首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We calibrated the absolute magnitudes M V , M J , $M_{K_{s}}$ and M g of red clump stars in terms of colours. M V and M g are strongly dependent on colour, while the dependence of M J and $M_{K_{s}}$ on colour is rather weak. The calibration of the absolute magnitudes M V and $M_{K_{s}}$ is tested on 101 RC stars in the field SA 141. The Galactic model parameters estimated with this sample are in good agreement with earlier studies.  相似文献   

2.
Magneto-curvature stresses could deform magnetic field lines giving rise to back reaction and restoring magnetic stresses (Tsagas in Phys. Rev. Lett., 2001). Barrow and Tsagas (Phys. Rev. D, 2008) have shown that in Friedman universe the expansion slows down in its spatial section of negative Riemann curvature. Earlier, Chicone and Latushkin (Proc. Am. Math. Soc. 125(11):3391, 1995) proved that fast dynamos in compact 2D manifold implies negatively constant Riemannian curvature. Here one applies the Barrow-Tsagas ideas to cosmic dynamos of negative curvature. Fast dynamo, covariant stretching of Riemann slices of cosmic Lobachevsky plane is given. Inclusion of advection term on dynamo equations (Clarkson and Marklund in Mon. Not. R. Astron. Soc., 2005) is considered. In advection absence, slow dynamos are also obtained. It is shown the viscous and restoring forces on stretching particles decrease, as magnetic rates increase. From COBE data ( $\frac{{\delta}B}{B}\approx{10^{-5}}$ ), one is able to compute the stretching $\frac{{\delta}V^{y}}{V^{y}}=1.5\frac{{\delta}B}{B}\approx{1.5{\times}10^{-5}}$ . Zeldovich et al. have computed the maximum magnetic growth rate as γ max ≈8.0×10?1 t ?1. From COBE data a lower growth rate as γ COBE ≈6.0×10?6 t ?1, is well-within Zeldovich et al estimate. Instead of Harrison value $B\approx{t^{\frac{4}{3}}}$ one obtains a lower primordial field B≈10?6 t which yields B≈10?6 G at 1 s Big Bang time.  相似文献   

3.
The problem of finding nonsingular charged analogue of Schwarzschild’s interior solutions has been reduced to that of finding a monotonically decreasing function f. The models are discussed in generality by imposing reality condition on f. It is shown that the physical solutions are possible only for surface density to central density ratio greater than or equal to 2/3 i.e. $\frac{\rho_{a}}{\rho_{0}}\ge2/3$ . The unphysical nature of solutions with linear equation state has been proved. A generalization procedure has been utilized to generalize solutions by Guilfoyle (1999). Recently found solutions by Gupta and Kumar (2005a, 2005b, 2005c) are generalized by taking particular form of f and seen to have higher mass and more stable. The maximum mass is found to be 1.59482 M Θ . The models have been found to be stable once the physical requirements are established due to mass to radius less than 4/9, total charge to total mass ratio less than 1 and redshift quite low.  相似文献   

4.
It is now recognised that the traditional method of calculating the LSR fails. We find an improved estimate of the LSR by making use of the larger and more accurate database provided by XHIP and repeating our preferred analysis from Francis and Anderson (New Astron 14:615–629, 2009a). We confirm an unexpected high value of $U_0$ by calculating the mean for stars with orbits sufficiently inclined to the galactic plane that they do not participate in bulk streaming motions. Our best estimate of the solar motion with respect to the LSR $(U_0, V_0, W_0) = (14.1\, \pm \, 1.1, 14.6\, \pm \, 0.4, 6.9\, \pm \, 0.1)$ km s $^{-1}$ .  相似文献   

