首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Here we examine the consequences of strong tidal mixing on spatial and temporal distributions of biota and sea ice above Kashevarov Bank, Sea of Okhotsk, using data from field surveys (hydrography, pressure gauge and current meter moorings, and bio-acoustic soundings) and remote sensing (NOAA AVHRR). Fortnightly variations in the amplitude of diurnal tidal currents, primarily resulting from the K1–O1 interaction, are shown to dominate water motion over the bank. These currents (with maximum velocities 2 m s−1) create a sharp tidally-mixed front that separates well-mixed water above the bank from stratified water along its flanks. Such mixing draws water upward from the cold dichothermal layer (100–150 m) into the surface layer, and thus serves to ventilate the intermediate layers of the Sea of Okhotsk. In summer, fortnightly modulation of the tidal mixing creates temporal variations in water column stratification, a critical factor in the joint supply of nutrients and light required to sustain phytoplankton growth. As such, chlorophyll-a and oxygen values vary in response to the fortnightly cycle, and zooplankton likewise form dense aggregations within the tidally-mixed front in response to the phytoplankton production. It is further noted that the brood cycle of dominant zooplankton species on the bank matches the fortnightly modulation of the tidal currents. In winter, tidal mixing draws relatively warm water upward from mid-depth to maintain a polynya that cyclically opens and closes in response to fortnightly variation in vertical heat flux.  相似文献   

2.
Using a nested circulation model based on the Princeton Ocean Model, we investigate the characteristics and mechanisms of two main upwellings in the southern Taiwan Strait: the Southwest upwelling and the Taiwan Bank upwelling. The Southwest upwelling exists in summer when the southwesterly monsoon dominates, and the Taiwan Bank upwelling occurs over a longer period from May to September. The upslope current over a distinctly widened shelf transports the cold water on-shoreward at the lower layer and the southwesterly monsoon wind drives the cold water to the surface layer, forming the Southwest upwelling, while tidal residual current weakens the upslope advection. For the Taiwan Bank upwelling, the upward transport of the South China Sea water due to the Bank topography carries the cold water from the subsurface layer to the depth of approximately 25 m near the Taiwan Bank, then the strong tidal mixing forces this upwelled water further upward to the surface layer.  相似文献   

3.
南麂岛附近海域潮汐和潮流的特征   总被引:4,自引:2,他引:2  
以2008年冬季在浙江近海南麂岛附近投放的4个底锚系观测的水位和流速资料为依据,分析了潮汐和潮流特征。水位谱分析结果显示半日分潮最显著,全日分潮其次;近岸的浅水分潮比离岸大。水位调和分析结果表明:潮汐类型均为正规半日潮,近岸处的平均潮差大于3m,最大可能潮差大于6m,潮汐呈现出显著的低潮日不等和回归潮特征。流速谱分析结果显示半日分潮流最强,全日分潮流其次,且比半日分潮流小得多;近岸浅水分潮流比远离岸显著。流速调和分析结果表明:潮流类型均为正规半日潮流,靠近岸的两个站浅水分潮流较显著;最显著的半日分潮流是M2分潮流,其最大流速介于0.32~0.48m/s之间,全日分潮流均很弱,最大流速小于0.06m/s。M2分潮流均为逆时针旋转,椭圆率越靠近海底越大;最大分潮流流速分布为中上层最大、表层略小、底层最小;最大分潮流流速方向的垂向变化很小,底层比表层略为偏左;最大分潮流流速到达时间随深度的加深而提前,底层比中上层约提前30min。潮流椭圆的垂向分布显示这里的半日分潮流以正压潮流为主;日分潮流则表现出很强的斜压性。  相似文献   

