首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The angrites are a small and heterogeneous group of achondritic meteorites with highly unusual chemical and mineralogical features. The abundant presence of glasses in D'Orbigny makes this rock a unique member of the angrite group. Glasses fill open spaces, form pockets, and occur as inclusions in olivines. Their physical settings exclude an incorporation from an external source. Major and trace element (rare earth elements [REE], Li, B, Be, transition elements, N and C) contents of these glasses and host olivines were measured combining laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), secondary-ion mass spectrometry (SIMS), Nuclear Reaction Analysis (NRA), and EMP techniques. Based on the major element composition, glasses filling voids could represent either a melt formed by melting an angritic rock or a melt from which angrites could have crystallized. Trace element contents of these glasses strongly indicate a direct link to the D'Orbigny bulk meteorite. They are incompatible with the formation of the glasses by partial melting of a chondritic source rock or by shock melting. The refractory elements (e.g., Al, Ti, Ca) have about 10 × CI abundances with CaO/TiO2 and FeO/MnO ratios being approximately chondritic. Trace element abundances in the glasses appear to be governed by volatility and suggest that the refractory elements in the source had chondritic relative abundances. Although the glasses (and the whole rock) lack volatile elements such as Na and K, they are rich in some moderately volatile elements such as B, V, Mn, Fe (all with close to CI abundances), and Li (about 3-5 × CI). These elements likely were added to the glass in a sub-solidus metasomatic elemental exchange event. We have identified a novel mechanism for alteration of glass and rock compositions based on an exchange of Al and Sc for Fe and other moderately volatile elements in addition to the well-known metasomatic exchange reactions (e.g., Ca-Na and Mg-Fe).Because glass inclusions in olivine were partly shielded from the metasomatic events by the host crystal, their chemical composition is believed to be closer to the original composition than that of any other glasses. The relative trace element abundances in glasses of glass inclusions in olivine and glass pockets are also unfractionated and at the 10 to 20 × CI level. These glasses are chemically similar to the common void-filling glasses but show a much wider compositional variation. Inclusion glasses demonstrate that at least olivine grew with the help of a liquid. In analogy to olivines in carbonaceous chondrites, initial formation could also have been a vapor-liquid-solid condensation process. At that time, the glass had a purely refractory composition. This composition, however, was severely altered by the metasomatic addition of large amounts of FeO and other moderately volatile elements. The presence of volatile elements such as carbon and nitrogen in glasses of glass inclusions is another feature that appears to give these glasses a link with those hosted by olivines of carbonaceous chondrites. All these features point to an origin from a vapor with relative abundances of condensable elements similar to those in the solar nebula.  相似文献   

2.
Glass inclusions in olivines of the Renazzo, El Djouf 001, and Acfer 182 CR-type chondrites are chemically divers and can be classified into Al-rich, Al-poor, and Na-rich types. The chemical properties of the glasses are independent of the occurrence of the olivine (isolated or part of an aggregate or chondrule) and its composition. The glasses are silica-saturated (Al-rich) or oversaturated (Al-poor, 24% normative quartz). All glasses have chondritic CaO/Al2O3 ratios, unfractionated CI-normalized abundances of refractory trace elements and are depleted in moderately volatile and volatile elements. Thus the glasses are likely to be of a primitive condensate origin whose chemical composition has been established before chondrule formation and accretion, rather then the product of either crystal fractionation from chondrule melts or part melting of chondrules. Rare Na-rich glasses give evidence for elemental exchange between the glass and a vapor phase. Because they have Al2O3 contents and trace element abundances very similar to those of the Al-rich glasses, they likely were derived from the latter by Ca exchange (for Na) with the nebula. Elemental exchange reactions also have affected practically all olivines (e.g., exchange of Mg of olivine for Fe2+, Mn2+, and Cr3+). Glasses formed contemporaneously with the host olivine. As the most likely process for growing nonskeletal olivines from a vapor we consider the VLS (vapor-liquid-solid) growth process, or liquid-phase epitaxy. Glasses are the possible remnants of the liquid interface between growing crystal and the vapor. Such liquids can form stably or metastably in regions with enhanced oxygen fugacity as compared to that of a nebula of solar composition.  相似文献   