5.
A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988??C?2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle ( $\overline{\Delta\phi}$ ), mean shear angle of the vector magnetic field ( $\overline{\Delta\psi}$ ), mean absolute vertical current density ( $\overline{|J_{z}|}$ ), mean absolute current helicity density ( $\overline{|h_{\mathrm{c}}|}$ ), absolute twist parameter (|?? av|), mean free magnetic energy density ( $\overline{\rho_{\mathrm{free}}}$ ), effective distance of the longitudinal magnetic field (d E), and modified effective distance (d Em) of each photospheric vector magnetogram. Parameters $\overline{|h_{\mathrm{c}}|}$ , $\overline{\rho_{\mathrm{free}}}$ , and d Em show higher correlations with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters $\overline {\Delta\phi}$ , $\overline{\Delta\psi}$ , $\overline{|J_{z}|}$ , |?? av|, and d E show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.  相似文献   

6.
In this paper, an efficient algorithm is established for computing the maximum (minimum) angular separation ρ max(ρ min), the corresponding apparent position angles ( $\theta|_{\rho_{\rm max}}$ , $\theta|_{\rho_{\rm min}}$ ) and the individual masses of visual binary systems. The algorithm uses Reed’s formulae (1984) for the masses, and a technique of one-dimensional unconstrained minimization, together with the solution of Kepler’s equation for $(\rho_{\rm max}, \theta|_{\rho_{\rm max}})$ and $(\rho_{\rm min}, \theta|_{\rho_{\rm min}})$ . Iterative schemes of quadratic coverage up to any positive integer order are developed for the solution of Kepler’s equation. A sample of 110 systems is selected from the Sixth Catalog of Orbits (Hartkopf et al. 2001). Numerical studies are included and some important results are as follows: (1) there is no dependence between ρ max and the spectral type and (2) a minor modification of Giannuzzi’s (1989) formula for the upper limits of ρ max functions of spectral type of the primary.  相似文献   

7.
Considering the host galaxy contribution, a spectral decomposition method is used to reanalyzed the archive data of optical spectra for a narrow line Seyfert 1 galaxy, NGC 4051. The light curves of the continuum f λ (5100 Å), and Hβ, He ii, Fe ii emission lines are given. We find strong flux correlations between line emissions of Hβ, He ii, Fe ii and the continuum f λ (5100 Å). These low-ionization lines (Hβ, Fe ii, He ii) have “inverse” intrinsic Baldwin effects. Using the methods of the cross-correlation function and the Monte Carlo simulation, we find the time delays, with respect to the continuum, are $3.45^{+12.0}_{-0.5}~\mbox{days}$ with the probability of 34 % for the intermediate component of Hβ, $6.45^{+13.0}_{-1.0}~\mbox{days}$ with the probability of 65 % for the intermediate component of He ii. From these intermediate components of Hβ and He ii, the calculated central black hole masses are $0.86^{+4.35}_{-0.33}\times 10^{6}$ and $0.82^{+3.12}_{-0.45}\times 10^{6}~M_{\odot }$ . We also find that the time delays for Fe ii are $9.7^{+3.0}_{-5.0}~\mbox{days}$ with the probability of 36 %, $8.45^{+1.0}_{-2.0}~\mbox{days}$ with the probability of 18 % for the total epochs and “subset 1” data, respectively. It seems that the Fe ii emission region is outside of the Hβ emission region.  相似文献   