4.
Using the data obtained from CTD stations and hydrochemical measurements (oxygen, silicates, and phosphates) performed by the Pacific Scientific Research Fishery Center (TINRO Center) in 2001–2004, vertical structures of water masses were considered for the western Bering Sea and for the deep-water depression of the Sea of Okhotsk. It was shown that definite values of the Si/P molar ratio were characteristic for the water mass boundaries within which linear relationships between these two elements were observed. The lower boundaries of cold intermediate layers in both seas are characterized by a value of Si/P = 23. The ratio for the main halocline (the layer of nutrient concentration jump) is equal to 32, while that for the intermediate layer is equal to 43 (47 in the Sea of Okhotsk). In the Bering Sea, linear relationships between the concentrations of these elements are determined by mixing of waters of different origin. The deep convection, regeneration of phosphates in the lower part of the surface layer, and the significant oxygen deficiency in the intermediate layer determine the doubled inclination of their ratio compared to the Redfield’s parameter. At the same time, in the Sea of Okhotsk, the determining role in linear relationships between the elements considered is played by the aeration of intermediate layer with near-bottom shelf waves, and by tidal mixing.  相似文献   

5.
王逸涵  王韫玮  于谦  蔡辉  高抒 《海洋科学》2019,43(10):66-74
南黄海西侧的江苏海岸近岸区域,素以地形复杂、潮流强劲、悬沙输运剧烈著称,但是较长期的同步潮位和潮流观测数据仍然缺乏,尤其是在近岸(20 km)浅水(20 m)区域。2014年1月在大丰港附近开展了连续潮位和潮流观测,获得的数据揭示了一系列特征。此地潮汐潮流为正规半日潮,浅水分潮显著。平均潮差为3.05 m,最显著的两个分潮为M2和S2分潮,振幅分别为1.45 m和0.52 m。潮流最显著的半日分潮M2分潮和最显著的浅水分潮M4分潮在沿岸方向上振幅分别为0.84m/s和0.12m/s,在跨岸方向上振幅分别为0.24 m/s和0.01 m/s,沿岸方向占绝对优势。潮波的沿岸传播介于前进波和驻波之间,驻波的特征稍强。M2分潮潮流椭圆最大流(长轴)方向为南偏东7.4°。存在冬季沿岸向北的余流,垂向平均值的大小为2.2 cm/s。以上潮汐潮流特征为该区域海洋物质输运研究提供了基础资料。  相似文献   

6.
A one-dimentional three-layer model for the thermal structure in the Huanghai Sea is presented in this study, me model consists of the upper mixed layer caused by heating and wind mixing, the lower mixed layer driven by tidal mixing, and the thermocline with certain thickness. The entrainment velocities of the upper and lower layers are obtained respectively. The results show that the model is capable of describing the development and decline processes of the seasonal thermocline in the Huanghai Sea, simulating successfully the Huanghai Sea Cold Water Mass, the nearshore front and surface cold water off North Jiangsu and explaining reasonably their formation mechanisms as well as the strong thermocline off Qingdao. It is suggested that the tidal mixing plays key role in the formation of the nearshore front off North Jiangsu and the strong thermocline off Qingdao. The wind mixing and the tidal mixing make the lower layer water with high nutrients go up to the upper layer. This physical process may be sig  相似文献   

7.
南海北部陆架陆坡区海流观测研究   总被引:3,自引:0,他引:3  
针对2006-2009年期间,南海北部陆架陆坡区3个站ADCP海流连续观测资料,采用功率谱分析、潮流调和分析方法,重点分析了陆架陆坡区100 m,200 m和1 200 m水深海域海流的垂向结构,探讨了环流的季节变化和空间分布特征,特别讨论了南海暖流和北陆坡流的时空变化特征。结果表明,陆架陆坡区潮流类型属于不规则日潮,深水站点中层表现为正规全日潮类型,垂向为"三层结构",甚至更加复杂。O1,K1,M2,S2等分潮总体上为顺时针旋转,在深水站点,基本表现为西北-东南走向的往复流形态。从能量角度看,表层和底层海流中,潮流所占份额较大,分别占30%~40%和40%~50%,中层较小,约为20%。对东沙群岛西南陆架陆坡区环流,观测计算结果证实了西向强流的存在,且垂向结构具有显著的季节变化,在200 m水深处没有明显的南海暖流,只是10~30 m以上层次存在逆风海流。海南岛以东海域连续15个月表层环流的结果表明,冬季明显受到南海暖流的影响,存在东北向的逆风海流,夏秋季的环流表现为西南向,流速较强,夏季也存在逆风情况,造成上述情形的原因可能是该地南海暖流的流轴具有季节性变化——冬季偏南,夏季偏北。  相似文献   