3.
Olivine-hosted glass inclusions were investigated from tephra samples erupted at Parícutin volcano on four different dates: May 26 and August 1, 1943; January 23, 1945; and March 31, 1948. These dates span the first two thirds of the 9 year eruption, during which time the tephra/lava mass-eruption rate fell dramatically. They also span the strong whole-rock compositional shift of 1947, attributed to the increased importance of crustal contamination. Nine of the 26 analyzed glass inclusions have lower SiO2 contents than any previously analyzed Parícutin lava sample, ranging to below 53 wt%. These silica-poor glasses are found in olivines erupted in 1943 and 1945, and provide evidence for melts that are parental to the main Parícutin lava suite. Total water contents in the glass inclusions measured by Fourier transform infrared (FTIR) spectroscopy vary considerably in all individual samples, with a total range of 1.8-4.0 wt%. Total water contents are not correlated with SiO2 of the glass, Mg# of the adjacent host olivine, or eruption date. Only two glass inclusions have carbonate contents (248 and 296 ppm CO2) above the FTIR detection limit of ~50 ppm CO2; importantly, these inclusions also have the highest total water contents and among the highest SO3t values. These two inclusions were trapped at minimum depths of 9.0-9.6 km beneath the volcano. Thus, early degassing likely stripped most carbon from Parícutin melts at mid-crustal levels. Other glass inclusions yield minimum entrapment depths of 1.3-5.1 km based on water solubility limits. Total sulfur (0.30 to 0.01 wt% SO3) declines as SiO2 contents increase from 52.7 to 60.5 wt%. This trend and the wide range of glass inclusion total water contents are interpreted to reflect degassing accompanied by fractional crystallization and assimilation at upper crustal levels.  相似文献   

4.
About 12.3 km3 of basaltic magma were erupted from the Lakagigar fissure in Iceland in 1783, which may have been derived from the high-level reservoir of Grimsvotn central volcano, by lateral flow within the rifted crust. We have studied the petrology of quenched, glassy tephra from sections through pyroclastic cones along the fissure. The chemical composition of matrix glass of the 1783 tephra is heterogeneous and ranges from olivine tholeiite to Fe–Ti rich basalt, but the most common magma erupted is quartz tholeiite (Mg#43.6 to 37.2). The tephra are characterized by low crystal content (5 to 9 vol%). Glass inclusions trapped in plagioclase and Fo86 to Fo75 olivine phenocrysts show a large range of compositions, from primitive olivine tholeiite (Mg#64.3), quartz tholeiite (Mg#43–37), to Fe–Ti basalts (Mg#33.5) which represent the most differentiated liquids and are trapped as rare melt inclusions in clinopyroxene. Both matrix glass and melt inclusion data indicate a chemically heterogeneous magma reservoir, with quartz tholeiite dominant. LREE-depleted olivine-tholeiite melt-inclusions in Mg-rich olivine and anorthitic-plagioclase phenocrysts may represent primitive magma batches ascending into the reservoir at the time of the eruption. Vesicularity of matrix glasses correlates with differentiation, ranging from 10 to 60 vol.% in evolved quartz-tholeiite glasses, whereas olivine-tholeiite glasses contain less than 10 vol.% vesicles. FTIR analyses of olivine-tholeiite melt-inclusions indicate concentrations of 0.47 wt% H2O and 430 to 510 ppm for CO2. Chlorine in glass inclusions and matrix glasses increases from 50 ppm in primitive tholeiite to 230 ppm in Fe–Ti basalts, without clear evidence of degassing. Melt inclusion analyses show that sulfur varies from 915 ppm to 1970 ppm, as total FeO* increases from 9 to 13.5 wt%. Sulfur degassing correlates both with vesicularity and magma composition. Thus sulfur in matrix glasses decreases from 1490 ppm to 500 ppm, as Mg # decreases from 47 to 37 and vesicularity of the magma strongly increases. These results indicate loss of at least 75% of sulfur during the eruption. The correlation of low sulfur content in matrix glasses with high vesicularity is regarded as evidence of the control of a major exsolving volatile phase on the degassing efficiency of the magma. Our model is consistent a quasi-permanent CO2 flux through the shallow-level magmatic reservoir of Grimsvotn. Following magma withdrawal from the reservoir and during eruption from the Lakagigar fissure, sulfur degassing was controlled by inherent CO2-induced vesicularity of the magma.  相似文献   

5.
Mosaic diamonds from the Zarnitsa kimberlite (Daldyn field, Yakutian diamondiferous province) are morphologicaly and structurally similar to dark gray mosaic diamonds of varieties V and VII found frequently in placers of the northeastern Siberian craton. However, although being similar in microstructure, the two groups of diamonds differ in formation mechanism: splitting of crystals in the case of placer diamonds (V and VII) and growth by geometric selection in the Zarnitsa kimberlite diamonds. Selective growth on originally polycrystalline substrates in the latter has produced radial micro structures with grains coarsening rimward from distinctly polycrystalline cores. Besides the formation mechanisms, diamonds of the two groups differ in origin of mineral inclusions, distribution of defects and nitrogen impurity, and carbon isotope composition. Unlike the placer diamonds of varieties V and VII, the analyzed crystals from the Zarnitsa kimberlite enclose peridotitic minerals (olivines and subcalcic Cr-bearing pyropes) and have total nitrogen contents common to natural kimberlitic diamonds (0 to 1761 ppm) and typical mantle carbon isotope compositions (-1.9 to -6.2%c 513C; -4.2%c on average). The distribution of defect centers in the Zarnitsa diamond samples fits the annealing model implying that nitrogen aggregation decreases from core to rim.  相似文献   

