首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determining the location and geometry of possible subglacial rifts in western Dronning Maud Land is a key element to address processes leading to early Gondwana break-up. However, previous geophysical investigations did not lead to unambiguous delineation of rift structures over this region. We interpret high-resolution airborne radar and aerogravity data to image subglacial rift structures. Subglacial topography, free-air and Bouguer gravity maps, coupled with 3D inverse gravity models, image a rift–rift–rift triple junction at the intersection of the Jutulstraumen ice stream and the Pencksökket glacier. These continental rifts were associated with alkaline and tholeiitic intrusions, minor dyke swarms and flood basalts of Jurassic age, but not with huge volumes of Karoo magmatism, such as that which characterizes the southern Africa conjugate margin. The western Dronning Maud Land triple junction may be linked to the Karoo mantle plume and represents an early stage of magmatism and rifting during Gondwana break-up.  相似文献   

2.
Thick (∼800 m) basaltic successions from the eastern Antarctic Peninsula have been dated in the interval 180–177 Ma and preserve a transition from a continental margin arc to a back-arc extensional setting. Amygdaloidal basalts from the Black Coast region of the eastern margin of the Antarctic Peninsula represent a rare onshore example of magmatism associated with back-arc extension that defines the early phase of Weddell Sea rifting and magmatism, and Gondwana breakup. The early phase of extension in the Weddell Sea rift system has previously been interpreted to be related to back-arc basin development with associated magnetic anomalies attributed to mafic-intermediate magmatism, but with no clearly defined evidence of back-arc magmatism. The analysis provided here identifies the first geochemical evidence of a transition from arc-like basalts to the development of depleted back-arc basin basalts in the interval 180–177 Ma. The exposed Black Coast basaltic successions are interpreted to form a minor component of magmatism that is also defined by onshore sub-ice magnetic anomalies, as well as the extensive magnetic anomalies of the southern Weddell Sea. Back-arc magmatism is also preserved on the Falkland Plateau where intrusions postdating 180 Ma are associated with early phase rifting in the Weddell Sea rift system. Back-arc extension was probably short-lived and had ceased by the time the northern Weddell Sea magmatism was emplaced (<175 Ma) and certainly by 171 Ma, when an episode of silicic magmatism was widespread along the eastern Antarctic Peninsula. Previous attempts to correlate mafic magmatism from the eastern Antarctic Peninsula to the Ferrar large igneous province, or, as part of a bimodal association with the Chon Aike silicic province are both dismissed based on age and geochemical criteria.  相似文献   

3.
Amphibolites from the Szklarska Por?ba hornfels belt (northern part of the Karkonosze-Izera Massif) represent rocks of alkali-basalt composition metamorphosed during Variscan times. Despite the intense thermal influence of the Karkonosze granite superimposed on the effects of regional amphibolite-facies metamorphism, the geochemical affinities of the Szklarska Por?ba amphibolites are well preserved. They are similar to alkaline OIB basalts derived from an enriched (undepleted) sub-lithospheric source in the garnet stability field at depths ca 80–120?km. Trace-element characteristics and geochemical modelling indicate that the source was not modified by metasomatism in a supra-subduction zone or by alkali (silicate, carbonatitic) infiltration. Subsequent intra-crustal fractional crystallization involved olivine and clinopyroxene, and subordinate spinel and, presumably, plagioclase. The chemical composition of the rocks is most similar to that of modern magmas generated in an extensional setting (intra-continental rift). Neither geochemical characteristics nor estimated mantle temperatures only slightly higher than those of ambient mantle convincingly attest to the involvement of deep-mantle plume activity. Instead, decompression melting of passively upwelling asthenosphere beneath opening fractures in fragmented lithosphere is invoked. The origin of the amphibolite protolith was presumably associated with the Early Palaeozoic rifting of northern Gondwana, well documented throughout the Karkonosze-Izera massif. Locally rifting must have ceased earlier (immature rift) as reflected by mafic dykes exposed in the northern part of the massif, i.e., in the Szklarska Por?ba hornfelses, and by the Izera gneisses and the Stara Kamienica metapelites. A passive rift system controlled by lithosphere extension provides a plausible explanation for the origin of mafic rocks in the Karkonosze-Izera Massif and sheds light on possible mechanisms involved in the break-up of Gondwana.  相似文献   