8.
西北太平洋的一种潮汐数值同化模型   总被引:1,自引:1,他引:0  
利用FVCOM海洋数值模式,在球坐标系统下考虑非线性效应和天体引潮力的影响,基于非结构的三角形网格建立了包括中国近海、日本海、鄂霍次科海和部分西北太平洋海域的高分辨率海洋潮汐数值模型,并采用趋近法同化84个沿岸验潮站的观测资料。模拟结果与175个验潮站的实测结果拟合良好,M2,S2,K1,O1四个主要分潮振幅和迟角的绝对平均误差分别为4.0 cm和5.6°,2.4 cm和7.5°,2.6 cm和6.3°,1.5 cm和5.0°。依据调和分析结果给出了4个主要分潮的同潮图分布,得到8个半日分潮和5个全日分潮的无潮点,证实了宗谷海峡全日潮无潮点的存在,首次模拟得到津轻海峡的全日潮无潮点;还给出了整个计算海域内最大可能潮差和潮汐余水位的分布特征。  相似文献   

9.
The location and seasonal variability of the tidal mixing front in the region of Shantar Islands are studied based on an analysis of satellite data. The Shantar tidal mixing front is related to the main features of the oceanographic structure of the northwestern shelf of the Sea of Okhotsk in summer. This front separates the coastal waters mixed by tidal currents and the stratified part of the shelf. The temperature tidal mixing front forms in July after the melting ice cover and disappears in the end of October when the stratification is broken. The mean position of the front changes insignificantly and is determined by the critical value of the Simpson-Hunter parameter (logh/u 3 = 2.5); the front is located over the isobath of 50 m. The temperature tidal mixing front corresponds to the front in the distribution of chlorophyll a determined from SeaWiFS and MODIS satellite imagery. High (when compared to the stratified part of the shelf) concentrations of chlorophyll a were observed within the zone of intense tidal mixing. Satellite images in the IR range of the spectrum (Landsat-5 TM) demonstrated that the front is dynamically unstable. Mixing effects connected with frontal submesoscale baroclinic eddies have an influence on the structure of the stratified part of the shelf.  相似文献   

10.
Near-bottom currents play important roles in the formation and dynamics of deep-water sedimentary systems.This study examined the characteristics and temporal variations of near-bottom currents, especially the tidal components, based on two campaigns(2014 and 2016) of in situ observations conducted southeast of the Dongsha Island in the South China Sea. Results demonstrated near-bottom currents are dominated by tidal currents, the variance of which could account for ~70% of the total current variance. Diurnal tidal currents were found stronger than semidiurnal currents for both barotropic and baroclinic components. The diurnal tidal currents were found polarized with predominantly clockwise-rotating constituents, whereas the clockwise and counterclockwise constituents were found comparable for semidiurnal tidal currents. It was established that diurnal tidal currents could induce strong current shear. Baroclinic tidal currents showed pronounced seasonal variation with large magnitude in winter and summer and weak magnitude in spring and autumn in 2014. The coherent components accounted for ~65% and ~50% of the diurnal and semidiurnal tidal current variances,respectively. The proportions of the coherent and incoherent components changed little in different seasons. In addition to tidal currents, it was determined that the passing of mesoscale eddies could induce strong nearbottom currents that have considerable influence on the deep circulation.  相似文献   

11.
New oceanographic observations in the period 1990–2015 revealed significant salinity variations in the Oyashio Current. In the last 26 years, the salinity of the upper layer decreased by 0.2 PSU. The most rapid changes in salinity and temperature have been observed in the last five years. The time series of salinity measurements is characterized by the high-amplitude fluctuations synchronized with the lunar nodal cycle (18.6 years); i.e., high salinity is observed in the period of strong tidal currents. Modulation of diurnal tidal currents with the K1 and O1 periods in the lunar nodal cycle is significant [8, 9]. The amplitude was maximal in 1988 and 2006 and minimal in 1997 and 2015. The characteristics of tidal currents in the Oyashio Current and Sea of Okhotsk are considered based on available data of drifting buoys over the Kruzenshtern and Kashevarov banks. The amplitude of salinity variations synchronized with the lunar cycle is approximately 0.1 PSU; therefore, it has made a significant contribution to the salinity decrease in recent years.  相似文献   