6.
The Pozanti–Karsanti ophiolite (PKO) is one of the largest oceanic remnants in the Tauride belt, Turkey. Micro-diamonds were recovered from the podiform chromitites, and these diamonds were investigated based on morphology, color, cathodoluminescence, nitrogen content, carbon and nitrogen isotopes, internal structure and inclusions. The diamonds recovered from the PKO are mainly mixed-habit diamonds with sectors of different brightness under the cathodoluminescence images. The total δ13C range of the PKO diamonds varies between ??18.8 and ??28.4‰, with a principle δ13C mode at ??25‰. Nitrogen contents of the diamonds range from 7 to 541 ppm with a mean value of 171 ppm, and the δ15N values range from ??19.1 to 16.6‰, with a δ15N mode of ??9‰. Stacking faults and partial dislocations are commonly observed in the Transmission Electron Microscopy foils whereas inclusions are rather rare. Combinations of (Ca0.81Mn0.19)SiO3, NiMnCo-alloy and nano-sized, quenched fluid phases were observed as inclusions in the PKO diamonds. We believe that the 13C-depleted carbon signature of the PKO diamonds derived from previously subducted crustal matter. These diamonds may have crystallized from C-saturated fluids in the asthenospheric mantle at depth below 250 km which were subsequently carried rapidly upward by asthenospheric melts.  相似文献   

7.
Several pieces of the Allende CV3 chondrite were heated up to different final temperatures (1100, 1250, 1450 °C) with the aim to study glassy and glass-bearing inclusions in olivines as well as the glass mesostasis of chondrules and aggregates. The experiments were performed in a Pt-Pt90Rh10 heating stage at 1 bar pressure. The oxygen fugacity is estimated to have been between 10−9 and 10−10 atm at 1200 °C. The variation of the chemical composition of the heated glasses gives information concerning the behavior of the incompatible elements (with respect to the host) Al, Ca and Na. The chemical variation in the heated mesostasis glass shows that Ca exchange between the gas and condensed phases at sub-solidus temperatures can occur in a short time. Laboratory heating experiments show that glass inclusions will behave as closed systems and therefore preserved the alkalis they acquired. On the other hand, the mesostasis glass can loose them when heated to temperatures higher than 1100 °C. Evidently, the presence of Na-rich glasses, in chondrules and aggregates available to us, indicate that if there was a thermal process that did affect them, it must have been a low temperature one.  相似文献   

8.
Thirty-four silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 19 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line Kimberlite district. Eighteen olivines, seven Cr-pyropes, four Mg-chromites, and one orthopyroxene in 15 stones belong to the peridotite (P) suite and three garnets and one omphacite in three stones belong to the eclogite (E) suite. The fact that this suite is dominated by the peridotite population is in stark contrast to the other diamond suites studied in the State Line district (Sloan, George Creek), which are overwhelmingly eclogitic. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of harzburgitic P-suite stones worldwide, but unlike the more Fe-rich (lherzolitic) Sloan olivine suite. Mg-chromites (wt% MgO = 12.8-13.8; wt% Cr2O3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Seven harzburgitic Cr-pyropes in five stones have moderately low calcium contents (wt% CaO = 3.3-4.3) but are very Cr-rich (wt% Cr2O3 = 9.7-16.7). A few stones have been analyzed by SIMS for carbon isotope composition and nitrogen abundance. One peridotitic stone is apparently homogeneous in carbon isotope composition (δ13CPDB = −6.2‰) but with variable nitrogen abundance (1296-2550 ppm). Carbon isotopes in eclogitic stones range from “normal” for the upper mantle (δ13CPDB = −5.5‰) to somewhat low (δ13CPDB = −10.2‰), with little internal variation in individual stones (maximum difference is 3.6‰). Nitrogen contents (2-779 ppm) are lower than in the peridotitic stone, and are lower in cores than in rims. As, worldwide, harzburgite-suite diamonds have been shown to have formed in Archean time, we suggest that the Kelsey Lake diamond population was derived from a block of Archean lithosphere that, at the time of kimberlite eruption, existed beneath the Proterozoic Yavapai province. The mixed diamond inclusion populations from the State Line kimberlites appear to support models in which volumes of Wyoming Craton Archean mantle survive buried beneath Proterozoic continental crust. Such material may be mixed with eclogitic/lherzolitic regimes emplaced beneath or intermingled with the Archean rocks by Proterozoic subduction.  相似文献   

