. The resulting distribution of M v attains its maximum near M v ? 0.35M , in disagreement with the results of population synthesis computations realizing standard models for Galactic X-ray novae with black holes. Possible ways to overcome this inconsistency are discussed. The derived distribution of M x also differs strongly from the mass distribution for massive stars in the Galaxy.  相似文献   

20.
The Eastern Mediterranean region has been exposed to drought episodes, which have been occurring more frequently during the last decades. The objective of the present paper is to study the precipitation regime of the Damascus (Mazzeh) meteoric station by analysing drought characteristics using the Standardized Precipitation Index (SPI) and comparing this with the drought in Cyprus. The cumulative drought conceptis proposed to characterize long-term hydrologic drought, which affects the shallow groundwater productivity in terms of quantity and quality. Gamma probability distribution was fitted to the long-term annual precipitation in Damascus from 1918–1919 to 2007–2008 (n = 90 years). Generally, a decreasing trend of 17% to the mean annual rainfall of Damascus and 13% to the mean annual rainfall of Cyprus was estimated between 1970 and 2000. The SPI identifies three major extended drought periods: (1) 9 years of severe drought (1954–1963) with an average 20% precipitation deficit per year compared to the mean. (2) 8 years of severe drought (1983–1991) with a 27% deficit per year on average. (3) 9 years of extreme drought (1993–2002) with a 31% deficit per year on average. The cumulative standardized precipitation index (SPI 30) demonstrates positive values for the first period and is indicative of having no effect on the global water balance. SPI 30 exhibits sensitive equilibrium with near zero values / a near zero value (±1.5) for the second period. For the third period, however, the SPI 30 decreases below ?10 indicating an extreme hydrological drought that has negative consequences on the recent groundwater recharge. It is required to develop and implement a sustainable groundwater management strategy to reduce long-terms drought risks. Generally, the SPI 30 in Cyprus is parallel to that in Damascus with a 3–5 year delay. Thus, the central zone of the Eastern Mediterranean region is facing big challenges and has been suffering from three decades of moderate to severe hydrological drought (SPI 30=?5 to ?10) causing a severe decrease in springs discharges of the region. Therefore, in order to reduce the climate change effects on water resources, it is necessary to adopt a sustainable proactive management plan during the frequent severe droughts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号