4.
The presence and/or generation mechanism of a mantle plume associated with early Permian rifting on the northern margin of Gondwana are topics of debate. Here we report LA–ICP–MS U–Pb zircon ages, whole-rock geochemistry, and Sr–Nd isotope data for high-Ti mafic dykes from southern Qiangtang, Tibet, with the aim of assessing if a mantle plume formed in this region during the early Permian. Zircon U–Pb dating of diabase dykes yielded ages of 290.6 ± 3.5 Ma and 290.1 ± 1.5 Ma, indicating they were emplaced during the early Permian. Whole-rock geochemistry shows that these mafic dykes are alkaline (Nb/Y = 0.73–0.99), have high TiO2 (3.6%–4.8%), and have ocean-island basalt (OIB)-like trace element patterns with enrichments in Nb, Ta, and Ti. Whole-rock Sr–Nd isotope data show a relatively narrow range of εNd(t) (+ 2.29 to + 3.53), similar to basalts produced by a mantle plume (e.g., Emeishan continental flood basalts (ECFB)). Elemental and isotope data suggest that the dykes have undergone fractionation crystallization of mafic minerals and have experienced negligible crustal contamination. These mafic rocks show an affinity to OIB and may have been generated by partial melting of an OIB-type, garnet-bearing asthenospheric mantle source. On the basis of a similar emplacement age to the Panjal Traps basalts in the Himalayas, combined with a tectonic reconstruction of Gondwana in the early to middle Permian, our work suggests that the high-Ti mafic dykes in the Southern Qiangtang terrane and the coeval Panjal Traps basalts in the Himalayas together comprise a ca. 290 Ma large igneous province linked to a mantle plume, which probably played an active role in early Permian rifting on the northern margin of Gondwana and was related to circum-Pangea subduction.  相似文献   

5.
Continental rift systems and anorogenic magmatism   总被引:1,自引:0,他引:1  
Precambrian Laurentia and Mesozoic Gondwana both rifted along geometric patterns that closely approximate truncated-icosahedral tessellations of the lithosphere. These large-scale, quasi-hexagonal rift patterns manifest a least-work configuration. For both Laurentia and Gondwana, continental rifting coincided with drift stagnation, and may have been driven by lithospheric extension above an insulated and thermally expanded mantle. Anorogenic magmatism, including flood basalts, dike swarms, anorthosite massifs and granite-rhyolite provinces, originated along the Laurentian and Gondwanan rift tessellations. Long-lived volcanic regions of the Atlantic and Indian Oceans, sometimes called hotspots, originated near triple junctions of the Gondwanan tessellation as the supercontinent broke apart. We suggest that some anorogenic magmatism results from decompression melting of asthenosphere beneath opening fractures, rather than from random impingement of hypothetical deep-mantle plumes.  相似文献   

