首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The interdecadal climate variability affects marine ecosystems in both the subtropical and subarctic gyres, consequently the position of the Transition Zone Chlorophyll Front (TZCF). A three-dimensional physical-biological model has been used to study interdecadal variation of the TZCF using a retrospective analysis of a 30-year (1960–1990) model simulation. The physical-biological model is forced with the monthly mean heat flux and surface wind stress from the COADS. The modeled winter mixed layer depth (MLD) shows the largest increase between 30°N and 40°N in the central North Pacific, with a value of 40–60% higher during 1979–90 relative to 1964–75 values. The winter Ekman pumping velocity difference between 1979–90 and 1964–75 shows the largest increase located between 30°N and 45°N in the central and eastern North Pacific. The modeled winter surface nitrate difference between 1979–90 and 1964–75 shows increase in the latitudinal band between 30°N and 45°N from the west to the east (135°E–135°W), the modeled nitrate concentration is about 10 to 50% higher during the period of 1979–90 relative to 1964–75 values depending upon locations. The increase in the winter surface nitrate concentration during 1979-90 is caused by a combination of the winter MLD increase and the winter Ekman pumping enhancement. The modeled nitrate concentration increase after 1976–77 enhances primary productivity in the central North Pacific. Enhanced primary productivity after the 1976–77 climatic shift contributes higher phytoplankton biomass and therefore elevates chlorophyll level in the central North Pacific. Increase in the modeled chlorophyll expand the chlorophyll transitional zone and push the TZCF equatorward. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The plate culture method using the two formulae for non-nitrogenous media was adopted in this investigation for the purpose of counting and isolating nitrogen-fixing bacteria distributed in the open sea. Sea water samples were collected at eighteen different stations in the region of Lat. 50°N–15°S along Long. 155°W and two other stations in the Pacific Ocean. In order to compare with those samples from the open sea, water samples were also obtained at four stations in Suruga and Sagami Bays. Nitrogen-fixing bacteria appear to be widely but very unevenly distributed at all depths in sea water, in numbers approximately ranging from nil to 104 per 100 ml of sea water, and denser vertical populations have been found in the area of Lat. 40°N and 5°N along Long. 155°W, even at depths from 2,000 to 3,000m. A conparatively denser population of bacteria was found in sea water from Suruga Bay and Sagami Bay. The bacteria associated with plankton were abundantly demonstrated, in numbers ranging from 106 to 108 per 1 ml settling volume of plankton, in many plankton samples collected at four stations in the southern parts of the Pacific Ocean. Almost all the bacteria isolated from the samples of blue green algal colonies,Trichodesmium, sp., were able to grow on nonnitrogeneous media.  相似文献   

3.
The first CO2 exposure experiments on several species of pelagic copepods inhabiting surface and deep layers in the western North Pacific were conducted. Living organisms were collected from two layers between the surface and 1,500 m between latitudes of 11 and 44°N, and they were exposed aboard ship to various pCO2 up to about 98,000 μatm. Mortality of copepods from both shallow and deep layers in subarctic to subtropical regions increased with increasing pCO2 and exposure time. Deep-living copepods showed higher tolerance to pCO2 than shallow-living copepods. Furthermore, deep-living copepods from subarctic and transitional regions had higher tolerances than the subtropical copepods. The higher tolerances of the deep-living copepods from subarctic and transitional regions may be due to the adaptation to the natural pCO2 conditions in the subarctic ocean.  相似文献   

