首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Three-dimensional (3D) geological modeling is an important method for understanding geological structures and constructing exploration model with multiple source datasets for potential mineral deposits. The Luanchuan Mo polymetallic district located in Henan Province, China, has a complex geological setting and multiple metallogenic types. In this paper, we build a 3D geological model covering 43 km × 26 km × 5 km (vertical) by gravity and magnetic interactive inversion to delineate geometry, depth, and physical properties of geologic bodies at depths. We reduce the geological uncertainty and verify the reliability of the model through the combination of geophysical interactive inversion and tectonic-geochemistry methods. Several deep targets have also been extracted by combining the metallogenic model in the district with the 3D geologic model and tectono-geochemistry dataset. The research results show that the combination of 3D exploration model constrained by gravity and magnetic data with geologic constraints and tectono-geochemical data can be used to delineate the potential targets quickly and accurately in complex geological settings.  相似文献   

2.

In this study, deposit- and district-scale three-dimensional (3D) fault-and-intrusion structure models were constructed, based on which a numerical simulation was implemented in the Jiaojia gold district, China. The numerical simulation of the models shows the basic metallogenic path and trap of the gold deposits using mineral system theory. The objective of this study was to delineate the uncertainty of the geometry or buffer zones of the ore-forming and ore-controlling fault-and-intrusion domains in 3D environment representing the exploration criteria extraction and the gold potential targeting in the study area. The fast Lagrangian analysis of continua in three dimensions was used as the platform to define the stress deformation fracture ore storage and the hydrothermal seepage channel zone based on the gold deposit features and metallogenic model in the study area. The validity of the numerical simulation was verified by comparing it with robust 3D geological models of the large Xincheng gold deposit. The potential targeting zones are analyzed for uncertainty and then evaluated by Boolean operation in a 3D geological model using the computer-aided design platform. The research results are summarized as follows. (1) In the pre-mineralization period, the Jiaodong fault’s left lateral movement created the Jiaojia network faults and formed a fracture zone with NW- to NNW-trending dips of 20° to 40°. (2) During the mineralization period, hydrothermal flow was associated with the intrusion geometry and features. However, it was constrained by the Jiaojia fault, which blocked the vadose flow into the upper wall rock and made the hydrothermal route close to the fault in the footwall fracture zones. (3) Three gold potential targets were identified by the numerical simulation results in the study area: the NW-trending Sizhuang gold deposit, the NW-trending zone of Jiaojia gold deposit, and the NE-trending zone of the Xincheng gold deposit. (4) The numerical simulation results show the fault-and-intrusion metallogenic domain and the hydrothermal alteration zones, which reflect the main ore-controlling and ore-forming factors of mineralization. The information obtained through the numerical simulation discussed here can be used to define exploration criteria in the study area.

  相似文献   

3.
An application of the theory of fuzzy sets to the mapping of gold mineralization potential in the Baguio gold mining district of the Philippines is described. Proximity to geological features is translated into fuzzy membership functions based upon qualitative and quantitative knowledge of spatial associations between known gold occurrences and geological features in the area. Fuzzy sets of favorable distances to geological features and favorable lithologic formations are combined using fuzzy logic as the inference engine. The data capture, map operations, and spatial data analyses are carried out using a geographic information system. The fuzzy predictive maps delineate at least 68% of the known gold occurrences that are used to generate the model. The fuzzy predictive maps delineate at least 76% of the unknown gold occurrences that are not used to generate the model. The results are highly comparable with the results of previous stream-sediment geochemical survey in the area. The results demonstrate the usefulness of a geologically constrained fuzzy set approach to map mineral potential and to redirect surficial exploration work in the search for yet undiscovered gold mineralization in the mining district. The method described is applicable to other mining districts elsewhere.  相似文献   

4.
The Gurupi Belt hosts a Paleoproterozoic gold province located in north–northeastern Brazil, at the borders of Pará and Maranhão states. It is considered to be an extension of the prolific West African Craton’s Birimian gold province into South America. Additionally, the belt has been the object of recent mineral exploration programs with significant resource discoveries. This study presents the results of predictive mapping using up-to-date mineral system concepts and recently finished regional-scale geological mapping, stream sediment and airborne geophysical surveys conducted by the Geological Survey of Brazil. We relate gold mineralization to an initially enriched crust, metamorphism, deep fluid pathways, structurally controlled damage zones and hydrothermal alteration. Prospective targets were generated using only regional public datasets and knowledge-driven targeting technique. This work did not incorporate any known gold deposits, yet it predicted the largest known deposits and their satellite targets. Besides, high prospective targets mapped almost 40% of known primary gold occurrences within 7% of the project area. This work allowed considerable search area reduction and identification of new target areas, thus collaborating on reducing costs, time and risk of mineral exploration. Results indicate that we achieved an efficient understanding of the geological processes related to the Gurupi Belt mineral system.  相似文献   

5.