9.
The Cindery Tuff is an unusual tephra fall deposit that contains evidence for the mixing of basaltic and rhyolitic liquids prior to eruption. It contains clear rhyolitic glass shards together with brown basaltic glass spheres and a broadly bimodal phenocryst assemblage. Brown glasses are ferrobasaltic in composition and are similar to the voluminous Pliocene tholeiites of the surrounding west-central Afar volcanic field; both are enriched in the light rare earth and incompatible elements and possess higher 87Sr/86Sr and lower 143Nd/144Nd than MORB. Rhyolitic glasses are subalkaline and, compared to the basaltic glasses, are strongly depleted in the compatible elements and enriched in the incompatible elements. Both glass types have similar incompatible element and isotopic ratios, and with the rhyolite glass showing a 2-fold parallel enrichment in rare earth element abundances over the basaltic glass. These observations suggest that the two glasses are genetically related.Rare glasses with intermediate compositions occur as phenocryst melt inclusions, as mantles on phenocrysts and as free pumice clasts. Their major element contents do not point to an origin by simple hybrid mixing of the basaltic and rhyolitic melts. Rather, major element mixing calculations indicate formation of the intermediate and rhyolite melts by fractionation of the observed phenocryst assemblage, using a starting composition of the observed basaltic glass. Model calculations from trace element data, though lacking from the intermediate glasses, support fractional crystallization. The bimodal mineral assemblage argues against an immiscible liquid origin for the contrasting glass compositions.  相似文献   

10.
An extensive study of peridotitic sulfide inclusion bearing diamonds and their prospective harzburgitic host rocks from the 53 Ma Panda kimberlite pipe, Ekati Mine, NWT Canada, has been undertaken with the Re–Os system to establish their age and petrogenesis. Diamonds with peridotitic sulfide inclusions have poorly aggregated nitrogen (<30% N as B centers) at N contents of 200–800 ppm which differs from that of chromite and silicate bearing diamonds and indicates residence in the cooler portion of the Slave craton lithospheric mantle. For most of the sulfide inclusions, relatively low Re contents (average 0.457 ppm) and high Os contents (average 339 ppm) lead to extremely low 187Re/188Os, typically << 0.05. An age of 3.52 ± 0.17 Ga (MSWD = 0.46) and a precise initial 187Os/188Os of 0.1093 ± 0.0001 are given by a single regression of 11 inclusions from five diamonds that individually provide coincident internal isochrons. This initial Os isotopic composition is 6% enriched in 187Os over 3.5 Ga chondritic or primitive mantle. Sulfide inclusions with less radiogenic initial Os isotopic compositions reflect isotopic heterogeneity in diamond forming fluids. The harzburgites have even lower initial 187Os/188Os than the sulfide inclusions, some approaching the isotopic composition of 3.5 Ga chondritic mantle. In several cases isotopically distinct sulfides occur in different growth zones of the same diamond. This supports a model where C–O–H–S fluids carrying a radiogenic Os signature were introduced into depleted harzburgite and produced diamonds containing sulfides conforming to the 3.5 Ga isochron. Reaction of this fluid with harzburgite led to diamonds with less radiogenic inclusions while elevating the Os isotope ratios of some harzburgites. Subduction is a viable way of introducing such fluids. This implies a role for subduction in creating early continental nuclei at 3.5 Ga and generating peridotitic diamonds.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
The composition of S-rich apatite, of volatile-rich glass inclusions in apatite, and of interstitial glasses in alkaline xenoliths from the 1949 basanite eruption in La Palma has been investigated to constrain the partitioning of volatiles between apatite and alkali-rich melts. The xenoliths are interpreted as cumulates from alkaline La Palma magmas. Apatite contains up to 0.89 wt% SO3 (3560 ppm S), 0.31 wt% Cl, and 0.66 wt% Ce2O3. Sulfur is incorporated in apatite via several independent exchange reactions involving (P5+, Ca2+) vs. (S6+, Si4+, Na+, and Ce3+). The concentration of halogens in phonolitic to trachytic glasses ranges from 0.15 to 0.44 wt% for Cl and from <0.07 to 0.65 wt% for F. The sulfur concentration in the glasses ranges from 0.06 to 0.23 wt% SO3 (sulfate-saturated systems). The chlorine partition coefficients (DClapatite/glass) range from 0.4 to 1.3 (average DClapatite/glass = 0.8), in good agreement with the results of experimental data in mafic and rhyolitic system with low Cl concentrations. With increasing F in glass inclusions DFapatite/glass decreases from 35 to 3. However, most of our data display a high partition coefficient (~30) close to DFapatite/glass determined experimentally in felsic rock. DSapatite/glass decreases from 9.1 to 2.9 with increasing SO3 in glass inclusions. The combination of natural and experimental data reveals that the S partition coefficient tends toward a value of 2 for high S content in the glass (>0.2 wt% SO3). DSapatite/glass is only slightly dependent on the melt composition and can be expressed as: SO3 apatite (wt%) = 0.157 * ln SO3 glass (wt%) + 0.9834. The phonolitic compositions of glass inclusions in amphibole and haüyne are very similar to evolved melts erupted on La Palma. The lower sulfur content and the higher Cl content in the phonolitic melt compared to basaltic magmas erupted in La Palma suggest that during magma evolution the crystallization of haüyne and pyrrhotite probably buffered the sulfur content of the melt, whereas the evolution of Cl concentration reflects an incompatible behavior. Trachytic compositions similar to those of the (water-rich) glass inclusions analyzed in apatite and clinopyroxene are not found as erupted products. These compositions are interpreted to be formed by the reaction between water-rich phonolitic melt and peridotite wall-rock.  相似文献   