4.
A new type of pycnostad has been identified in the western subtropical-subarctic transition region of the North Pacific, based on the intensive hydrographic survey carried out in July, 2002. The potential density, temperature and salinity of the pycnostad were found to be 26.5–26.7 σ θ , 5°–7°C and 33.5–33.9 psu respectively. The pycnostad is denser, colder and fresher than those of the North Pacific Central Mode Water and different from those of other known mode waters in the North Pacific. The thickness of the pycnostad is comparable to that of other mode waters, spreading over an area of at least 650 × 500 km around 43°N and 160°E in the western transition region. Hence, we refer to the pycnostad as Transition Region Mode Water (TRMW). Oxygen data, geostrophic current speed and climatology of mixed layer depth in the winter suggest that the TRMW is formed regularly in the deep winter mixed layer near the region where it was observed. Analysis of surface heat flux also supports the idea and suggests that there is significant interannual variability in the property of the TRMW. The TRMW is consistently distributed between the Subarctic Boundary and the Subarctic Front. It is also characterized by a wide T-S range with similar density, which is the characteristic of such a transition region between subtropical and subarctic water masses, which forms a density-compensating temperature and salinity front. The frontal nature also tends to cause isopycnal intrusions within the pycnostad of the TRMW.  相似文献   

5.
We present a compilation of apparent oxygen utilization (AOU) changes observed in the upper pycnocline of the North Pacific Ocean over the last several decades. The goal here is to place previously-published data in a common format, and assess the causes of the observed changes. The general trend along repeat cross sections of the eastern and western subtropical ocean and the subarctic ocean is an increase in AOU from the mid 1980s to the mid 1990s. AOU has also been increasing in a time-series study in the northwest subarctic Ocean off of Japan since the late 1960s. Observed AOU changes south of 35°N in the subtropical ocean are 10–20 μmol kg−1, with much greater changes, reaching 60–80 μmol kg−1 in isolated areas, in the subtropical/subarctic boundary and the subarctic ocean. Analysis of changes in both AOU and salinity on isopycnals suggests that there are significant salinity-normalized increases that must be due to alteration in the rate of ventilation or organic matter degradation. A common feature in the data is that the maximum increase in AOU is centered near the density horizon σθ= 26.6. Time series results from the Oyashio Current region near the winter outcrop area of this density horizon indicate that surface waters there have become fresher with time, which may mean this density surface has ceased to outcrop in the latter decades of the 20th century. Whether this is due to natural decadal-scale changes or anthropogenic influences can be decided by determining future trends in AOU on these density surfaces. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The circulation of intermediate and deep waters in the Philippine Sea west of the Izu-Ogasawara-Mariana-Yap Ridge is estimated with use of an inverse model applied to the World Ocean Circulation Experiment (WOCE) Hydrographic Program data set. Above 1500 m depth, the subtropical gyre is dominant, but the circulation is split in small cells below the thermocline, causing multiple zonal inflows of intermediate waters toward the western boundary. The inflows along 20°N and 26°N carry the North Pacific Intermediate Water (NPIW) of 11 × 109 kg s−1 in total, at the density range of 26.5σθ–36.7σ2 (approximately 500–1500 m depths), 8 × 109 kg s−1 of the NPIW circulate within the subtropical gyre, whereas the rest is conveyed to the tropics and the South China Sea. The inflow south of 15°N carries the Tropical Salinity Minimum water of 35 × 109 kg s−1, nearly half of which return to the east through a narrow undercurrent at 15–17°N, and the rest is transported into the lower part of the North Equatorial Countercurrent. Below 1500 m depth, the deep circulation regime is anti-cyclonic. At the density range of 36.7σ2, – 45.845σ4 (approximately 1500–3500 m depths), deep waters of 17 × 109 kg s−1 flow northward, and three quarters of them return to the east at 16–24°N. The remainder flows further north of 24°N, then turns eastward out of the Philippine Sea, together with a small amount of subarctic-origin North Pacific Deep Water (NPDW) which enters the Philippine Sea through the gap between the Izu Ridge and Ogasawara Ridge. The full-depth structure and transportation of the Kuroshio in total and net are also examined. It is suggested that low potential vorticity of the Subtropical Mode Water is useful for distinguishing the net Kuroshio flow from recirculation flows. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Studies in epipelagic waters report higher heterotrophic microbial biomass in the productive high latitudes than in the oligotrophic low latitudes; however, biogeographical data are scarce in the deep ocean. To examine the hypothesis that the observed latitudinal differences in heterotrophic microbial biomass in the epipelagic zone also occur at depth, abundance and biomass of heterotrophic prokaryotes, nanoflagellates (HNF), and ciliates were determined at depths of 5–5000 m in the central Pacific between August and September of 2005. Heterotrophic microbial biomass increased from the tropical to the subarctic region over the full water column, with latitudinal differences in prokaryotic biomass increasing from 2.3-fold in the epipelagic zone to 4.4-fold in the bathypelagic zone. However, the latitudinal difference in HNF and ciliate biomass decreased with depth. In the mesopelagic zone, the vertical attenuation rate of prokaryotic abundance, which was calculated as the linear regression slope of log-log plot of abundance versus depth, ranged from –0.55 to –1.26 and was more pronounced (steeper slope) in the lower latitudes. In contrast, the vertical attenuation rate of HNF in the mesopelagic zone (–1.06 to –1.27) did not differ with latitude. In the subarctic, the attenuation rate of HNF was 1.7 times steeper than for prokaryotes. These results suggest the accumulation of prokaryotes in the deep subarctic Pacific, possibly due to low grazing pressure. Although the vertical attenuation rate of ciliates was steepest in the bathypelagic zone, HNF abundance did not further decrease at depths below 1000 m, except for at 2000 m where HNF was lowest across the study area. Ciliate abundance ranged 0.3–0.8 cells l–1 at 4000 m, and were below the detection limit (<0.1 cells l –1) at 5000 m. To our knowledge, this study presents the first data for ciliates below 2000 m.  相似文献   