Incorporating locally varying anisotropy (LVA) in geostatistical modeling improves estimates for structurally complex domains where a single set of anisotropic parameters modeled globally do not account for all geological features. In this work, the properties of two LVA-geostatistical modeling frameworks are explored through application to a complexly folded gold deposit in Ghana. The inference of necessary parameters is a significant requirement of geostatistical modeling with LVA; this work focuses on the case where LVA orientations, derived from expert geological interpretation, are used to improve the grade estimates. The different methodologies for inferring the required parameters in this context are explored. The results of considering different estimation frameworks and alternate methods of parameterization are evaluated with a cross-validation study, as well as visual inspection of grade continuity along select cross sections. Results show that stationary methodologies are outperformed by all LVA techniques, even when the LVA framework has minimal guidance on parameterization. Findings also show that additional improvements are gained by considering parameter inference where the LVA orientations and point data are used to infer the local range of anisotropy. Considering LVA for geostatistical modeling of the deposit considered in this work results in better reproduction of curvilinear geological features.

  相似文献   

6.

This paper applied a logistic-based fuzzy logic inference system to integrate critical factors that could control orogenic gold mineralization in part of the Kushaka schist belt, north-central Nigeria to develop a process-based mineral potential mapping (MPM) of the area. The critical factors from geophysical and geological dataset were weighted using logistic functions. The fuzzy logic inference system provides the capability to handle complex geological processes that culminated in orogenic gold mineralization as well as minimizing systemic uncertainties/fuzziness that often plague MPM. The results of this work show that granitic intrusions with fuzzy scores of 0.67–0.90 played a major role in generating high geothermal gradient in the area. Seventy percent of the existing gold mine sites in the area spatially coincide with metasedimentary rocks, having fuzzy scores of 0.7–0.9; this suggests metasedimentary rocks as being responsible for the production of gold fluid and ligands in the area. The evidence of hydrothermal activity, with fuzzy scores of 0.53 and 0.91, confirms the occurrence of mineralization associated with quartz veins and granite rocks. Lithological contacts and faults, having fuzzy scores of 0.60–0.80, presumably contribute to the localization of orogenic gold mineralization in the area. Emerging from the results, favorable zones for primary orogenic gold mineralization in the area occurred predominantly on granite gneiss and quartz veins. The mineral potential map was found consistent with the local geology, structural styles and hydrothermal alteration signatures in the area, and its validation using the existing locations of geochemical anomalies and prediction–area rate curve in the study area showed 75 and 72% agreement, respectively, thus confirming the reliability of the developed mineral potential map for resource management.

  相似文献   

7.

Bétaré-Oya is one of the gold mining districts in the eastern region of Cameroon. Structural controls on gold mineralization were examined along the Bétaré-Oya Shear Zone, providing further clues on favorable areas for mineral exploration. GIS-based methods combining point pattern (i.e., quadrat count, Fry analysis) and distance distribution analysis were employed here to delineate the spatial patterns of known gold deposits and to evaluate their spatial association with geological structures. Results show that the gold deposits in this area are spatially clustered. At the regional scale, the Fry plot indicates an alignment of deposits, suggesting that gold mineralization is controlled by structures oriented NNE–SSW and NE–SW. At the deposit scale, an alignment is also evident, indicating that the mineralization is also controlled by ENE–WSW-trending structures. The cumulative relative frequency distribution of distances from lineament features to gold occurrence points (DM) and to non-occurrence points (DN) ratio (DM/DN) was used to rank these two major structural trends and their relative importance as mineralization control. The yielded grades show that NE–SW-trending lineaments, akin to P-type structures, play a major role in controlling the gold mineralization in the area compared to other structures. Beyond the goal to foster mineral prospection in the Bétaré-Oya gold district, information yielded in the present study provides relevant criteria for further exploration in the eastern region of Cameroon.

