首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

This study was carried out in the Adamawa region, which connects Cameroon, Central African Republic, and Nigeria together. The main objective of this work is to assess the geophysical aspects of the local Pan-African hydraulic conductivity (K), using the vertical electrical sounding technique (VES) as an alternative approach to pumping test. This economical, less-time consuming, and easy-to-process alternative technique provides more accurate hydraulic conductivity values than the traditional pumping test technique. The K values obtained by the VES technique (ranging between 0.4 and 6.0 m/day) match those obtained by the pumping tests results. A thorough analysis of the transmissivity values reveals the existence of two aquifer trends in the region: Trend-1 with transmissivity values ranging from 34.22 to 39.27 m2/day with an average value of 35.44, and Trend-2, with transmissivity values of 7.87–34.44 m2/day with an average value of 16.56. Maps of transmissivity (T), resistivity (ρ), thickness (h), transverse resistance (TR), and hydraulic conductivity (K) of the Pan-African aquifer, derived from quantitative VES data interpretation, are established. These parameters are of paramount importance to the management of groundwater resources. They are important in the sense that geological contexts similar to that of Pan-African aquifer cut across Africa and South America. Therefore, this article will be valuable to regions worldwide that are geologically similar to the Adamawa Region.

  相似文献   

2.

Geophysical and geological studies play a fundamental role in the strategic and sustainable utilization of natural resources, especially that of fossil groundwater, in arid regions. The geophysical exploration of shallow groundwater aquifers is common in arid regions. In this work, a feasibility study of future development plans in the Siwa Oasis, Egypt, was carried out. A land electric resistivity survey was conducted, and approximately 14 vertical electric soundings were measured covering the Siwa Oasis, northwestern desert, Egypt. A detailed surface geology study was also conducted to study the underground water aquifer. Digital filters were applied to the reduced to pole-available magnetic data covering the area. The normalized source strength transformation and tilt depth were calculated and applied to delineate the possible structures that may control the shallow and deep aquifers in the area. The integrated interpretation showed the presence of four main geoelectric layers forming the shallow section of the Siwa Oasis down to 220 m. These layers varied in their resistivity and rock constituents from very low (0.2 Ω m) to very high (6200 Ω m) values. The calculated hydraulic parameters showed that the uppermost central area and the eastern area were the most promising areas for the required water development. Finally, based on the integrated interpretation and the estimated shallow aquifer potentiality, a land use map for the Siwa Oasis was produced to assist future strategic development of the region.

  相似文献   

3.

Principal components analysis of fracture trace and sinkhole characteristics near 33 wells drawing water from the Ocala aquifer identified three hydrogeologically significant components. Multiple regression analysis using these components as independent variables showed that the flow of water to a well bore is influenced in order of importance by (1) proximity to a zone of high secondary permeability; (2) average aquifer transmissivity near the well; and (3) degree of cavity development in the closest zone of high secondary permeability.  相似文献   

4.
Geographical information systems (GIS) are important tools in coastal research and management. Coastal GIS applications involve special challenges, because the coastal environment is a complex transitional system between the terrestrial and marine realms. Also acquisition methods and responsibilities for spatial data (and thus their properties) change at the shoreline. This article explores the consequences of this land-sea divide for coastal terrain modelling. We study how methods designed for terrestrial environments can be used to create integrated raster coastal terrain models (CTMs) from coarse elevation and depth data. We focus on shore slopes, because many particularities of coastal terrain and the data which describe it as well as the resulting problems are concentrated in the shore zone. Based on shorelines, terrestrial contours, depth contours and depth points, we used the ANUDEM algorithm to interpolate CTMs at different spatial resolutions, with and without drainage enforcement, for two test areas in a highly complex archipelago coast. Slope aspect and gradient rasters were derived from the CTMs using Horn's algorithm. Values were assigned from the slope rasters to thousands of points along the test areas' shorelines in different ways. Shore slope gradients and aspects were also calculated directly from the shorelines and contours. These modelled data were compared to each other and to field-measured shore profiles using a combination of qualitative and quantitative methods. As far as the coarse source data permitted, the interpolation and slope calculations delivered good results at fine spatial resolutions. Vector-based slope calculations were very sensitive to quality problems of the source data. Fine-resolution raster data were consequently found most suitable for describing shore slopes from coarse coastal terrain data. Terrestrial and marine parts of the CTMs were subject to different errors, and modelling methods and parameters had different consequences there. Thus, methods designed for terrestrial applications can be successfully used for coastal terrain modelling, but the choice of methods and parameters and the interpretation of modelling results require special attention to the differences of terrestrial and marine topography and data.  相似文献   