8.
This study examined the biomass structure of autotrophic and heterotrophic plankton along a trophic gradient in the northwestern Pacific Ocean in an attempt to understand planktonic food web structure. Autotrophic biomass exceeded that of heterotrophic organisms in all sampling regions, but with lesser contribution to total planktonic biomass at stations of higher phytoplankton biomass, including the northern East China Sea, compared to the regions of lower phytoplankton biomass. The proportion of the biomass of heterotrophic bacteria, nanoflagellates (HNF), and dinoflagellates (HDF) relative to that of phytoplankton was all inversely related to phytoplankton biomass, but positive relationships were observed for both ciliates and mesozooplankton. Mesozooplankton biomass inclined greater than phytoplankton along the gradient of phytoplankton biomass, with biomass rise being most closely associated with ciliate and HDF biomass and, to a lesser degree, with large phytoplankton (>3?μm). Both bacteria and picophytoplankton were significantly and positively related to the biomass ratio of mesozooplankton to the sum of HDF and ciliates (i.e., proxy of mesozooplankton predation on protozoans), but no positive relationship was apparent either for HNF or for large phytoplankton. Such relationships may result from predation relief on lower food webs associated with mesozooplankton feeding on protistan plankton.  相似文献   

9.
To elucidate the ecological importance of mixotrophic nanoflagellates in the open ocean and the environmental factors that regulate their abundance, we surveyed latitudinal distributions of autotrophic, mixotrophic and heterotrophic nanoflagellates in the central North Pacific Ocean along a transect at 170°W. Mixotrophic nanoflagellates significantly contributed (26–64 %) to total bacterivory, as measured by the fluorescently-labeled bacteria method, from the equatorial through the subarctic regions, which reinforces the importance of mixotrophic nanoflagellates as a trophic link in the open ocean. The proportion of mixotrophic to total plastidic nanoflagellates was significantly higher in the nutrient-depleted subtropical gyre than in other regions, sometimes exceeding 10 %. Additionally, the proportion was negatively correlated with soluble reactive phosphorus concentration within the tropical and subtropical waters, suggesting that low nutrient availability could facilitate phagotrophy of plastidic nanoflagellates, which may explain the survival of nano-sized eukaryotic phytoplankton in the ultraoligotrophic water. In the subarctic regions, the proportion exhibited no obvious relationship with any environmental parameter. Conversely, the numerical proportion of mixotrophic nanoflagellates in total phagotrophic nanoflagellates (sum of mixotrophic and heterotrophic nanoflagellates) was positively correlated with nutrient concentrations. In contrast to macronutrient availability, the physical stability of the water column did not appear to affect the contribution of mixotrophic nanoflagellates.  相似文献   