12.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

13.
Small hexagonal and triangular platelets of molybdenite (MoS2), 5 to 25 m in diameter, were identified in phenocrysts and matrix glass of unaltered felsic volcanic rocks from Pantelleria, Italy. The MoS2 occurs commonly in pantellerites (peralkaline rhyolites), rarely in pantelleritic trachytes, and never in trachytes. The occurrence of euhedral MoS2 platelets in all phenocryst phases, in matrix glass, and even in some melt inclusions indicates that MoS2 precipitated directly from the peralkaline melt. Despite MoS2 saturation, the melt (glass) contains greater than 95% of the Mo in Pantellerian rocks: X-ray fluorescence analyses of 20 whole rocks and separated glasses show that whole rocks consistently contain less Mo than corresponding matrix glasses, the differences being in proportion to phenocryst abundances. The Mo contents increase with differentiation from trachytes (2–12 ppm) to pantellerites (15–25 ppm) and correlate positively with incompatible elements such as Th, Y, and Nb. The Mo concentrations, as determined by secondary ion mass spectrometry, are essentially the same in matrix glasses and melt inclusions, showing that Mo did not partition strongly into a volatile fluid phase during outgassing. The high Mo contents of the pantellerites (relative to metaluminous magmas with 1–5 ppm) may be due to several factors: (1) the enhanced stability of highly charged cations (such as Mo6+, U4+, and Zr4+) in peralkaline melts; (2) the rarity of Fe-Ti oxides and litanite into which Mo might normally partition; (3) reduced volatility of Mo in low fO2, H2O-poor (1–2 wt%) peralkaline magmas. Geochemical modeling indicates that the precipitation of MoS2 can be explained simply by the drop in temperature during magmatic differentiation. The occurrence of MoS2 in pantellerites may result from their high Mo concentrations and low redox state (Ni/NiO=-2.5) relative to metaluminous magmas, causing them to reach MoS2 saturation at magmatic temperatures. The apparent absence of MoS2 microphenocrysts in more oxidized, metaluminous rhyolites may indicate that Mo is dissolved primarily as a hexavalent ion in those magmas.  相似文献   

14.
Nitrogen geochemistry of Upper Carboniferous shales from the Central European Basin (CEB) was investigated by elemental analysis, stable isotope mass spectrometry and non-isothermal pyrolysis. Total N-contents of Namurian shales from four deep wells (4400–7000 m) in NE Germany ranged between 520 and 2680 ppm. Up to 90% of this nitrogen occurs as ammonium in minerals with δ15N values between + 1‰ and + 3.5‰. Low nitrogen contents (down to 460 ppm) and high δ15N values (up to + 5.6‰) in one well in the basin centre suggest a large-scale release of nitrogen associated with isotopic fractionation. Pyrolytic liberation of N2 from pelagic Namurian A shales of NW and NE Germany occurred at significantly lower temperatures than from paralic Namurian B shales and terrestrial Westphalian samples. On-line isotope analysis of N2 liberated between 400 and 1200 °C indicates the presence of precursor pools with different thermal stability and nitrogen isotopic composition.  相似文献   