6.
This paper reports the first petrological and geochemical evidence for the Meso-Neoproterozoic metamorphic and metaintrusive rocks of the Shaw Mountain massif (Prince Charles Mountains, East Antarctica). It was shown that the orthogneisses (plagiogneisses) and metabasites of the massif were formed as constituents of a volcanoplutonic complex, which included a variety of igneous rocks of normal and subalkaline groups, from ultrabasic to silicic and was assigned to the volcanic tholeiite basalt-andesite-rhyolite, plutonic peridotite-gabbro, and late (?) calc-alkaline gabbro-diorite-plagiogranite associations. The distribution of major and compatible trace elements indicates the fractionation of the primary melts that produced the volcanoplutonic association of the Shaw massif. With respect to the distribution of REE and trace elements and some trace element ratios, the metabasic rocks of the Shaw massif correspond mainly to enriched and normal basalts of mid-ocean ridges, continental rifts, and ocean islands, which suggests a contribution from a plume mantle source. It was found that the region of the Shaw massif is a high-grade metamorphosed margin of the Fisher volcanoplutonic complex, a Mesoproterozoic structure of single geodynamic nature. This is supported by the spatial proximity of the Shaw and Fisher regions, the similar behaviors of most major elements and distribution patterns of trace elements and REE in comparable magmatic associations, and the similar ages of some plutonic associations. Based on the petrological and geochemical data, an alternative geotectonic model was proposed for this region. According to this model, the Fisher complex was formed in a setting of continental rifting coupled with the processes of mantle diapirism, which was subsequently changed by the compression stage. During rifting, the structure could experience significant opening accompanied by ultrabasic-basic tholeiitic magmatism with a significant contribution of mantle material. A subsequent inversion resulted in that the rift structure underwent considerable horizontal compression accompanied by calc-alkaline magmatism and the formation of narrow intracratonic fold zones. The cyclic character of rifting processes and superposition of young rift systems on older ones was also established in the Phanerozoic geotectonic history of the region of the Prince Charles Mountains.  相似文献   

7.
Middle Paleozoic magmatism at the eastern Siberian platform was related to riftogenic processes, which were most clearly expressed in the Vilyui Rift and led to the formation of rift depressions filled with sedimentary-volcanogenic rocks and extended basaltic dike belts in rift shoulders. Two fields of diamondiferous kimberlites were found along with basaltic dikes in the Vilyui-Markha dike belt surrounding rift in the northwest. Active subalkali basaltic magmatism predated the emplacement of kimberlite bodies, which occasionally (Nyurba pipe) are cut by dikes of potassium alkali basalts. Based on geochemical and Sr-Nd isotopic characteristics, deep-seated sources were determined for the intrusive and volcanic basalts of the northwestern shoulder of the Vilyui rift. The REE distribution patterns of the studied rocks normalized to the primitive mantle are close to that of OIB, except for somewhat higher HREE. In the diagrams of indicator ratios of trace and rare-earth elements, the basalts are also plotted in the OIB field, being located between the end member of plume composition (FOZO) and enriched mantle sources. The rocks have positive εSr (+3.5 and +28.6) and εNd (+1.3 and +5.3). In a diagram εNd(T)-εSr(T), two fields with distinct content of radiogenic Sr are distinguished, which can be regarded as derived by mixing of the moderately depleted PREMA-type mantle and a source enriched in radiogenic Sr. Available isotope-geochemical data confirm that OIB type basalts of the region were generated by plume activity. The geodynamic setting of Middle Paleozoic magmatism and rifting in the eastern part of the Siberian platform is considered in light of plume-lithosphere interaction. The sequence of tectonomagmatic events during evolution of the Vilyui rift is consistent with the model of plume-lithosphere interaction or the model of active rifting.  相似文献   