12.
A numerical study using a 3-D nonhydrostatic model has been applied to baroclinic processes generated by the K 1 tidal flow in and around the Kuril Straits. The result shows that large-amplitude unsteady lee waves are generated and cause intense diapycnal mixing all along the Kuril Island Chain to levels of a maximum diapycnal diffusivity exceeding 103 cm2s−1. Significant water transformation by the vigorous mixing in shallow regions produces the distinct density and potential vorticity (PV) fronts along the Island Chain. The pinched-off eddies that arise and move away from the fronts have the ability to transport a large amount of mixed water (∼14 Sv) to the offshore regions, roughly half being directed to the North Pacific. These features are consistent with recent satellite imagery and in-situ observations, suggesting that diapycnal mixing within the vicinity of the Kuril Islands has a greater impact than was previously supposed on the Okhotsk Sea and the North Pacific. To examine this influence of tidal processes at the Kurils on circulations in the neighboring two basins, another numerical experiment was conducted using an ocean general circulation model with inclusion of tidal mixing along the islands, which gives a better representation of the Okhotsk Sea Mode Water than in the case without the tidal mixing. This is mainly attributed to the added effect of a significant upward salt flux into the surface layer due to tidal mixing in the Kuril Straits, which is subsequently transported to the interior region of the Okhotsk Sea. With a saline flux into the surface layer, cooling in winter in the northern part of the Okhotsk Sea can produce heavier water and thus enhance subduction, which is capable of reproducing a realistic Okhotsk Sea Mode Water. The associated low PV flux from the Kuril Straits to the open North Pacific excites the 2nd baroclinic-mode Kelvin and Rossby waves in addition to the 1st mode. Interestingly, the meridional overturning in the North Pacific is strengthened as a result of the dynamical adjustment caused by these waves, leading to a more realistic reproduction of the North Pacific Intermediate Water (NPIW) than in the case without tidal mixing. Accordingly, the joint effect of tidally-induced transport and transformation dominating in the Kuril Straits and subsequent eddy-transport is considered to play an important role in the ventilation of both the Okhotsk Sea and the North Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Long-term current measurements were carried out near the Soya Strait in the Okhotsk Sea during a period from February 1980 to September 1982. The data were divided into five segments, each being 150 days long, and the tidal ellipse parameters of major axis, minor axis, orientation, and phase for the four major constituents (M2, S2, K1 and O1 tides) were calculated at each segment. The major axis of the mean tidal ellipse averaged over five segments was 29.9 cm sec–1 for O1 tide, 28.3 cm sec–1 for K1 tide, 10.4 cm sec–1 for M2 tide, and 3.7 cm sec–1 for S2 tide. The phase and orientation of the tidal ellipse were much stable. But, the root mean square deviations of the major axis reached 20% of the mean values for all four constituents. The tidal currents estimated from the sea level records at Wakkanai and Esashi along the Hokkaido coast in the Okhotsk Sea show that their amplitudes and phases are in good agreement with the observed ones for all four constituents.  相似文献   

14.
本文第一作者早在1985年就提出,潮混合效应控制着夏季黄海冷水团的边界及海面冷水分布(赵保仁,1985)。1987年又进一步通过水文调査资料和卫星图片给出了黄海周围的浅水陆架锋(或称潮汐锋)的分布及强锋区的跨锋断面中的温度、盐度和坏流结构特征,并指出夏季的黄海沿岸流在性质上属沿锋面运动的强流(赵保仁,1987a,b),而后又对黄海西部的陆架锋进行了一次专门调査(赵保仁等,1991)。此外,他还指出黄海的强温跃层的形成和转移现象也与潮混合现象密切相关(赵保仁,1989)。因此,研究潮混合现象对阐明发生在黄海的多水文物理现象都是至关重要的。 为深入了解黄海的潮混合特征,作者把渤海、黄海和东海作为一个整体完成了一次精度较高的潮汐、溯流数值计算,在潮汐、潮流的分布方面,揭示了前人尚未阐明的一些特征。本文根据这些数值结果,计算了近最大潮流流速和层化参数,阐明了渤海、黄海和东海的潮混合特征及其对降温期黄海冷水团分布变化的影响。此外,还用 Sim pson等人(1981)的能量模式计算了南黄海西部的风、潮混合效率。  相似文献   