  相似文献   

8.

Recognition of effective factors that influence the spatial extension of supergene weathering zones is important both for the identification of high potential areas of exotic deposits and for the cost-effective planning of mining. In particular, recognition of exotic mineralization around porphyry copper deposits early in mine development prevents them from being buried beneath mine infrastructures such as waste dump and tailing structures. Mass-balance modeling, a practical method for determining high potential areas of undiscovered exotic mineralization, investigates important factors in forming exotic deposits. Mass-balance modeling is a two-phase methodology that becomes progressively more detailed. An initial result, presented here as phase 1, is based solely on Cu assays. Phase 2 incorporates relict sulfide mineral studies to improve phase 1 modeling results and computes actual fluxes of copper that escaped vertically downward from the leached cap to form the enrichment blanket and then flowed laterally away to form exotic mineralization. In addition, geostatistical approaches, especially sequential Gaussian simulation, are useful tools for investigating the spatial relationships and modeling of mass-balance results in phase 1 studies. This paper introduces a method for interpolation and downscaling of the preliminary mass-balance analysis (phase 1) to highlight the role of geological features in the evolution of the supergene process. Using only copper assays without any need for relict sulfide mineralogy, this approach can be used to approximately identify the geographic direction of metal movement in exotic copper deposits, and thus serve as an initial exploration guide in prospecting for exotic deposits. For this, a vertical columnar block model was constructed for each of the supergene weathering zones and preliminary analysis of mass balance was conducted to reconstruct the apparent total leached zone column height assuming zero lateral flux. This analysis was applied to each of the vertical block model columns. The results of mass balance were interpolated in a 5?×?5 m grid by sequential Gaussian simulation method, and the simulated surface of the total leached zone was conflated with geological features. The roles of topography, argillic alteration and linear structures were identified in the transport of supergene solutions in the Miduk porphyry copper deposit of Iran. In the northern section of the deposit, which is in accordance with the topography gradient and the presence of advanced argillic alteration zone, the computed top total of leaching is below the actual surface topography, whereas the hypogene isograd curves confirm the expansion of primary copper in these areas. The northern section of the deposit was introduced as a susceptible area for the removal of copper-bearing solutions from the supergene enrichment system.

  相似文献   

9.

Mine planning is influenced by many sources of uncertainty. Significant sources of geological uncertainty in mine planning include uncertainty in layout of geological domains and uncertainty in metal grades. These two sources of uncertainty cannot be modeled separately because the distribution of the grade is controlled usually by geological domains. Two approaches exist for combining these two sources of uncertainty: the joint simulation approach and the cascade approach. In this paper, these two approaches were compared using a real case study. To this end, uncertainty in iron grade (quantitative variable) and ore zones (qualitative variable) was modeled using both approaches. There were some considerable differences in the results obtained by each approach, which confirm the importance of choosing the most appropriate approach with consideration of the dominate features of a deposit.

  相似文献   

10.
通过近4年的地质调查工作,在内蒙古达茂旗哈力齐地区某矿权内发现了一个金矿化点,该矿点由两条石脉(带)组成,矿化不同期次的构造控制。初步认为,早期近EW向断裂构成了深部热液向上运移的通道,在晚期NE向断裂构造活动的作用下,形成了近EW向石英脉,深部热液沿早期近EW向断裂运移至浅部,在晚期的近EW向石英脉中形成金矿化。通过资源量估算获得金金属量为871kg。  相似文献   

11.
There are multiple ways to characterize uncertainty in the assessment of coal resources, but not all of them are equally satisfactory. Increasingly, the tendency is toward borrowing from the statistical tools developed in the last 50 years for the quantitative assessment of other mineral commodities. Here, we briefly review the most recent of such methods and formulate a procedure for the systematic assessment of multi-seam coal deposits taking into account several geological factors, such as fluctuations in thickness, erosion, oxidation, and bed boundaries. A lignite deposit explored in three stages is used for validating models based on comparing a first set of drill holes against data from infill and development drilling. Results were fully consistent with reality, providing a variety of maps, histograms, and scatterplots characterizing the deposit and associated uncertainty in the assessments. The geostatistical approach was particularly informative in providing a probability distribution modeling deposit wide uncertainty about total resources and a cumulative distribution of coal tonnage as a function of local uncertainty.  相似文献   