15.
Assessing the ferric-ferrous ratio in magmas prior to eruption remains a challenging task. X-ray absorption near-edge structure (μXANES) spectra were collected at the iron K-edge in water-rich peralkaline silicic melt/glass inclusions trapped in quartz. These experiments were carried out between 800 and 20 °C. The chemical environment of iron was also determined in the naturally quenched samples (glass inclusions and matrix glass) and in the peralkaline rhyolitic reference glasses, with variable [Fe3+ / ∑Fe] ratios.In the reference glasses, both the intensity of the pre-peaks (Fe2+, Fe3+) and site geometry of iron change as the oxidation state increases. Fourfold-coordinated Fe3+ prevails in highly oxidised peralkaline silicic glasses, using alkalis for charge balance. The position of the pre-edge centroid of the 1s-3d transition correlates with the Fe3+ / ΣFe ratios that allowed calibration of the redox state of iron of our natural samples.At high temperatures, Fe2+ dominates in the pre-edge structure of melt inclusions. Upon cooling down to 20 °C, the intensity of the Fe3+ peak increases, the centroid position of the pre-edge features shifts by nearly 0.5 eV and the main edge moves slightly towards higher energies. The slower the cooling rate, the higher the ferric iron contribution. Iterative μXANES experiments performed on the same samples show that the process is reversible. However, this apparent oxidation of iron upon cooling is an artefact of changes in Fe coordination. It implies that the [Fe3+ / ΣFe] ratio of glassy samples, measured at 20 °C, may be overestimated by a factor > 1.7, and that this ratio cannot be reliably retrieved by probing naturally cooled glass inclusions, and most silicate glasses. High temperature μXANES experiments led first to an assessment of the ferric-ferrous ratio in the water-rich peralkaline melt in pre-eruptive magmatic conditions and second to the determination of the corresponding oxygen fugacity at 740 °C.  相似文献   

16.
Klyuchevskoy volcano, in Kamchatka’s subduction zone, is one of the most active arc volcanoes in the world and contains some of the highest δ18O values for olivines and basalts. We present an oxygen isotope and melt inclusion study of olivine phenocrysts in conjunction with major and trace element analyses of 14C- and tephrochronologically-dated tephra layers and lavas spanning the eruptive history of Klyuchevskoy. Whole-rock and groundmass analyses of tephra layers and lava samples demonstrate that both high-Mg (7–12.5 wt% MgO) and high-Al (17–19 wt% Al2O3, 3–6.5 wt% MgO) basalt and basaltic andesite erupted coevally from the central vent and flank cones. Individual and bulk olivine δ18O range from normal MORB values of 5.1‰ to values as high as 7.6‰. Likewise, tephra and lava matrix glass have high-δ18O values of 5.8–8.1‰. High-Al basalts dominate volumetrically in Klyuchevskoy’s volcanic record and are mostly high in δ18O. High-δ18O olivines and more normal-δ18O olivines occur in both high-Mg and high-Al samples. Most olivines in either high-Al or high-Mg basalts are not in oxygen isotopic equilibrium with their host glasses, and Δ18Oolivine–glass values are out of equilibrium by up to 1.5‰. Olivines are also out of Fe–Mg equilibrium with the host glasses, but to a lesser extent. Water concentrations in olivine-hosted melt inclusions from five tephra samples range from 0.4 to 7.1 wt%. Melt inclusion CO2 concentrations vary from below detection (<50 ppm) to 1,900 ppm. These values indicate depths of crystallization up to ~17 km (5 kbar). The variable H2O and CO2 concentrations likely reflect crystallization of olivine and entrapment of inclusions in ascending and degassing magma. Oxygen isotope and Fe–Mg disequilibria together with melt inclusion data indicate that olivine was mixed and recycled between high-Al and high-Mg basaltic melts and cumulates, and Fe–Mg and δ18O re-equilibration processes were incomplete. Major and trace elements in the variably high-δ18O olivines suggest a peridotite source for the parental magmas. Voluminous, highest in the world with respect to δ18O, and hydrous basic volcanism in Klyuchevskoy and other Central Kamchatka depression volcanoes is explained by a model in which the ascending primitive melts that resulted from the hydrous melt fluxing of mantle wedge peridotite, interacted with the shallow high-δ18O lithospheric mantle that had been extensively hydrated during earlier times when it was part of the Kamchatka forearc. Following accretion of the Eastern Peninsula terrains several million years ago, a trench jump eastward caused the old forearc mantle to be beneath the presently active arc. Variable interaction of ascending flux-melting-derived melts with this older, high-δ18O lithospheric mantle has produced mafic parental magmas with a spectrum of δ18O values. Differentiation of the higher δ18O parental magmas has created the volumetrically dominant high-Al basalt series. Both basalt types incessantly rise and mix between themselves and with variable in δ18O cumulates within dynamic Klyuchevskoy magma plumbing system, causing biannual eruptions and heterogeneous magma products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Primitive chemical characteristics of high-Mg andesites (HMA) suggest equilibration with mantle wedge peridotite, and they may form through either shallow, wet partial melting of the mantle or re-equilibration of slab melts migrating through the wedge. We have re-examined a well-studied example of HMA from near Mt. Shasta, CA, because petrographic evidence for magma mixing has stimulated a recent debate over whether HMA magmas have a mantle origin. We examined naturally quenched, glassy, olivine-hosted (Fo87–94) melt inclusions from this locality and analyzed the samples by FTIR, LA-ICPMS, and electron probe. Compositions (uncorrected for post-entrapment modification) are highly variable and can be divided into high-CaO (>10 wt%) melts only found in Fo > 91 olivines and low-CaO (<10 wt%) melts in Fo 87–94 olivine hosts. There is evidence for extensive post-entrapment modification in many inclusions. High-CaO inclusions experienced 1.4–3.5 wt% FeOT loss through diffusive re-equilibration with the host olivine and 13–28 wt% post-entrapment olivine crystallization. Low-CaO inclusions experienced 1–16 wt% olivine crystallization with <2 wt% FeOT loss experienced by inclusions in Fo > 90 olivines. Restored low-CaO melt inclusions are HMAs (57–61 wt% SiO2; 4.9–10.9 wt% MgO), whereas high-CaO inclusions are primitive basaltic andesites (PBA) (51–56 wt% SiO2; 9.8–15.1 wt% MgO). HMA and PBA inclusions have distinct trace element characteristics. Importantly, both types of inclusions are volatile-rich, with maximum values in HMA and PBA melt inclusions of 3.5 and 5.6 wt% H2O, 830 and 2,900 ppm S, 1,590 and 2,580 ppm Cl, and 500 and 820 ppm CO2, respectively. PBA melts are comparable to experimental hydrous melts in equilibrium with harzburgite. Two-component mixing between PBA and dacitic magma (59:41) is able to produce a primitive HMA composition, but the predicted mixture shows some small but significant major and trace element discrepancies from published whole-rock analyses from the Shasta locality. An alternative model that involves incorporation of xenocrysts (high-Mg olivine from PBA and pyroxenes from dacite) into a primary (mantle-derived) HMA magma can explain the phenocryst and melt inclusion compositions but is difficult to evaluate quantitatively because of the complex crystal populations. Our results suggest that a spectrum of mantle-derived melts, including both PBA and HMA, may be produced beneath the Shasta region. Compositional similarities between Shasta parental melts and boninites imply similar magma generation processes related to the presence of refractory harzburgite in the shallow mantle.  相似文献   