15.
Processes relating to the formation of dense shelf water and intermediate water in the Okhotsk Sea were studied by examining oxygen isotope ratios (δ18O), salinity, and temperature. The salinity and δ18O of the cold dense shelf water on the northern continental shelf showed peculiar relationship. The relationship indicates that 3% of the mixed-layer water, having salinity of 32.6, froze and the remaining 97% became dense shelf water of salinities of more than 33.2 (σθ>26.7) during the sea ice formation. The salinity–δ18O relationship also shows that 20% of the Okhotsk Sea Intermediate Water at the σθ=26.8 level was derived from the dense shelf water. The remaining 80% came from the Western Subarctic Pacific water modified by diapycnal mixing of water affected by the surface cooling and freshening within the Okhotsk Sea. The mixing with dense shelf water contributes to only 26% of the temperature difference or 8% of the salinity difference between the original Pacific water and the Okhotsk Sea Intermediate Water at σθ=26.8. This result suggests that the cold and less saline properties of the Okhotsk Sea Intermediate Water are produced mainly by diapycnal mixing, rather than by mixing of the Pacific water with the dense shelf water.  相似文献   

16.
基于非结构三角形网格的FVCOM(finite-volume coastal ocean model )数值模型, 对南海北部海域的潮汐、潮流进行了精细化数值模拟研究, 并根据模拟结果详细分析了M2, S2, K1, O1 分潮的潮汐和潮流特征。研究结果表明: 神泉港到甲子港海域表现为正规全日潮性质, 珠江口附近海区潮汐以不正规半日潮为主, 其他海域主要表现为不规则全日潮; 陆架海域和深水海域主要表现为往复流, 陆架坡折区存在较强的旋转流, 陆架坡折区为不规则半日潮流和不规则全日潮流的分界线; 东沙群岛附近海域以不规则全日潮流为主, 旋转方向为顺时针; 整个海域的最大流速分布与等深线基本平行, 东沙群岛附近速度明显变大, 最大值出现在台湾浅滩附近, 最大值超过70 cm/s; 南海潮波系统以巴士海峡传入的大洋潮波为主, 分为三支潮流, 以不同的形式进出南海北部海域; 余流在台湾浅滩附近达到最大, 超过6 cm/s, 自南向北进入台湾海峡, 近岸余流自东向西沿岸流动。本研究在东沙群岛周边的模拟结果与前人基于实测资料的分析吻合较好, 并且由于采用了高精度的三角网格, 本文对东沙群岛周边海域的潮汐潮流结构和性质的刻画和分析是迄今为止较为精细的, 同时本研究还提高了对沿岸验潮站调和常数的模拟精度。  相似文献   