8.
At the transition from the Permian to the Triassic, Eurasia was the site of voluminous flood-basalt extrusion and rifting. Major flood-basalt provinces occur in the Tunguska, Taymyr, Kuznetsk, Verkhoyansk–Vilyuy and Pechora areas, as well as in the South Chinese Emeishen area. Contemporaneous rift systems developed in the West Siberian, South Kara Sea and Pyasina–Khatanga areas, on the Scythian platform and in the West European and Arctic–North Atlantic domain. At the Permo–Triassic transition, major extensional stresses affected apparently Eurasia, and possibly also Pangea, as evidenced by the development of new rift systems. Contemporaneous flood-basalt activity, inducing a global environmental crisis, is interpreted as related to the impingement of major mantle plumes on the base of the Eurasian lithosphere. Moreover, the Permo–Triassic transition coincided with a period of regional uplift and erosion and a low-stand in sea level. Permo–Triassic rifting and mantle plume activity occurred together with a major reorganization of plate boundaries and plate kinematics that marked the transition from the assembly of Pangea to its break-up. This plate reorganization was possibly associated with a reorganization of the global mantle convection system. On the base of the geological record, we recognize short-lived and long-lived plumes with a duration of magmatic activity of some 10–20 million years and 100–150 million years, respectively. The Permo–Triassic Siberian and Emeishan flood-basalt provinces are good examples of “short-lived” plumes, which contrast with such “long lived” plumes as those of Iceland and Hawaii. The global record indicates that mantle plume activity occurred episodically. Purely empirical considerations indicate that times of major mantle plume activity are associated with periods of global mantle convection reorganization during which thermally driven mantle convection is not fully able to facilitate the necessary heat transfer from the core of the Earth to its surface. In this respect, we distinguish between two geodynamically different scenarios for major plume activity. The major Permo–Triassic plume event followed the assembly Pangea and the detachment of deep-seated subduction slabs from the lithosphere. The Early–Middle Cretaceous major plume event, as well as the terminal–Cretaceous–Paleocene plume event, followed a sharp acceleration of global sea-floor spreading rates and the insertion of new subduction zone slabs deep into the mantle. We conclude that global plate kinematics, driven by mantle convection, have a bearing on the development of major mantle plumes and, to a degree, also on the pattern of related flood-basalt magmatism.  相似文献   

9.
J. V. Smith  S. Yamauchi 《Tectonophysics》1994,230(3-4):143-150
The southwestern Japan Sea and the margin of southwestern Japan feature parallel elongate extensional sub-basins and grabens. These structures are oblique to the trend of southwestern Japan and are interpreted as the remnant of an en-echelon array. Such a right-stepping remnant en-echelon pattern indicates sinistral rifting of the southwestern Japan block from Asia. The major extensional fault trends are parallel over a distance of 600 km. Infinitesimal kinematic relations show that it is unlikely that these faults initiated in response to rotation about the nearby pole determined from paleomagnetic studies. Rather, an earlier stage of rifting about a distant pole is indicated. The rotational pole of this early rifting was probably located at least 6000 km away from the rift and the pole of rotation was offset from the rift trend by a similar distance. Rifting about this distant rotational pole loosened the southwestern Japan continental block from the Asian mainland making it susceptible to a large rotation about a nearby pole.  相似文献   

10.
羌塘盆地东部那益雄组玄武岩地球化学特征及构造意义   总被引:1,自引:0,他引:1  
羌塘盆地东部那益雄组玄武岩作为裂谷演化最后阶段的喷发产物,其成岩年龄和地球化学特征为裂谷的关闭时间和二叠纪构造演化提供了重要约束.在剖面地质调查基础上,对那益雄组玄武岩进行了LA-ICP-MS锆石U-Pb测年及全岩分析测试,结果显示:那益雄组玄武岩锆石U-Pb年龄为257.2±2.9 Ma,形成于晚二叠世;该玄武岩属于大陆拉斑玄武岩系列,轻微富集Ta元素而轻微亏损Nb元素,是软流圈地幔物质上涌与岩石圈地幔相互作用的产物,形成于裂谷关闭碰撞后的伸展背景.羌塘地块东部二叠纪玄武岩的地球化学数据显示,早二叠世-晚二叠世玄武岩具有由OIB型玄武岩向火山弧型玄武岩过渡的演化趋势,表明羌塘地块东部板内裂谷在早二叠世打开,中二叠世进入裂谷演化阶段,于晚二叠世关闭.   相似文献   