18.
We report Lithium (Li) concentrations and isotopic compositions for co-existing olivine, orthopyroxene (opx), and clinopyroxene (cpx) mineral separates from depleted and metasomatised peridotite xenoliths hosted by basaltic lavas from northwestern Ethiopian plateau (Gundeweyn area). The peridotites contain five lherzolites and one harzburgite and are variably depleted and enriched in LREE relative to HREE. In both depleted and enriched lherzolites, Li is preferentially incorporated into olivine (2.4-3.3 ppm) compared to opx (1.4-2.1 ppm) and cpx (1.4-2.0 ppm) whereas the Li contents of olivines (5.4 ppm) from an enriched harzburgiteare higher than those of lherzolites. Olivines from the samples show higher Li abundances than normal mantle olivines (1.6-1.9 ppm) indicating the occurrence of Li enrichments through melt-preroditite interaction. The average δ7 Li values range from +2.2 to +6.0‰ in olivine, from -0.1 to +2.0‰ in opx and from -4.4 to -0.9‰ in cpx from the lherzolites. The Li isotopic composition (3.5‰) of olivines from harzburgite fall within the range of olivine from lherzolites but the opxs show low in δ7Li (-2.0‰). Overall Li isotopic compositions of olivines from the peridotites fall within the range of normal mantle olivine, δ7Li values of ~+4±2‰ within uncertainty, reflecting metasomatism (enrichment) of the peridotites by isotopically heavy Li-rich asthenospheric melt. Li isotope zonation is also observed in most peridotite minerals. Majority of olivine grains display isotopically heavy cores and light rims and the reverse case is observed for some olivine grains. Orthopyroxene and clinopyroxene grains show irregular distribution in δ7Li. These features of Li isotopic compositions within and between grains in the samples reflect the effect of diffusion-driven isotopic fractionation during meltperidotite interaction and cooling processes.  相似文献   