17.
基于FVCOM的泉州湾海域三维潮汐与潮流数值模拟   总被引:1,自引:0,他引:1  
基于FVCOM海洋数值模式,采用非结构的三角形网格和有限体积法,建立了泉州湾海域高分辨率(26 m)的三维潮汐、潮流数值模型。模拟结果同2个验潮站和3个连续测流站的观测资料符合良好,较好地反映了泉州湾内潮汐、潮流运动的变化状况和分布特征,给出了M2、S2、K1、O1 4个主要分潮的同潮图、表层潮流椭圆分布,以及模拟区域内最大可能潮差、表层最大可能潮流流速和潮余流分布。分析表明,4个分潮的最大潮汐振幅和迟角差分别为219 cm和19°,85 cm和25°,26 cm和12°,26 cm和9°;石湖港以东海域的潮波为逆时针旋转的驻波,以西海域为前进波;最大可能潮差由湾口的8.0m向湾内增加至8.8 m。湾内潮流类型为规则半日潮流,落潮最大流速大于涨潮最大流速,北乌礁水道为强流区,表层最大可能潮流流速为2.4 m/s;湾口潮流运动以逆时针方向的旋转流形式为主,湾内的潮流运动以往复流形式为主,长轴走向主要沿着水道方向,与等深线和海岸线平行;四个分潮流表层最大流速分别为1.4 m/s,0.58 m/s,0.12 m/s,0.10 m/s。余流流速大小与潮流强弱有密切的联系,表、中、底层最大余流流速分别为26 cm/s,20 cm/s,16 cm/s,三者在水平方向基本呈北进南出的分布形态。  相似文献   

18.
In the southwestern Okhotsk Sea off Hokkaido we observed chemical components related to the carbonate system for 1 year from August 1997 to June 1998. Using the conservative components salinity and water temperature, we confirmed the existence of two water masses flowing into the intermediate layer of the Okhotsk Sea, the East Sakhalin Current Water (ESCW) which becomes denser by mixing of brine water, and the Forerunner of Soya Warm Current Water (FSWW) which becomes denser due to cooling of the saline Kuroshio water. The ΔNTCx values were calculated by comparing the ESCW and the FSWW with the Pacific Deep Water (PDW). The ΔNTCx values obtained are 100–110 μmol/kg and 70–100 μmol/kg for the ESCW and the FSWW off Hokkaido, respectively, which are considerably larger than that of the Kuroshio water. These large ΔNTCx values may be due to both low DIC concentration in the surface water and intense gas exchange under the cold and stormy winter conditions for the ESCW and the cooling of the FSWW as it flows northward. Since the flow rates of dense waters concerned with the ESCW and the FSWW have previously been estimated as 0.9 Sv and 0.2 Sv, respectively, the amount of atmospheric CO2 absorbed and transported to the intermediate layer turns out to be 3.9−4.1 × 1013 gC/yr. This flux is small on a global scale, but the flux divided by the surface layer of the Okhotsk Sea is 30 gC/m2/yr, which is 5 times greater than the mean absorption flux of anthropogenic CO2 in the world's oceans. It is thus considered that atmospheric CO2 is efficiently absorbed in the Okhotsk Sea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Tidal currents observed in a surface layer overlying deep water in Sagami and Suruga Bays frequently have large amplitude in summer and fall. Numerical experiments show that the current amplitude due to the surface tides is below 1.0 cm sec–1 for the semidiurnal and diurnal constituents in the inner region of the two bays. The observed current amplitudes are larger than the calculated ones due to the surface tides. Therefore, the observed tidal currents are indicated to be due mainly to the internal tides. In addition, the semidiurnal currents dominate the diurnal currents in Sagami Bay, while the opposite occurs in Suruga Bay. These results suggest that the prevailing periods of the internal tides differ between the two bays,i.e., the internal tide has a semidiurnal period in Sagami Bay and a diurnal period in Suruga Bay.  相似文献   

20.
渤、黄、东海潮汐、潮流的数值模拟与研究   总被引:9,自引:4,他引:5  
基于FVCOM海洋数值模式,采用高分辨率的三角形网格,对渤、黄、东海的潮汐、潮流进行数值模拟,并通过比较120个沿岸验潮站和14个潮流观测站的实测与模拟结果进行模型验证,两者符合较好。根据模拟结果,给出了四个主要分潮的潮汐同潮图和5m层潮流最大流速及最大潮流同潮时分布。渤、黄、东海共有5个半日分潮和3个全日分潮的独立旋转潮波系统,且都呈逆时针方向旋转;半日潮流和全日潮流各有12个圆流点;在冲绳岛和奄美岛两侧的4个半日潮流圆流点分别呈对称分布,其中有3个为本文首次给出;在日本九州岛西侧还新给出2个全日潮流圆流点。有关它们的存在性需要实测资料的进一步检验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号