11.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   

12.
The bimodal volcanoplutonic (basalt-peralkaline rhyolite with peralkaline granites) association of the Noen and Tost ranges was formed 318 Ma ago in the Gobi-Tien Shan rift zone of the Late Paleozoic-Early Mesozoic central Asian rift system, the development of which was related to the movement of the continental lithosphere over a mantle hot spot. A specific feature of the Late Paleozoic rifting was that it occurred within the Middle-Late Paleozoic active continental margin of the northern Asian paleocontinent. Continental margin magmatism was followed after a short time delay by the magmatism of the Gobi-Tien Shan rift zone, which was located directly in the margin of the paleocontinent. Such a geodynamic setting of the rift zone was reflected in the geochemical characteristics of rift-related rocks. The distribution of major elements and compatible trace elements in the rift-related basic and intermediate rocks corresponds to a crystallization differentiation series. The distribution of incompatible trace elements suggests contributions from several sources. This is also supported by the heterogeneity of Sr and Nd isotopic compositions of the rift-related basaltoids: εNd(T) ranges from 4.4 to 6.7, and (87Sr/86Sr)0, from 0.70360 to 0.70427. The geochemical characteristics of the rift-related basaltoids of the Noen and Tost ranges are not typical of rift settings (negative anomalies in Nb and Ta and positive anomalies in K and Pb) and suggest a significant role of the rocks of a metasomatized mantle wedge in their source. In addition, there are high-titanium rocks among the rift-related basaltoids, whose geochemical characteristics approach those of the basalts of mid-ocean ridges and ocean islands. This allowed us to conclude that the compositional variations of the rift-related basaltoids of the Noen and Tost ranges were controlled by three magma sources: the enriched mantle, depleted mantle (high-titanium basaltoids), and metasomatized mantle wedge (medium-Ti basaltoids). The medium-titanium basaltoids were formed in equilibrium with spinel peridotites, whereas the high-titanium magmas were formed at deeper levels both in the spinel and garnet zones. It terms of geodynamics, the occurrence of three sources of the rift-related basaltoids of the Noen and Tost ranges was related to the ascent of a mantle plume with enriched geochemical characteristics beneath a continental margin, where its influence caused melting in the overlying depleted mantle and the metasomatized mantle wedge. The formation of rift-related andesites in the Noen and Tost ranges was explained by the contamination of mantle-derived basaltoid melts with sialic (mainly sedimentary) continental crustal materials or the assimilation of anatectic granitoid melts.  相似文献   

13.
In the Beishan rift in the eastern Tianshan orogen, Xinjiang Province, a N-S-trending dyke swarm is present in the Pobei area. The swarm cuts through the 270–290 Ma mafic-ultramafic intrusions associated with Ni-Cu sulphide mineralization. These mafic-ultramafic intrusions are typically found along E-W major faults in the Tianshan orogenic belts. We report SHRIMP U-Pb dating of zircons from a dyke of alkaline composition, which yielded a mean age of 252±9 Ma. Alkaline dykes of the same age are found in the Altay region of Siberia. This age is younger than the 270–290 Ma intraplate magmatic events that produced the mafic-ultramafic intrusions in the region, but in general agreement with the 250–260 Ma Permian plume event that gave rise to the Siberian traps and the Emeishan flood basalts in SW China. We suggest that there is a link between the Emeishan event and the dyke swarm in the Beishan rift and that the intraplate magmatism at 270–290 Ma reflects an early stage of mantle plume activity. The N-S trending dyke swarm in the Beishan rift may represent a later stage in the evolution of mantle plume activity in the NW and SW of China. We also speculate that in Beishan rift and possibly elsewhere in the Tianshan region, the dykes fed basaltic volcanism, whose products have since been eroded due to the strong uplift of the Tianshan orogen as a result of the India-Eurasia collision in the Cenozoic.  相似文献   