8.
We analyzed the luminosity-temperature-mass of gas (L X ?T?M g ) relations for a sample of 21 Chandra galaxy clusters. We used the standard approach (β?model) to evaluate these relations for our sample that differs from other catalogues since it considers galaxy clusters at higher redshifts (0.4<z<1.4). We assumed power-law relations in the form $L_{X} \sim(1 +z)^{A_{L_{X}T}} T^{\beta_{L_{X}T}}$ , $M_{g} \sim(1 + z)^{A_{M_{g}T}} T^{\beta_{M_{g}T}}$ , and $M_{g} \sim(1 + z)^{A_{M_{g}L_{X}}} L^{\beta_{M_{g}L_{X}}}$ . We obtained the following fitting parameters with 68 % confidence level: $A_{L_{X}T} = 1.50 \pm0.23$ , $\beta_{L_{X}T} = 2.55 \pm0.07$ ; $A_{M_{g}T} = -0.58 \pm0.13$ and $\beta_{M_{g}T} = 1.77 \pm0.16$ ; $A_{M_{g}L_{X}} \approx-1.86 \pm0.34$ and $\beta_{M_{g}L_{X}} = 0.73 \pm0.15$ , respectively. We found that the evolution of the M g ?T relation is small, while the M g ?L X relation is strong for the cosmological parameters Ω m =0.27 and Ω Λ =0.73. In overall, the clusters at high-z have stronger dependencies between L X ?T?M g correlations, than those for clusters at low-z. For most of galaxy clusters (first of all, from MACS and RCS surveys) these results are obtained for the first time.  相似文献   

9.
10.
The sample of 37 485 suspected OB stars selected by Gontcharov (2008) from the Tycho-2 catalogue has been cleaned of the stars that are not of spectral types OV-A0V. For this purpose, the apparent magnitude V T from Tycho-2, the absolute magnitude $M_{V_T }$ calibrated as a function of the dereddened color index (B T ? V T )0, the interstellar extinction $A_{V_T }$ calculated from the 3D analytical model by Gontcharov (2009) as a function of the Galactic coordinates, and the photometric distance r ph calculated as a function of V T , $M_{V_T }$ , and $A_{V_T }$ have been reconciled in an iterative process. The 20 514 stars that passed the iterations have (B T ? V T )0 < 0 and $M_{V_T }$ > ?5 and are considered as a sample of OV-A0V stars complete within 350 pc of the Sun. Based on the theoretical relation between the dereddened color and age of the stars, the derived sample has been divided into three subsamples: (B T ? V T )0 < ?0.2, ?0.2 < (B T ? V T )0 < ?0.1, and ?0.1 < (B T ? V T )0 < 0, younger than 100, 100?C200, and 200?C400 Myr, respectively. The spatial distribution of all 20 514 stars and the kinematics analyzed for more than 1500 stars with radial velocities from the PCRV and RAVE catalogues are different for the subsamples, showing smooth rotations, shears, and deformations of the layer of gas producing stars with the formation of the Gould Belt, the Great Tunnel, the Local Bubble, and other structures within the last 200 Myr. The detected temporal variations of the velocity dispersions, solar motion components, Ogorodnikov-Milne model parameters, and Oort constants are significant, agree with the results of other authors, and show that it is meaningless to calculate the kinematic parameters for samples of stars with uncertain ages or with a wide range of ages.  相似文献   

11.
We compute the ultra-high energy (UHE) neutrino fluxes from plausible accreting supermassive black holes closely linking to the 377 active galactic nuclei (AGNs). They have well-determined black hole masses collected from the literature. The neutrinos are produced via simple or modified URCA processes, even after the neutrino trapping, in superdense proto-matter medium. The resulting fluxes are ranging from: (1) (quark reactions)— $J^{q}_{\nu\varepsilon}/(\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1})\simeq8.29\times 10^{-16}$ to 3.18×10?4, with the average $\overline{J}^{q}_{\nu\varepsilon}\simeq5.53\times 10^{-10}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ , where ε d ~10?12 is the opening parameter; (2) (pionic reactions)— $J^{\pi}_{\nu\varepsilon} \simeq0.112J^{q}_{\nu\varepsilon}$ , with the average $J^{\pi}_{\nu\varepsilon} \simeq3.66\times 10^{-11}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ ; and (3) (modified URCA processes)— $J^{URCA}_{\nu\varepsilon}\simeq7.39\times10^{-11} J^{q}_{\nu\varepsilon}$ , with the average $\overline{J}^{URCA}_{\nu\varepsilon} \simeq2.41\times10^{-20} \varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ . We conclude that the AGNs are favored as promising pure neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies and collimated in smaller opening angle θε d .  相似文献   