12.
Concepts of fractal/multifractal dimensions and fractal measure were used to derive the prior and posterior probabilities that a small unit cell on a geological map contains one or more mineral deposits. This has led to a new version of the weights of evidence technique which is proposed for integrating spatial datasets that exhibit nonfractal and fractal patterns to predict mineral potential. The method is demonstrated with a case study of gold mineral potential estimation in the Iskut River area, northwestern British Columbia. Several geological, geophysical, and geochemical patterns (Paleozoic-Mesozoic sedimentary and volcanic clastic rocks; buffer zones around the contacts between sedimentary rocks and Mesozoic intrusive rocks; a linear magnetic anomaly; and geochemical anomalies for Au and associated elements in stream sediments) were integrated with the gold mineral occurrences which have fractal and multifractal properties with a box-counting dimension of 1.335±0.077 and cluster dimension of 1.219±0.037.  相似文献   

13.
Gold and mercury mineralization related to epithermal hot springs occurs spatially associated with rhyolite dome complexes in the Quartz Mountain district, Lake County, Oregon. Drilling of over 800 holes from 1983 to 1991, mostly by Quartz Mountain Gold Corp., has resulted in a mineral inventory of at least 100,000,000 tons, averaging 0.0255 ounce gold per ton in two near-surface, disseminated gold ore bodies, Quartz Butte and Crone Hill. Extensive gold disseminations are underlain by and include rare, higher-grade veins that could be feeders for the near-surface, quasi-horizontal, pervasively mineralized gold dissemination. The veins contain about 2,000,000 tons of ore, aver-aging 0.29 ounce gold per ton. Approximately 750,000 tons of this underlie Quartz Butte, and the remainder is included in the Crone Hill low-grade dissemination. With a mineral inventory of about 3,000,000 ounces, Quartz Mountain is currently the largest known gold deposit in Oregon.As now known, the veins seem too few in number and too sporadically positioned to account for the volume of near-surface gold disseminations. We offer hypotheses to explain the apparent anomaly between the volume of disseminated gold ore and the paucity of feeders. Quartz Mountain has numerous alteration and mineralization similarities with the well-studied Steamboat Springs district (White and others, 1964). Coincidences between the two districts are noted.  相似文献   

14.
Conventional evaluation of quantitative mineral potential has focused on target selection at small scales. Mapping at small scales usually results in large-area targets, which may be suitable for grass-roots exploration or regional evaluation of potential. Unfortunately, the estimates in small-scale exploration are commonly associated with large uncertainties. Large-scale estimation is used for optimal in-fill drilling design and step-out drilling target selection. In-fill drilling helps to confirm ore-grade continuities and translate a portion of geological resources into minable reserves, whereas step-out target estimation is useful for finding new orebodies in the vicinity of known ore deposits. Both of these processes are necessary for mine development and production planning. A comprehensive methodology is proposed here, particularly for large-scale mineral exploration. The central information synthesizer is canonical or indicator favorability analysis. A case study is presented to demonstrate the methodology for large-scale target selection. The study involves a gold-mining district where step-out drilling targets are being sought to expand the resource base. Several drilling targets were delineated in the study region. Two of them were tested through surface sampling with positive results.  相似文献   

15.
Mineral potential within the Greater Nahanni Ecosystem (GNE) was modelled in a Geographic Information System (GIS) for four different deposit types: (1) SEDEX (stratiform shale-hosted sedimentary exhalative Zn–Pb–Ag), (2) ‘Carbonate-Fault’ (carbonate-hosted zinc–lead–silver associated with major faults), (3) ‘Intrusion-Related’ (includes skarn, rare metals and gemstones) and (4) Carlin-Type gold as lode and/or derived placer deposits. This mineral potential modelling study integrates data collected during the Nahanni Mineral and Energy Resource Assessment (MERA) undertaken from 2003 to 2007. The results have contributed to the process of determining the geographic boundaries of the proposed expansion of the Nahanni National Park Reserve. Four mineral potential maps were produced (one for each deposit type) using a knowledge-driven approach. A weighting scheme based on integrated mineral deposit and regional geological knowledge was derived for the various evidence maps for each deposit model using expert opinion. The four potential maps were then combined into a final potential map using a maximum operator. Plots showing the efficiency of the models (mineral potential maps) for predicting the known occurrences of the four deposit types show that partial data sets provide reasonable predictions of the remaining known mineral prospects, occurrences and deposits. Hydrocarbon potential from Nahanni MERA 1 was added to the final potential map to ensure that both mineral and energy potential data were incorporated into the park configuration modelling.  相似文献   