14.
Structural studies of the Barmer Basin in Rajasthan, northwest India, demonstrate the important effect that pre-existing faults can have on the geometries of evolving fault systems at both the outcrop and basin-scale. Outcrop exposures on opposing rift margins reveal two distinct, non-coaxial extensional events. On the eastern rift margin northwest–southeast extension was accommodated on southwest- and west-striking faults that form a complex, zig-zag fault network. On the western rift margin northeast–southwest extension was accommodated on northwest-striking faults that form classical extensional geometries.Combining these outcrop studies with subsurface interpretations demonstrates that northwest–southeast extension preceded northeast–southwest extension. Structures active during the early, previously unrecognised extensional event were variably incorporated into the evolving fault systems during the second. In the study area, an inherited rift-oblique fault transferred extension from the rift margin to a mid-rift fault, rather than linking rift margin fault systems directly. The resultant rift margin accommodation structure has important implications for early sediment routing and depocentre evolution, as well as wider reaching implications for the evolution of the rift basin and West Indian Rift System. The discovery of early rifting in the Barmer Basin supports that extension along the West Indian Rift System was long-lived, multi-event, and likely resulted from far-field plate reorganisations.  相似文献   

15.
Based on the systematic investigation of the geochemical and isotopic (Sr and Nd) characteristics of basic rocks from various volcanic areas of the Devonian Altai-Sayan rift system, the compositions of mantle magma sources were characterized, and the geodynamic scenarios of their entrainment into rifting processes were reconstructed. It was found that the titanium-rich basic rocks (2.5 < TiO2 < 4.2 wt %) of this region are enriched in lithophile trace elements, including the rare earth elements, compared with N-MORB and are similar in composition to intraplate subalkali basalts of the OIB type. In contrast, moderate-titanium basic rocks (1.1 < TiO2 < 2.5 wt %) are mainly depleted in the highly charged incompatible elements Th, U, Nb, and Ta (La/Yb = 1.2−2.2) and, to a lesser extent, in Zr, Hf, and LREE ((La/Yb)N < 7), but are enriched in Ba. With respect to these characteristics, the moderate-titanium basites are similar to rocks formed in subduction environments. The geochemical parameters of the basites are strongly variable, which probably reflects the heterogeneity of the mantle sources that contributed to the formation of the rift system. In particular, the most notable variations in rock composition related to an increase in the contribution of an OIB-type source to magma composition were observed in the eastern direction, i.e., inland from the paleocontinent margin. The isotopic composition of the basites is relatively stable within individual rift zones and significantly variable at a comparison of rocks from different zones of the region. Based on the isotopic characteristics of the rocks, three melt sources were identified. One of them is chemically similar to the PREMA and is a common component in all observed trends of isotopic variations, irrespective of the position of the particular assemblage in the structure of the region. This component dominates the composition of the titaniumrich basalts with geochemical signatures of the derivatives of enriched mantle reservoirs of the E-MORB and OIB types and is considered as a plume source. Two other isotopic melt sources are related to subduction processes, which is indicated by their dominance during the formation of the moderate-titanium basalts showing the geochemical signatures (primarily, Ta-Nb depletion) of typical volcanic-arc rocks. These differences are consistent with the formation of the Altai-Sayan rift system in a complex geodynamic setting, which developed under the influence of intraplate magma sources (mantle plume) on the region of melt generation in an active continental margin (subduction zone).  相似文献   

16.
阿尔泰东部新生代火山岩的地球化学特点及构造环境   总被引:3,自引:0,他引:3  
新疆三大山系均有新生代火山岩,其中南部西昆仑、阿尔金山及天山托云等地的新生代火山岩比较发育,在新疆东北部地区的阿尔泰哈拉乔拉一带也发育新生代的陆内喷发火山岩。这套火山岩虽然面积不是很大,但具有大陆溢流玄武岩的特点。在地球化学上也具有典型热点成因洋岛玄武岩或其它地幔柱成因玄武岩的特点,如TiO2含量高大于2%、轻稀土元素和不相容元素显著富集等。表明新疆北部特别是阿尔泰造山带东部演化到新生代以后,有向裂陷拉张方向演化的趋势,标志着一个新的大地构造演化阶段的到来。  相似文献   