12.
A popular model of a cometary plasma is hydrogen (H+) with positively charged oxygen (O+) as a heavier ion component. However, the discovery of negatively charged oxygen (O?) ions enables one to model a cometary plasma as a pair-ion plasma (of O+ and O?) with hydrogen as a third ion constituent. We have, therefore, studied the stability of the ion-acoustic wave in such a pair-ion plasma with hydrogen and electrons streaming with velocities $V_{d\mathrm{H}^{+}}$ and V de , respectively, relative to the oxygen ions. We find the calculated frequency of the ion-acoustic wave with this model to be in good agreement with the observed frequencies. The ion-acoustic wave can also be driven unstable by the streaming velocity of the hydrogen ions. The growth rate increases with increasing hydrogen density $n_{\mathrm{H}^{+}}$ , and streaming velocities $V_{d\mathrm{H}^{+}}$ and V de . It, however, decreases with increasing oxygen ion densities $n_{\mathrm{O}^{+}}$ and $n_{\mathrm{O}^{-}}$ .  相似文献   

13.
Using γ-ray data detected by Fermi Large Area Telescope (LAT) and multi-wave band data for 35 TeV blazars sample, we have studied the possible correlations between different broad band spectral indices ( $\alpha_{\rm r.ir}$ , $\alpha_{\rm{r.o}}$ , $\alpha_{\rm r.x}$ , $\alpha_{\rm r.\gamma}$ , $\alpha_{\rm{ir.o}}$ , $\alpha_{\rm ir.x}$ , $\alpha_{\rm ir.\gamma}$ , $\alpha_{\rm o.x}$ , $\alpha_{\rm o.\gamma}$ , $\alpha_{\rm r.x}$ , $\alpha_{\rm x.\gamma}$ ) in all states (average/high/low). Our results are as follows: (1) For our TeV blazars sample, the strong positive correlations were found between $\alpha_{\rm r.ir}$ and $\alpha_{\rm{r.o}}$ , between $\alpha_{\rm r.ir}$ and $\alpha_{\rm r.x}$ , between $\alpha_{\rm r.ir}$ and $\alpha_{\rm r.\gamma}$ in all states (average/high/low); (2) For our TeV blazars sample, the strong anti-correlations were found between $\alpha_{\rm r.ir}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm ir.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm o.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\mathrm{ir.o}}$ and $\alpha_{\rm o.\gamma}$ , between $\alpha_{\rm r.x}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\rm ir.x}$ and $\alpha_{\rm x.\gamma}$ in all states (average/high/low). The results suggest that the synchrotron self-Compton radiation (SSC) is the main mechanism of high energy γ-ray emission and the inverse Compton scattering of circum-nuclear dust is likely to be a important complementary mechanism for TeV blazars. Our results also show that the possible correlations vary from state to state in the same pair of indices, Which suggest that there may exist differences in the emitting process and in the location of the emitting region for different states.  相似文献   

14.
We constrain holographic dark energy (HDE) with time varying gravitational coupling constant in the framework of the modified Friedmann equations using cosmological data from type Ia supernovae, baryon acoustic oscillations, cosmic microwave background radiation and X-ray gas mass fraction. Applying a Markov Chain Monte Carlo (MCMC) simulation, we obtain the best fit values of the model and cosmological parameters within 1σ confidence level (CL) in a flat universe as: $\varOmega_{b}h^{2}=0.0222^{+0.0018}_{-0.0013}$ , $\varOmega_{c}h^{2}=0.1121^{+0.0110}_{-0.0079}$ , $\alpha_{G}\equiv \dot{G}/(HG) =0.1647^{+0.3547}_{-0.2971}$ and the HDE constant $c=0.9322^{+0.4569}_{-0.5447}$ . Using the best fit values, the equation of state of the dark component at the present time w d0 at 1σ CL can cross the phantom boundary w=?1.  相似文献   