19.
Optical microscopy and transmission electron microscopy (TEM) on a porphyroclastic high temperature spinel peridotite from the Rhön area reveal fine, irregular glass layers and pockets along mineral interfaces, cracks in olivine, inside olivine crystals and in spongy rims of clinopyroxene. The chemical composition of the glass deviates significantly from the composition of the host basanite. Electron diffraction technique confirms the amorphous nature of the glass, thus classifying it as a former melt. Every grain or phase boundary shows amorphous intergranular glass layers of variable thickness and characteristic chemical composition with distinct chemical inhomogeneities. Olivine grain boundaries, as the most common type of interfaces, exhibit two different types of melt glasses: (1) Type I melt at olivine grain boundaries, which is characterized by low contents of SiO2 (~37?wt%) and Al2O3 (~5?wt%) and elevated contents of MgO (~31?wt%) and FeO (~22?wt%), is supposed to have formed prior to or during the thermal overprint and the dynamic recrystallisation of the xenolith in the mantle. Melt inclusions inside olivine grains with an average composition of type I melt are suggested to be earlier melt droplets at olivine interfaces, overgrown by migrating olivine grain boundaries during recrystallization in the mantle prior to the uplift of the xenolith. (2) Type II melt, the most common type of melt in the xenolith, shows higher contents of SiO2 (~48?wt%) and Al2O3 (~17?wt%) but lower contents of MgO (~20?wt%) and FeO (~11?wt%). The observation of different types of glass within a single xenolith indicates the development of different chemical melt equilibria at interfaces or triple junctions in the xenolith. The absence of geochemical trends in bivariate plots excludes a unifying process for the genesis of these glasses. Melt inclusions in the spongy rims of clinopyroxene are interpreted to be the product of a potassium-rich metasomatism. The formation of most amorphous intergranular melt layers and pockets at the mineral interfaces including type II melt at olivine grain boundaries is suggested to result from decompression melting during the uplift with the basalt magma. We suggest that these glasses were produced by grain boundary melting due to lattice mismatch and impurity segregation. The observed intergranular amorphous layers or melts represent the very beginning of mineral melting by grain boundary melting.  相似文献   

20.
 Interstitial glasses and glasses in small inclusions in Mg-rich phenocrysts of 14 boninites from New Caledonia, the Mariana Trench, Cape Vogel and Chichi-jima were analysed by electron microprobe and the water contents measured in situ by ion microprobe. The glasses are remarkably fresh and abundant (∼30–90 vol.%), and the phenocrysts are often skeletal with glass inclusions. Broad-beam analyses (∼1030) of interstitial glasses and ∼180 point analyses of glass inclusions were carried out, as well as ∼100 hydrogen analyses. Most glasses have low water-free totals, high water contents, very low MgO, and low total iron; they are almost entirely quartzofeldspathic and with few exceptions (Q+or+ab+ an+C) lies in the range 83–96. The interstitial glasses from New Caledonia, the Marianas and most of the glasses from Chichi-jima are dacitic, those from Cape Vogel straddle dacitic and andesitic compositions, whereas the glasses in a highly glassy sample from Chichi-jima are high-Mg andesitic or boninitic with up ∼9 wt% MgO, and are, with the exception of a few high-Ca boninites from Tonga, the most Mg-rich interstitial glasses so far described in boninites. Glasses included in orthopyroxene, olivine or clinoenstatite are boninitic or high-Mg andesitic in the highly glassy rock and dacitic to high-silica dacitic in the others. They are in general slightly more differentiated than the interstitial glasses, because of more-extensive crystallization on the host crystal in small inclusions. The interstitial glass compositions show a direct relationship between silica and Al2O3 and, for most glasses, alkalis, and inverse relationships between silica and CaO, FeO and MgO; alkalis and TiO2 show, however, a broad spread in values in glasses from the Marianas and New Caledonia. Included glasses show similar variations. Water contents in interstitial glasses are ∼2 wt% for the highly glassy high-Mg andesitic glasses from Chichi-jima, ∼5.4 wt% for the more differentiated andesitic to dacitic glasses from Cape Vogel, and ∼6.7–7.0 wt% in the most differentiated dacitic ones from the Marianas and New Caledonia. Water contents in glass inclusions in olivine, orthopyroxene and clinoenstatite are in the range ∼1.9–3.3 wt%. The interstitial glasses are black and not vesicular, showing that the liquids did not reach supersaturation after eruption on or intrusion near the sea floor, or were insufficiently so to allow nucleation of water vapour bubbles. The water is inferred to be primary and to increase strongly with crystallization in the residual liquid down to the glass-transition T. Received: 19 December 1994 / Accepted: 5 October 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号