16.
Huang  Jixian  Mao  Xiancheng  Chen  Jin  Deng  Hao  Dick  Jeffrey M.  Liu  Zhankun 《Natural Resources Research》2020,29(1):439-458

Exploring the spatial relationships between various geological features and mineralization is not only conducive to understanding the genesis of ore deposits but can also help to guide mineral exploration by providing predictive mineral maps. However, most current methods assume spatially constant determinants of mineralization and therefore have limited applicability to detecting possible spatially non-stationary relationships between the geological features and the mineralization. In this paper, the spatial variation between the distribution of mineralization and its determining factors is described for a case study in the Dingjiashan Pb–Zn deposit, China. A local regression modeling technique, geological weighted regression (GWR), was leveraged to study the spatial non-stationarity in the 3D geological space. First, ordinary least-squares (OLS) regression was applied, the redundancy and significance of the controlling factors were tested, and the spatial dependency in Zn and Pb ore grade measurements was confirmed. Second, GWR models with different kernel functions in 3D space were applied, and their results were compared to the OLS model. The results show a superior performance of GWR compared with OLS and a significant spatial non-stationarity in the determinants of ore grade. Third, a non-stationarity test was performed. The stationarity index and the Monte Carlo stationarity test demonstrate the non-stationarity of all the variables throughout the area. Finally, the influences of the degree of non-stationary of all controlling factors on mineralization are discussed. The existence of significant non-stationarity of mineral ore determinants in 3D space opens up an exciting avenue for research into the prediction of underground ore bodies.

  相似文献   

17.
柴达木盆地尖顶山锶矿地质地球化学特征研究   总被引:1,自引:1,他引:0       下载免费PDF全文
尖顶山锶矿是柴达木盆地内大型的天青石矿床,通过对矿区进行野外考察和取样,对尖顶山锶矿矿石进行了矿物学、元素地球化学以及锶同位素特征的研究。在对尖顶山矿区区域地质构造特征分析对比的基础上,结合尖顶山天青石矿区的Google Earth图像的遥感地质解译,发现尖顶山地区的天青石矿层赋存于第四系七个泉组,而不是第三系的狮子沟组。并且前人所划分的N2S2-1和N2S2-2地层不应该属于上新世的狮子沟组,而应划入第四系七个泉组。  相似文献   

18.
19.
陈长志 《西部资源》2014,(5):120-123
上西坑钼矿位于福建省武夷山市五夫镇境内,矿区内已发现6个钼矿(化)体(Ⅳ1-Ⅳ6),Ⅳ1矿体为主矿体,是主要开采对象。综合已有的地质、物化探资料分析,上西坑钼矿采矿证内及外围均具较好的找矿前景,科学开展外围探矿工作能以最小的投入获取最大的勘查成果,为矿山扩建提供后备资源保障以及开采技术条件等依据。  相似文献   

20.
Vein-hosted gold deposits are characterized by mineralization, which is spatially restricted to narrow vein structures. Drillholes intersecting a mineralized vein can lead to unreliable and biased assay values compared to selective mining unit scale block grades. In this work, a discrete fracture network is simulated and adapted to model gold mineralization within the veins. Veins are assumed planar and the required inputs are distributions of vein orientation, vein length, and vein intensity (i.e., density). These inputs are collected from drillhole data, geological mapping, and expert knowledge of the deposit. A spatial point process is then applied to model gold grade as discrete events or “nuggets,” which are spatially restricted to the simulated quartz veins for the case of incomplete mineralization of the veins; when the vein is completely mineralized, a vein thickness distribution is required. The methodology is applied to an epithermal gold deposit in northwestern British Columbia, Canada and shows improvement in restricting the influence of the high-grade gold samples without resorting to ad-hoc manipulation of input assays through capping or cutting. The final output of this methodology is a block model of gold grade, which better honors the spatial structure of the veins in the deposit and is suitable for use in mine planning or resource estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号