17.
The Neo-Tethys Ocean began to form at Early Permian times, when continental flood basalts were emplaced in various areas of the newly-formed Indian passive margin, exposed today in the so-called Tibetan Sedimentary Zone of the Himalaya. Lower Permian mafic volcanic rocks, which have long been known from various Himalayan localities from Kashmir to Arunachal Pradesh, are here for the first time reported to occur also in South Tibet (Bhote Kosi Basalts of the Gyirong County). The basalts unconformably overlie lowermost Permian diamictites, with locally intervening black shales and debris flow deposits, and are followed in turn by chert-bearing quartzarenites and silty to phosphatic marls yielding brachiopods of Roadian–Wordian age. The age of the lavas can thus be bracketed as late Early Permian (post-Sakmarian and pre-Roadian).The geochemistry of these subalkalic tholeiites, akin to MORBs, testifies to their similarity not only with the adjacent Nar-Tsum Spilites of central Nepal, but also with the Panjal Traps and Abor Volcanics of the western and eastern Himalayas respectively. The geochemical signature of Lower Permian volcanic rocks is in fact uniform all along the Himalayan Range, and markedly different from that of basaltic–rhyolitic alkalic products sporadically emplaced during the previous rifting stage. Rift volcanism in the Tethys Himalaya began in the Early Carboniferous and came to an end in Sakmarian times. In the Early Permian, initial submergence of the rift shoulders and sediment starvation were followed by tholeiitic magmatism, which is therefore interpreted as following break-up and incipient sea-floor spreading in the Neotethys Ocean. Roughly contemporaneous emplacement of continental flood basalts of similar geochemical signature along a 2000 km long rift axis would in fact suggest extensive mantle melting at the transition from continental rifting to break-up and opening of the Neotethys between Northern Gondwana and the Peri-Gondwanian blocks.  相似文献   

18.
The Ungava orogen of northern Québec is one of the best preserved Proterozoic mobile belts of the world, recording > 200 Ma of plate divergence and convergence. Voluminous magmatism associated with rifting of the Superior Province basement ≈2.04 Ga resulted in the development of a volcanic rift margin sequence and an ocean basin. Four distinct mafic magma suites were erupted: (1) continental basalts (Eskimo Formation, western and central Povungnituk Group) with moderate to high Zr/Nb and negative Nb anomalies which have interacted with the continental crust (εNd(2.0 Ga)) from −7.4); (2) mafic lavas from the Flaherty Formation, eastern Povungnituk Group and some Watts Group lavas associated with passive margin rifting, having slightly enriched isotopic signatures (εNd(2.0 Ga) = +2.7 to +4.4) compared to the contemporaneous depleted mantle, high (Nb/Y)n and low Zr/Nb ratios (≈4.4 and ≈8.9, respectively); (3) a highly alkaline OIB-like suite (εNd(2.0 Ga) = +2.3 to +3.2, (Nb/Y)n> 12) within the Povungnituk Group composed of nephelinites, basanites and phonolites; and (4) depleted Mg-rich basalts and komatiitic basalts (εNd(2.0 Ga) ≈ + 4.5 to + 5.5) with trace-element characteristics of N-MORB, but with higher Fe and lower Al than primitive MORB (Chukotat Group, Ottawa Islands and some Watts Group samples). The ocean basin into which these lavas were erupted was subsequently destroyed during subduction between ≈1.90 and ≈1.83 Ga, resulting in the development a magmatic arc (Narsajuaq terrane and Parent Group).