10.
This study describes the three-dimensional distributions of the Turner angle (Tu) and the potential vorticity (PV) of the main pycnocline water in the subtropical North Pacific (10–50°N, 120°E–120°W) using a large in situ CTD data set taken by the Argo profiling floats during June to October of 2001–2009 to clarify the detailed distribution of the central water and the mode waters as well as the relationship between these water masses. The ventilated part of the main pycnocline water (σ θ < 26.7 kg m−3) in the subtropical gyre generally displays a sharp peak in Tu value of 59° in the histogram. The Tu histograms for 10° × 10° geographical boxes mostly show that the mode for the Tu value is 59° too, but they also show some regional differences, suggesting some types of relations with the North Pacific mode waters. To further investigate this relationship, the appearance probability density function of the central water (defined as the main pycnocline water with Tu = 56°–63°) and those of the mode waters with PVs lower than the critical value on each isopycnal surface were analyzed. The distribution area of the central mode water (CMW) corresponds so well with that of the central water that a direct contribution of the CMW to the formation and maintenance of the central water is suggested. On the other hand, the distribution areas of subtropical mode water (STMW), Eastern STMW, and transition region mode water do not correspond to that of the central water. Nevertheless, indirect contributions of these mode waters to the formation and maintenance of the central water through salt finger type convection or diapycnal mixing are suggested.  相似文献   

11.
The vertical distribution of several medusa species in the Kurile-Kamtchatka region of the Pacific Ocean is described. Animals were observed in the light cone from deep-sea submersibles Mir-1 and Mir-2 throughout the water column, from the surface to 5000–6000 m at four different sites. Bathy- and abyssopelagic species are noted along with the species living in an extremely wide depth range. A faunistic border is revealed at a depth of 3000 m. The contribution of gelatinous animals (medusae, siphonophores, salps) to the total deep-sea plankton biomass was estimated using a wire reference cube during nine dives in the highly productive areas of the northwest Pacific, eastern Pacific (California, Costa-Rica Dome), and subtropical oligotrophic areas. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The plankton food web structure and trophodynamics in the neritic area of Sagami Bay were investigated from January 2003 to December 2005, based on abundance, biomass, production rate and nutritional requirements of pico- (0.2–2 μm), nano- (2–20 μm), micro- (20–200 μm) and mesoplankton (>200 μm: mainly copepods CI-CVI) at 0–10 m depth. The average carbon biomass of the total plankton community was higher in spring and summer (1.452 and 1.466 g C m−2, respectively) than in winter and autumn (0.676 and 0.686 g C m−2, respectively). The average values of primary production and of production rate and food requirement of heterotrophic organisms were higher in summer than in other seasons. During the study period the biomass, production rate and food requirement of small heterotrophs (i.e. bacteria: BA; heterotrophic nanoflagellates: HNF; microzooplankton: MZ) were much higher than those of copepod secondary (CSP) and tertiary producers (CTP), indicating that the microbial food web was the main route of carbon flow from phytoplankton (PP) to CSP and CTP, rather than the grazing food chain. In particular, during summer and autumn the biomass of pico- and nano-size PP plus BA was greater than that of micro-size PP, suggesting the high prevalence of the microbial food web (pico-/nanophytoplankton/BA-HNF/MZ-copepods). During winter and spring, the biomass of micro-size PP was greater than that of pico- and nano-size PP plus BA, suggesting that the indirect route (microphytoplankton-MZ-copepods) probably prevailed, while the microbial food web might be important.  相似文献   

13.
This study demonstrates reduced electron transfer system (ETS) activity of mixed copepods collected from 5,000 to 7,000 m depths [3.21 ± 1.25 μl O2 (mg protein)−1 h−1 at 10°C] as compared with mixed copepods from 0 to 200 m depths [5.93 ± 1.66 μl O2 (mg protein)−1 h−1 at 10°C] of the western subarctic Pacific. At the in situ temperature of 1.5°C, the 5,000–7,000 m ETS data, in terms of wet mass (WM)-specific respiration rates (R), is equivalent to [0.052 ± 0.021 μl O2 (mg WM)−1 h−1] which is similar to or greater than those reported for selected copepods or mixed mesozooplankton from <5,000 m depth by previous workers.  相似文献   