5.
An application of a geotechnical database system for primary evaluation of ground-water resources in a sedimentary basin is proposed. The database consists of 1200 borehole logs including geologic columns,in situ test results, ground-water level, water quality data, and resistivity logs. The Kumamoto plain, situated in southwest Japan, is chosen as a study area. The evaluation process consists of two steps: (1) modeling of shapes of water-bearing strata, and (2) modeling of distribution of physical quantity which has some relationship with the porosity of those strata. In step (1), the shapes of upper and/or lower surface of the pyroclastic flow deposits and the andesitic lava were determined, whereas the three-dimensional distribution model of resistivity was constructed from resistivity logging data obtained from 100 boreholes and using the proposed interpolation method in the step (2). An empirical equation between the porosity and the resistivity of the lava was also identified. The integration of two types of model and the empirical equation contributed to an estimate of the total volume of the ground-water under the study area.  相似文献   

6.
Investigations into processes of valley formation on the Colorado Plateau have confirmed the important role of sapping in the Navajo Sandstone. The sapping process produces drainage systems that differ uniquely from fluvially eroded networks in their valley morphology, network pattern, spatial evolution, and degree of structural, lithologic, and stratigraphic control. The Navajo Sandstone is a highly transmissive aquifer. Sapping results from groundwater emergence above a permeability boundary formed by the underlying Kayenta Formation. This discharge undercuts cliff faces, and causes massive slab failures and vertical cliff recession. The principal agent for the physical weakening of the Navajo Sandstone at a site of seepage appears to be the mechanical separation of sand grains by the deposition of calcite from saturated waters.

The control of porosity and permeability by textural and mineralogical features in the Navajo Sandstone and Kayenta Formation was studied using reflected light and cathodoluminescence examination of epoxy-impregnated, polished sections, and a scanning electron microscope study of unimpregnated, unpolished rock chips. The most significant diagenetic factor in porosity reduction in the Kayenta Formation is the abundance of clay filling the pores. Other factors incude the development of quartz overgrowths and extensive carbonate deposition.  相似文献   

7.
The northern coastal part of Korinthia prefecture can be characterized as an agrotourism center that has grown and urbanized rapidly. The area is formed of recent unconsolidated material consisting of sands, pebbles, breccias and fine clay to silty sand deposits. These deposits host the main aquifer system of the area, which depends on groundwater as a water resource. Groundwater is the main source for irrigation in the area. A total water volume of 29.2×106–34.3×106 m3 yr−1 was estimated to recharge the aquifer system from direct infiltration of rainfall, streambed infiltration, irrigation return, artificial recharge via flood irrigation and lateral subsurface inflows. The present annual abstraction ranges between 39.2×106 and 44.6×106 m3 yr−1. Groundwater abstraction in dry years exceeds renewable freshwater resources by more than 38%. Approximately 79% of the total abstraction is consumed for agriculture supply. Water balance in the coastal aquifer system is in disequilibrium; a deficit, which ranges from 4.9×106 to 15.4×106 m3 yr−1 exists. The safe yield of the coastal aquifer system has been estimated at 37.1×106 m3 yr−1 for normal hydrological year and 32×106 m3 yr−1 for severely dry hydrological year. The total abstraction is greater than the recharge and the safe yield of the aquifer. The aquifer system has shown signs of depletion, seawater intrusion and quality contamination. The integrated water resources management, securing water in the future, should include measures that augment groundwater budget in the coastal aquifer of the study area.  相似文献   

8.
This paper advocates the use of GIS for the evaluation of the vulnerability of coastal waters and presents a method for mapping their vulnerability to algal blooms. The method incorporates probability mapping of parameters used to describe coastal waters and fuzzy sets. To allow the modelling of processes where some components cannot substitute for other components the 'no trade off' convex combination formula is proposed. The maps of vulnerability for the Gulf of Gdansk, which were created using this method, may be used to find out which rivers and water discharges play a dominant role in eutrophication.  相似文献   