The Ungava magmas provide a unique window into the mantle at 2.0 Ga. The chemical and isotopic similarity of these Proterozoic magmas to modern-day magmas provides strong evidence that the interplay between depleted mantle, OIB mantle and sub-continental mantle during the Proterozoic was comparable to that of the modern Earth.  相似文献   


19.
The Vetreny belt in the southeast Baltic Shield is a large volcano-sedimentary basin containing a 4- to 8-km-thick sequence of basaltic to komatiitic lavas, which were erupted ~2.45 Ga ago in a continental rift setting during the interaction of a mantle plume and the Archean continental crust of the Karelian granite-greenstone terrane. Re-Os isotope data for olivine cumulate samples and chromite separates from Victoria's lava lake and Golets flow 3 define isochrons with ages of 2387ᇍ and 2432ᆶ Ma, respectively. These ages are in good agreement with the previously reported, and new, Nd-Pb and U-Pb zircon ages. These data, coupled with the evidence for immobile behavior of the Re and Os, indicate that the Re-Os system remained closed since the lava eruption. The weighted average initial %187Os values range between -0.43ǂ.10 for Golets flow 3 and -0.07ǂ.13 for the lava lake. A single chromite separate from Golets flow 1 has a %187Os(T) of -0.06ǂ.15. Nd-Pb isotope and lithophile trace element data for the Vetreny belt komatiitic basalts were used to monitor the effect of crustal contamination on the Os isotope system and to estimate the initial Os isotope composition of the Vetreny plume source to be approximately chondritic with a %187Os(T) of -0.9. This implies that the mantle source evolved with a long-term nearly chondritic Re/Os ratio. The data provide further evidence that, by the end of the late Archean, the Earth's upper mantle was well homogenized with respect to the highly siderophile elements, added during the accretion of a late veneer, on a time scale of ~1 Ga.  相似文献   

20.
Giacomo Corti   《Earth》2009,96(1-2):1-53
The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea–Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres.The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north–northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated.The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE–SW) and the Late Pliocene (post 3.2 Ma)-recent extensional stress field generated by relative motion between Nubia and Somalia plates (roughly ESE–WNW) suggest that oblique rifting conditions have controlled rift evolution. However, it is still unclear if these kinematical boundary conditions have remained steady since the initial stages of rifting or the kinematics has changed during the Late Pliocene or at the Pliocene–Pleistocene boundary.Analysis of geological–geophysical data suggests that continental rifting in the MER evolved in two different phases. An early (Mio-Pliocene) continental rifting stage was characterised by displacement along large boundary faults, subsidence of rift depression with local development of deep (up to 5 km) asymmetric basins and diffuse magmatic activity. In this initial phase, magmatism encompassed the whole rift, with volcanic activity affecting the rift depression, the major boundary faults and limited portions of the rift shoulders (off-axis volcanism). Progressive extension led to the second (Pleistocene) rifting stage, characterised by a riftward narrowing of the volcano-tectonic activity. In this phase, the main boundary faults were deactivated and extensional deformation was accommodated by dense swarms of faults (Wonji segments) in the thinned rift depression. The progressive thinning of the continental lithosphere under constant, prolonged oblique rifting conditions controlled this migration of deformation, possibly in tandem with the weakening related to magmatic processes and/or a change in rift kinematics. Owing to the oblique rifting conditions, the fault swarms obliquely cut the rift floor and were characterised by a typical right-stepping arrangement. Ascending magmas were focused by the Wonji segments, with eruption of magmas at surface preferentially occurring along the oblique faults. As soon as the volcano-tectonic activity was localised within Wonji segments, a strong feedback between deformation and magmatism developed: the thinned lithosphere was strongly modified by the extensive magma intrusion and extension was facilitated and accommodated by a combination of magmatic intrusion, dyking and faulting. In these conditions, focused melt intrusion allows the rupture of the thick continental lithosphere and the magmatic segments act as incipient slow-spreading mid-ocean spreading centres sandwiched by continental lithosphere.Overall the above-described evolution of the MER (at least in its northernmost sector) documents a transition from fault-dominated rift morphology in the early stages of extension toward magma-assisted rifting during the final stages of continental break-up. A strong increase in coupling between deformation and magmatism with extension is documented, with magma intrusion and dyking playing a larger role than faulting in strain accommodation as rifting progresses to seafloor spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号