14.
Dissolved organic carbon (DOC) concentrations in surface waters of the Pacific Ocean during October–November, 1995, were determined using a high-temperature combustion method. The DOC in the surface mixed-layer was approximately homogeneous with a concentration between 55 and 89 μmol C l−1. This homogeneity indicates that there is a strong control of the vertical distribution of DOC by mixing processes. The DOC concentrations in the mixed-layer in the subtropical region were up to 27 μmol C l−1 higher than in the tropical region. This difference reflects the subtropical accumulation and the tropical export of DOC. There is a significant positive correlation between DOC and chlorophyll a concentrations in the mixed-layer of the North Pacific subtropical region, suggesting that phytoplankton is the primary source of DOC accumulated in this region. Calculations using simple box models suggest that DOC export in the tropical region (0–50 m depth, 10°N-10°S, along 160°W) occurs primarily by poleward advection at a rate of 0.5–3 mmol C m−2day−1. A comparison with estimates of the export rate of particulate organic carbon published in previous studies leads us to conclude that DOC export may contribute less to the carbon budget in the tropical region than has recently been supposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The biomass, abundance, and vertical distribution of micronekton, including enidarians, mysids, euphausiids, decapods, thaliaceans, and fishes, were studied on the basis of samples collected with an 8-m2 opening-closing rectangular midwater trawl (RMT-8, mesh size: 4.5 mm) at three stations in the subarctic Pacific (the western subarctic gyre, the central Subarctic, and the Gulf of Alaska) and one station in the oceanic Bering Sea. The total biomass in the 0–1000 m water column ranged from 2.9 to 5.1 gDW m–2. Except for primary consumers that showed highly variable biomass (thaliaceans and euphausiids), biomass was highest in the oceanic Bering Sea followed by the central (boundary between eastern and western gyres), western gyre, and eastern Gulf of Alaska. The biomass compositions by higher taxa were basically similar between regions: fishes were most dominant, followed by enidarians at all stations, except for the marked predominance of thaliaceans in the Gulf of Alaska. High biomasses of gelatinous animals (31% of overall dry weight), occasionally comparable to those of fishes and crustaceans, suggest their potential importance in the subarctic Pacific. Characteristics in vertical patterns of micronekton biomass common in all stations were: (1) a mesopelagic peak around 500–600 m both day and night, (2) a layer of low biomass in the cold intermediate water and/or in the upper mesopelagic zone, (3) a nighttime shift of biomass to upper layers, and (4) an highly variable biomass of epipelagic/interzonal migrants (euphausiids and thaliaceans).  相似文献   

16.
The abundance and biomass of abyssal (4300–5000 m) nematodes were investigated along a latitudinal gradient of phytodetritus deposition from 0 to 23°N in the central, equatorial Pacific (140–158°W). Nematode abundance in the oligotrophic, central, North Pacific gyre was 50% lower than at the equator while macrofauna abundance increased 6.5 times over the same transect. Nematode abundance and biomass in the surface (0–1 cm) sediment layer were significantly higher at phytodetritus stations than at non-phytodetritus stations. Abundance and biomass were within the range recorded from other sites of comparable depth that also receive an input of phytodetritus. Abundance was also strongly correlated with microbial biomass. An increase in body size was associated with an increase in food supply. The results demonstrate that the equatorial Pacific represents an immense zone of relatively high nematode standing stock.  相似文献   