9.
《自然地理学》2013,34(2):130-153
Contamination of ground water has been a major environmental concern in recent years. The potential for ground-water contamination by pesticides depends on porous media, solute, and hydrologic parameters. Although sophisticated deterministic computer models are available for assessing aquifer-contamination potential on a site-by-site basis, most deterministic models are too complex for vulnerability assessment on a regional scale because they require input data that are spatially and temporally variable, and which may not be available at this scale. Therefore, development of an affordable model that is robust under conditions of uncertainty at the watershed scale with minimum input of field data becomes a useful ground-water management tool. The purpose of this study was to examine the usefulness of fuzzy rule-based techniques in predicting aquifer vulnerability to pesticides at the regional scale. The objectives were to (1) develop fuzzy rule-based models using the same input parameters contained in an index-based model (i.e., the modified DRASTIC model), (2) determine the sensitivity of fuzzy rule model predictions, (3) compare the outputs of the fuzzy rule-based models with those of the modified DRASTIC model and with the results of aquifer water-quality analyses, and (4) examine the spatial variability of field parameters around contaminated wells of the Alluvial aquifer in Woodruff County Arkansas. The fuzzy rule-based model for objective (1) was developed using similar parameter weights and ratings as the modified DRASTIC model. For objective (2), fuzzy rule-based models were created using fewer parameters than the modified DRASTIC model. Sensitivity of the fuzzy rule-based models was determined using different combinations of weights of the four input parameters in DRASTIC. It was found that variations in the weights of the input parameters and number of fuzzy sets influenced the location of the aquifer-vulnerability categories as well as the area within each fuzzy category. The fuzzy rule models tended to predict somewhat higher vulnerabilities of the Alluvial aquifer than the modified DRASTIC model. The fuzzy rule base that had the soil-leaching index (S) as the highest weight was chosen as the best fuzzy rule model in predicting potential contamination by pesticides of the aquifer. In general, the fuzzy rule models tended to overestimate the vulnerability of the aquifer in the study area.  相似文献   

10.
Convective and conductive heat transfer in sedimentary basins   总被引:1,自引:0,他引:1  
In the Earth's crust the temperature is largely controlled by heat conduction. However, under some circumstances, the thermal state is disturbed by advection of heat associated with groundwater flow. The corresponding thermal disturbance depends on the water flow velocity (modulus and direction) and therefore thermal data may be used to constrain the pattern of natural fluid flow. In this paper, some models of thermal disturbance induced by convective heat transfer are presented. They are based on the assumption that the water flow is concentrated in thin permeable structures such as aquifer or fault zones. The steady-state and transient thermal effects associated with such scenarios are computed using a somewhat idealized model which depends on a small number of parameters: flow rate, time, aquifer geometry and thermal parameters of surrounding rocks. In order to extract the conductive and convective components of heat transfer from temperature data and to estimate the corresponding fluid flow rate, it is first necessary to estimate the thermal conductivity field. The problem of the estimation of thermal conductivity in clay-rich rocks, based on laboratory and in-situ measurements, is emphasized. Then a method is proposed for the inversion of temperature data in terms of fluid flow. Vertical and lateral variations of thermal conductivity are taken into account and the fluid flow is assumed to be concentrated on a specified surface (2-D quasi-horizontal pattern). Thermal effects of the flow are simulated by a distribution of surface heat production which can be calculated and then inverted in terms of horizontal fluid flow pattern.  相似文献   