15.
L. Iorio 《Solar physics》2012,281(2):815-826
The angular momentum of a star is an important astrophysical quantity related to its internal structure, formation, and evolution. Helioseismology yields $S_{\odot}= 1.92\times10^{41}\ \mathrm{kg\ m^{2}\ s^{-1}}$ for the angular momentum of the Sun. We show how it should be possible to constrain it in a near future by using the gravitomagnetic Lense?CThirring effect predicted by General Relativity for the orbit of a test particle moving around a central rotating body. We also discuss the present-day situation in view of the latest determinations of the supplementary perihelion precession of Mercury. A fit by Fienga et al. (Celestial Mech. Dynamical Astron. 111, 363, 2011) of the dynamical models of several standard forces acting on the planets of the solar system to a long data record yielded milliarcseconds per century. The modeled forces did not include the Lense?CThirring effect itself, which is expected to be as large as from helioseismology-based values of S ??. By assuming the validity of General Relativity, from its theoretical prediction for the gravitomagnetic perihelion precession of Mercury, one can straightforwardly infer $S_{\odot}\leq0.95\times10^{41}\ \mathrm{kg\, m^{2}\, s^{-1}}$ . It disagrees with the currently available values from helioseismology. Possible sources for the present discrepancy are examined. Given the current level of accuracy in the Mercury ephemerides, the gravitomagnetic force of the Sun should be included in their force models. MESSENGER, in orbit around Mercury since March 2011, will collect science data until 2013, while BepiColombo, to be launched in 2015, should reach Mercury in 2022 for a year-long science phase: the analysis of their data will be important in effectively constraining S ?? in about a decade or, perhaps, even less.  相似文献   

16.
The analytical techniques of the Nekhoroshev theorem are used to provide estimates on the coefficient of Arnold diffusion along a particular resonance in the Hamiltonian model of Froeschlé et al. (Science 289:2108–2110, 2000). A resonant normal form is constructed by a computer program and the size of its remainder ||R opt || at the optimal order of normalization is calculated as a function of the small parameter ${\epsilon}$ . We find that the diffusion coefficient scales as ${D \propto ||R_{opt}||^3}$ , while the size of the optimal remainder scales as ${||R_{opt}|| \propto {\rm exp}(1/\epsilon^{0.21})}$ in the range ${10^{-4} \leq \epsilon \leq 10^{-2}}$ . A comparison is made with the numerical results of Lega et al. (Physica D 182:179–187, 2003) in the same model.  相似文献   

17.
The radio tracking apparatus of the New Horizons spacecraft, currently traveling to the Pluto system where its arrival is scheduled for July 2015, should be able to reach an accuracy of 10 m (range) and 0.1  $\text{ mm } \text{ s }^{-1}$ mm s ? 1 (range-rate) over distances up to 50 au. This should allow to effectively constrain the location of a putative trans-Plutonian massive object, dubbed Planet X (PX) hereafter, whose existence has recently been postulated for a variety of reasons connected with, e.g., the architecture of the Kuiper belt and the cometary flux from the Oort cloud. Traditional scenarios involve a rock-ice planetoid with $m_\mathrm{X}\approx 0.7\,m_{\oplus }$ m X ≈ 0.7 m ⊕ at some 100–200 au, or a Jovian body with $m_\mathrm{X}\lesssim 5\,m_\mathrm{J}$ m X ? 5 m J at about 10,000–20,000 au; as a result of our preliminary sensitivity analysis, they should be detectable by New Horizons since they would impact its range at a km level or so over a time span 6 years long. Conversely, range residuals statistically compatible with zero having an amplitude of 10 m would imply that PX, if it exists, could not be located at less than about 4,500 au ( $m_\mathrm{X}=0.7\,m_{\oplus }$ m X = 0.7 m ⊕ ) or 60,000 au ( $m_\mathrm{X}=5\,m_\mathrm{J}$ m X = 5 m J ), thus making a direct detection quite demanding with the present-day technologies. As a consequence, it would be appropriate to rename such a remote body as Thelisto. Also fundamental physics would benefit from this analysis since certain subtle effects predicted by MOND for the deep Newtonian regions of our Solar System are just equivalent to those of a distant pointlike mass.  相似文献   