17.
We deployed a profiling buoy system incorporating a fast repetition rate fluorometer in the western subarctic Pacific and carried out time-series observations of phytoplankton productivity from 9 June to 15 July 2006. The chlorophyll a (Chl a) biomass integrated over the euphotic layer was as high as 45–50 mg Chl a m−2 in the middle of June and remained in the 30–40 mg Chl a m−2 range during the rest of observation period; day-to-day variation in Chl a biomass was relatively small. The daily net primary productivity integrated over the euphotic layer ranged from 144 to 919 mg C m−2 day−1 and varied greatly, depending more on insolation rather than Chl a biomass. In addition, we found that part of primary production was exported to a 150-m depth within 2 days, indicating that the variations in primary productivity quickly influenced the organic carbon flux from the upper ocean. Our results suggest that the short-term variability in primary productivity is one of the key factors controlling the carbon cycle in the surface ocean in the western subarctic Pacific.  相似文献   

18.
A repeat hydrographic section has been maintained over two decades along the 180° meridian across the subarctic-subtropical transition region. The section is naturally divided into at least three distinct zones. In the Subarctic Zone north of 46°N, the permanent halocline dominates the density stratification, supporting a subsurface temperature minimum (STM). The Subarctic Frontal Zone (SFZ) between 42°–46°N is the region where the subarctic halocline outcrops. To the south is the Subtropical Zone, where the permanent thermocline dominates the density stratification, containing a pycnostad of North Pacific Central Mode Water (CMW). The STM water colder than 4°C in the Subarctic Zone is originated in the winter mixed layer of the Bering Sea. The temporal variation of its core temperature lags 12–16 months behind the variations of both the winter sea surface temperature (SST) and the summer STM temperature in the Bering Sea, suggesting that the thermal anomalies imposed on the STM water by wintertime air-sea interaction in the Bering Sea spread over the western subarctic gyre, reaching the 180° meridian within a year or so. The CMW in this section originates in the winter mixed layer near the northern edge of the Subtropical Zone between 160°E and 180°. The CMW properties changed abruptly from 1988 to 1989; its temperature and salinity increased and its potential density decreased. It is argued that these changes were caused by the climate regime shift in 1988/1989 characterized by weakening of the Aleutian Low and the westerlies and increase in the SST in the subarctic-subtropical transition region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Interannual variability of the Japan/East Sea (JES) sea surface temperature (SST) is investigated from the reconstructed NOAA/AVHRR Oceans Pathfinder best SST data (1985–2002) using the complex empirical function (CEOF) analysis. The iterative empirical function analysis is used for the SST data reconstruction. The first two leading CEOFs account for 86.0% of total variance with 66.4% for the first mode and 19.6% for the second mode. The first CEOF mode represents a standing oscillation and a maximum belt in the central JES. There are two near-7-year events and one 2–3-year event during the period of 1985–2002. The first mode oscillates by adjacent atmospheric systems such as the Aleutian Low, the North Pacific High, the Siberian High, and the East Asian jet stream. Positive correlation in a zonal belt between the first mode JES SST anomaly and the background surface air temperature/SST anomaly reveals intensive ocean-atmosphere interaction near the Polar Front in the North Pacific. The second CEOF mode represents two features: standing oscillation and propagating signal. The standing oscillation occurs in the northern (north of 44°N) and southern (south of 39°N and west of 136°E) JES with around 180° phase difference. A weak southwestward propagating signal is detected between the two regions. The eastward propagating signal is detected from the East Korean Bay to near 135°E. The second mode contains 4–5-year periodicity before 1998 and 2–3-year periodicity thereafter. It is associated with the Arctic Oscillation, which leads it by 1–5-year. Furthermore, a strong correlation with the background surface air temperature/SST anomaly is detected in the tropical to subtropical western Pacific.  相似文献   

20.
Baroclinic variations of the southward flow in the interior region of the North Pacific subtropical gyre are presented with five hydrographic sections from San Francisco to near Japan during 2004–2006. The volume transport averaged temperature of the interior flow, which varies vigorously by a maximum of 0.8°C, is negatively correlated with the transport in the layer of density 24.5–26.5σ θ, associated with changes in the vertical current structure. Transport variation in this density layer is thus mainly responsible for the thermal impact of the interior flow on the heat transport of the subtropical gyre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号