11.
ABSTRACT There is continued interest in how the rate of relative sea‐level rise [A ( > 0)] and the rate of sediment supply [S] function during the growth and evolution of deltaic shorelines. The theory of shoreline autoretreat, recently corroborated in flume experiments, claims that (1) A( > 0) and S can never be in equilibrium, and (2) shoreline or shelf‐edge progradation inevitably turns to retrogradation, when relative sea level is rising even modestly and even if A/S = const (> 0). Autoretreat arises because the area of the clinoform surface of the delta (or shelf edge) per kilometer of shoreline must increase as the relative sea level rises, and the delta (or shelf edge) progrades into deeper water. A finite sediment supply rate is thus liable to become inadequate to sustain progradation. The problem increases further as a rising sea level also greatly increases the delta‐plain volume that needs to be filled, further limiting the progradation of the system. The fundamental trajectory of shoreline migration is thus one characterized by a concave‐landward shape, even under the steady forcing of the basin. The magnitudes of A (> 0) and S, or A/S do not determine whether the landward turnaround of the shoreline is realized or not, but affect merely the length and height of the fundamental trajectory curve. Thus, any attempt to detect and interpret temporal changes in A and S from the observed stratigraphic record of shoreline trajectory needs first to take full account of the inbuilt autoretreat mechanism. We develop here a simple, semi‐quantitative method of reconstructing the basin conditions (A and S) from the stratigraphic record of prograding deltaic shorelines (or prograding shelf‐margin clinoforms) on the basis of the theory of shoreline autoretreat. The deterministic nature of the autoretreat theory is advantageous in managing this latter issue, because any expected or unexpected change emerges as some discrepancy from a trajectory that was predicted for the initial conditions. The autoretreat theory also provides a convenient graphical method of dealing with the uncertainty of the field data, and with evaluating the accuracy of any reconstruction. Our methodology has been developed to deal with the behaviour of deltaic shorelines, but is basically applicable to any clinoform system, the development of which is affected by relative sea level. The suggested method is applied to an Early Eocene (Ypresian) regressive shoreline succession in the Central Tertiary Basin on Spitsbergen. The studied regressive wedge developed as a delta‐driven, progradational shelf‐margin system under a regime of overall (i.e. long‐term) rise of relative sea level, but also suffered short‐term sea‐level falls associated with valley incisions on the coastal plain and shelf. On the assumption that S was constant or was steadily decreasing, the analysis of field data obtained from three sites within the basin suggests that the initial water depth in the basin was around 0.45 km, and that the overall relative sea‐level rise (c. 0.80 km) happened largely during an early time period and was followed by a longer period of much lower rate of rise. This pattern of relative sea‐level rise is consistent with the Palaeogene tectonic subsidence trend of the basin which was determined independently through a geohistory analysis. The uncertainty of the field data does not negate our reconstruction. The combined effects of autoretreat and A/S changes on a deltaic shoreline trajectory are confirmed through the development of an autoretreat‐based methodology. Conventional sequence stratigraphic models that assume a possible equilibrium condition between A and S are both conceptually misleading and insufficient to analyse basin conditions quantitatively. Sequence stratigraphic analyses of shorelines need to incorporate the autoretreat concept.  相似文献   

12.
Principal components analysis of fracture trace and sinkhole characteristics near 33 wells drawing water from the Ocala aquifer identified three hydrogeologically significant components. Multiple regression analysis using these components as independent variables showed that the flow of water to a well bore is influenced in order of importance by (1) proximity to a zone of high secondary permeability; (2) average aquifer transmissivity near the well; and (3) degree of cavity development in the closest zone of high secondary permeability.  相似文献   

13.
Airborne lidar data from the northern Puget Lowland provide information on the spatial variability and amplitude of raised postglacial shorelines, marine deltaic features and glaciomarine sediments deposited between approximately c. 12 920 and 11 050 14C yr BP (15 960‐12 364 cal yr BP). Relict shorelines preserved in embayments on Whidbey and Camano islands (between 47°54′N and 48°24′N) are found up to an altitude of c. 90 m and record glacio‐isostatic movements attributed to postglacial rebound. The tilt of the regional minimum highstand sea level surface to the north of 0.80 m km?1, with local variability from 0.25 m km?1 to 0.77 m km?1, is consistent with previous studies (Thorson 1989; Dethier et al. 1995). The local variability is related to the uncertainty in the depth of the water column above these features at the time of deposition and probable tectonic deformation. The information generated by these lidar data is most valuable in posing new research questions, generating alternative research hypotheses to those already formulated in the northern Puget Lowland.  相似文献   