18.
The size of a radio quiet zone (RQZ) is largely determined by transmission losses of interfering signals, which can be divided into free space loss and diffraction loss. The free space loss is dominant. The diffraction loss presented in this paper is described as unified smooth spherical and knife edge diffractions, which is a function of minimum path clearance. We present a complete method to calculate the minimum path clearance. The cumulative distribution of the lapse rate of refractivity (g n ), between the earth surface and 1 km above, is studied by using Chinese radio climate data. Because the size of an RQZ is proportional to g n , the cumulative distribution of g n can be used as an approximation for the size of the RQZ. When interference originates from mobile communication or television transmissions at a frequency of 408 MHz, and $\overline {g_n } $ is 40 N/km, where the refractivity $N=\left( {n-1} \right) \times 10^6$ , the size of the RQZ would be 180 km for a mobile source or 210 km for a television source, with a probability in the range of 15–100% in different months and for different stations. When speaking of the size of an RQZ, the radius in the case of a circular zone is implied. It results that a size of an RQZ is mainly influenced by transmission loss rather than effective radiated power. In the case where the distance between an interfering source and a radio astronomical observatory is about 100 km, at a frequency of 408 MHz, the allowable effective radiated power of the interfering source should be less than ?30 dBW with a probability of about 85% for $\overline {g_n } $ equals 40 N/km, or ?42 dBW with a probability less than 1 % for $\overline {g_n } $ equals 80 N/km.  相似文献   

19.
We have investigated the resonances due to the perturbations of a geo-centric synchronous satellite under the gravitational forces of the Sun, the Moon and the Earth including it’s equatorial ellipticity. The resonances at the points resulting from (i) the commensurability between \(\dot{\theta}_{0}\) (steady-state orbital angular rate of the satellite) and \(\dot{\theta}_{m}\) (angular velocity of the moon around the earth) and (ii) the commensurability between \(\dot{\theta}_{0}\) and \(\dot{\psi}_{0}\) (steady-state regression rate of the synchronous satellite) are analyzed. The amplitude and the time period of the oscillation have been determined by using the procedure as given in Brown and Shook (Planetary Theory, Cambridge University Press, Cambridge, 1933). We have observed that as θ m (0°θ m ≤45°) and ψ (0°ψ≤135°) increase, the amplitude decreases and the time period also decreases. We have also shown the effect of ψ on amplitude and time period for 0°Γ≤45°, where Γ is the angle measured from the minor axis of the earth’s equatorial ellipse to the projection of the satellite on the plane of the equator.  相似文献   

20.
The equilibrium points and the curves of zero-velocity (Roche varieties) are analyzed in the frame of the regularized circular restricted three-body problem. The coordinate transformation is done with Levi-Civita generalized method, using polynomial functions of n degree. In the parametric plane, five families of equilibrium points are identified: \(L_{i}^{1}, L_{i}^{2}, \ldots, L_{i}^{n}\) , \(i\in\{ 1,2,\ldots,5 \}, n \in\mathbb{N}^{*}\) . These families of points correspond to the five equilibrium points in the physical plane L 1,L 2,…,L 5. The zero-velocity curves from the physical plane are transformed in Roche varieties in the parametric plane. The properties of these varieties are analyzed and the Roche varieties for n∈{1,2,…,6} are plotted. The equation of the asymptotic variety is obtained and its shape is analyzed. The slope of the Roche variety in \(L_{1}^{1}\) point is obtained. For n=1 the slope obtained by Plavec and Kratochvil (1964) in the physical plane was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号