14.
Assessing coastal vulnerability to sea level rise (SLR) at local and regional scales is a fundamental step for designing successful long-term coastal management plans. This study was thus designed to assess Kuwait coastal vulnerability to SLR at four scenarios (.5, 1, 1.5 and 2 m). Potential inundated areas and the number of people at risk were estimated based on these SLR scenarios. A coastal vulnerability index (CVI) map of Kuwait was then computed based on the lowest scenario using eight parameters: elevation, coastal slope, geomorphology, distance to 20-m isobath, population, land use, cultural heritage and transportation. The geographic distribution of inundated areas at an SLR of .5 m revealed that the northern islands of Kuwait and coastal areas along Kuwait Bay would be highly impacted, whereas the coastal area near Shuaibah Port was the most influenced among the southern coasts. Most of the coastal area exhibited a moderate vulnerability to SLR, especially the northern islands. This study presented an initial vulnerability assessment for Kuwait coasts to SLR, which can be extended with more variables. The integrated remote sensing and geographic information system methodology demonstrated in this study can be applied in similar studies elsewhere.  相似文献   

15.
The distribution of Sarcocornia pillansii (Moss) A.J. Scott was determined by water-table depth and electrical conductivity (EC) of the groundwater. Where the groundwater was accessible (<1.5 m) and had a low EC (<80 mS cm−1), S. pillansii extended its roots down to the water-table where a suitable water potential gradient was shown to exist between the soil and roots. In areas where the groundwater was too deep and/or hypersaline, the plants grew on hummocks. The unconfined aquifer below the floodplain is linked to the estuary and although diurnal tidal waves were dampened, water-table level fluctuations were recorded between tidal events. The complex geomorphology of the floodplain influences groundwater flow, in turn affecting the distribution of the salt marsh vegetation.  相似文献   

16.
The Florida Aquifer Vulnerability Assessment (FAVA) was designed to provide a tool for environmental, regulatory, resource management, and planning professionals to facilitate protection of groundwater resources from surface sources of contamination. The FAVA project implements weights-of-evidence (WofE), a data-driven, Bayesian-probabilistic model to generate a series of maps reflecting relative aquifer vulnerability of Florida’s principal aquifer systems. The vulnerability assessment process, from project design to map implementation is described herein in reference to the Floridan aquifer system (FAS). The WofE model calculates weighted relationships between hydrogeologic data layers that influence aquifer vulnerability and ambient groundwater parameters in wells that reflect relative degrees of vulnerability. Statewide model input data layers (evidential themes) include soil hydraulic conductivity, density of karst features, thickness of aquifer confinement, and hydraulic head difference between the FAS and the watertable. Wells with median dissolved nitrogen concentrations exceeding statistically established thresholds serve as training points in the WofE model. The resulting vulnerability map (response theme) reflects classified posterior probabilities based on spatial relationships between the evidential themes and training points. The response theme is subjected to extensive sensitivity and validation testing. Among the model validation techniques is calculation of a response theme based on a different water-quality indicator of relative recharge or vulnerability: dissolved oxygen. Successful implementation of the FAVA maps was facilitated by the overall project design, which included a needs assessment and iterative technical advisory committee input and review. Ongoing programs to protect Florida’s springsheds have led to development of larger-scale WofE-based vulnerability assessments. Additional applications of the maps include land-use planning amendments and prioritization of land purchases to protect groundwater resources.  相似文献   

17.

A thorough study on understanding of groundwater recharge sources and mechanisms was attempted by integrating the hydrogeological, geochemical and isotopic information along with groundwater dating and end-member mixing analysis (EMMA). This study was necessitated due to prolonged dryness and unavailability of freshwater in semi arid Deccan trap regions of Central India. In addition, groundwater resources are not characterized well in terms of their geochemical nature and recharge sources. The hydrogeochemical inferences suggest that aquifer I consists of recently recharged water dominated by Ca–Mg–HCO3 facies, while groundwater in aquifer II shows water–rock interaction and ion exchange processes. Presence of agricultural contaminant, nitrate, in both aquifers infers limited hydraulic interconnection, which is supported by unconfined to semi-confined nature of aquifers. Groundwater in both aquifers is unsaturated with respect to carbonate and sulfate minerals indicating lesser water–rock interaction and shorter residence time. This inference is corroborated by tritium age of groundwater (aquifer I: 0.7–2 years old and aquifer II: 2–4.2 years old). Stable water isotopes (δ2H, δ18O) suggest that groundwater is a mixture of rainwater and evaporated water (surface water and irrigation return flow). EMMA analysis indicates three groundwater recharge sources with irrigation return flow being the dominant source compared to others (rainwater and surface waters). A conceptual model depicting groundwater chemistry, recharge and dynamics is prepared based on the inferences.

  相似文献   

18.
The underpressure observed in the glacial valley Adventdalen at Svalbard is studied numerically with a basin model and analytically with a compartment model. The pressure equation used in the basin model, which accounts for underpressure generation, is derived from mass conservation of pore fluid and solid, in addition to constitutive equations. The compartment model is derived as a similar pressure equation, which is based on a simplified representation of the basin geometry. It is used to derive analytical expressions for the underpressure (overpressure) from a series of unloading (loading) intervals. The compartment model gives a characteristic time for underpressure generation of each interval, which tells when the pressure state is transient or stationary. The transient pressure is linear in time for short‐time spans compared to the characteristic time, and then it is proportional to the weight removed from the surface. We compare different contributions to the underpressure generation and find that porosity rebound from unloading is more important than the decompression of the pore fluid during unloading and the thermal contraction of the pore fluid during cooling of the subsurface. Our modelling shows that the unloading from the last deglaciation can explain the present day underpressure. The basin model simulates the subsurface pressure resulting from erosion and unloading in addition to the fluid flow driven by the topography. Basin modelling indicates that the mountains surrounding the valley are more important for the topographic‐driven flow in the aquifer than the recharging in the neighbour valley. The compartment model turns out to be useful to estimate the orders of magnitude for system properties like seal and aquifer permeabilities and decompaction coefficients, despite its geometric simplicity. We estimate that the DeGeerdalen aquifer cannot have a permeability that is higher than 1 · 10?18 m2, as otherwise, the fluid flow in the aquifer becomes dominated by topographic‐driven flow. The upper value for the seal permeability is estimated to be 1 · 10?20 m2, as higher values preclude the generation and preservation of underpressure. The porosity rebound is estimated to be <0.1% during the last deglaciation using a decompaction coefficient αr = 1 · 10?9 Pa?1.  相似文献   

19.
种培芳  李毅  苏世平 《中国沙漠》2014,34(5):1301-1306
以3个地理种源(武威、张掖、酒泉)蒙古沙拐枣(Calligomum mongolicum)两年生苗木为试材,研究干旱胁迫对其光合及荧光参数的影响,并采用投影寻踪法对其进行了抗旱性评价。结果表明:干旱胁迫导致3个地理种源蒙古沙拐枣光合作用均有所下降,但下降幅度不同,尤其在张掖和酒泉种源间差异显著(p0.05)。在重度干旱时,3个种源的光合速率(Pn)酒泉武威张掖,蒸腾速率(Tr)张掖武威酒泉,气孔导度(Gs)酒泉武威张掖。干旱胁迫下,3个地理种源蒙古沙拐枣的荧光特性表现为初始荧光(Fo)和非光化学淬灭系数(qN)升高,最大光学效率(Fv/Fm)、实际光能转化效率(ФPSⅡ)和光化学淬灭系数(qP)降低。在重度胁迫下,3个种源的Fo和qP大小排序分别为张掖武威酒泉,Fv/Fm、ФPSⅡ和qN为酒泉武威张掖。以投影寻踪法对3个地理种源蒙古沙拐枣的抗旱性排序结果为酒泉武威张掖。  相似文献   

20.
The distribution of fractures and its dependence on lithology and petrophysical properties of rock in the Asmari Formation were examined using three wells data of one of the largest oil fields of southwestern Iran. Fractures were measured on cut cores. Mineral content and petrophysical data were obtained through thin section study and core plug measurement respectively. Influence of mineral composition and petrophysical property of rocks on fracture density was explored statistically. Increasing quartz (sand) and anhydrite content of rocks decrease and dolomite increases the threshold of fracture densities, however no significant relation was observed between calcite content of rock and fracture density. Increasing porosity and permeability of rock decrease the threshold of fracture density in some of the defined lithology groups. There are significant differences between the lithology groups in terms of fracture density, although the results in the three wells are not the same. In whole data, the highest fracture density can be observed in dolostone. Limestone and impure carbonates hold broader spaced fractures and sandstones display the least fracture density. The average fracture densities in the wells are strictly different. These differences are the result of the structural position of the wells and also the trend of the well and fractures. The distribution of fractures in most lithology groups can be explained by the function: , where F is relative frequency, D is fracture density and a, b, and c are constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号