首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We introduce a novel concept to sense the wavefront for adaptive optics purposes in astronomy using a conventional laser beacon. The concept we describe involves treating the light scattered in the mesospheric sodium layer as if it comes from multiple rings located at infinity. Such a concept resembles an inverse Bessel beam and is particularly suitable for multi-conjugated adaptive optics on extremely large telescopes. In fact, as the sensing process uses light apparently coming from infinity, some problems linked to the finite distance and vertical extent of the guide source are solved. Since such a technique is able to sense a wavefront solely in the radial direction, we propose furthermore a novel wavefront sensor by combining the inverse Bessel beam approach with the recently introduced z -invariant technique for a pseudo-infinite guide star sensor.  相似文献   

2.
We describe a novel concept for high-resolution wavefront sensing based on the optical differentiation wavefront sensor (OD). It keeps the advantages of high resolution, adjustable dynamic range, ability to work with polychromatic sources and, in addition, it achieves good performance in wavefront reconstruction when the field is perturbed by scintillation. Moreover, this new concept can be used as multi-object wavefront sensor in multiconjugate adaptive optics systems. It is able to provide high resolution and high sampling operation, which is of great interest for the projected extreme adaptive optics systems for large telescopes.  相似文献   

3.
A new method of wavefront sensing that uses a pair of equally defocused images to derive the wavefront aberrations is presented. Unlike in conventional curvature-sensing systems, the sensor works in a near-focus regime where the transport of intensity equation is not valid, and, unlike in phase-diversity methods, a non-iterative algorithm is used to infer the wavefront aberrations. The sensor designs outlined only require a small number of detector pixels: two designs with five and nine pixels per plane are analysed, and the nine-element sensor (NES) is shown to have a competitive measurement sensitivity compared with existing low-order astronomical wavefront sensors. The NES is thus well suited to applications such as adaptive optics for the individual telescopes in an optical interferometer array.  相似文献   

4.
A method for producing a laser guide star wavefront sensor for adaptive optics with reduced focal anisoplanatism is presented. A theoretical analysis and numerical simulations have been carried out and the results are presented. The technique, named Sky-Projected Laser Array Shack–Hartmann (SPLASH), is shown to suffer considerably less from focal anisoplanatism than a conventional laser guide star system. The method is potentially suitable for large telescope apertures (∼8 m), and possibly for extremely large telescopes.  相似文献   

5.
The problem of providing Adaptive Optics (AO) correction over a wide field of view is one that can be alleviated by using multiple conjugate AO (MCAO), or a low-altitude Laser Guide Star (LGS) that is projected to an altitude below any high layer turbulence. A low-altitude LGS can only sense wavefront distortions induced by low-altitude turbulence, which is dominated by a strong boundary layer at the ground. Sensing only the wavefront from this layer provides an AO system with a more spatially invariant performance over the telescope field of view at the expense of overall correction. An alternative method for measuring a ground-layer biased wavefront using a single rotating LGS is presented together with a numerical analysis of the wide-field performance of an AO system utilizing such a LGS. System performance in H and K bands is predicted in terms of system Strehl ratio, which shows that uniform correction can be obtained over fields of view of 200 arcsec in diameter. The simulations also show that the on-axis performance of a LGS utilizing Rayleigh backscattered light will be improved.  相似文献   

6.
Over the last few years increasing consideration has been given to the study of laser guide stars (LGS) for the measurement of the disturbance introduced by the atmosphere in optical and near-infrared (near-IR) astronomical observations from the ground. A possible method for the generation of a LGS is the excitation of the sodium layer in the upper atmosphere at approximately 90 km of altitude. Since the sodium layer is approximately 10 km thick, the artificial reference source looks elongated, especially when observed from the edge of a large aperture. The spot elongation strongly limits the performance of the most common wavefront sensors. The centroiding accuracy in a Shack–Hartmann wavefront sensor, for instance, decreases proportionally to the elongation (in a photon noise dominated regime). To compensate for this effect, a straightforward solution is to increase the laser power, i.e. to increase the number of detected photons per subaperture. The scope of the work presented in this paper is twofold: an analysis of the performance of the weighted centre of gravity algorithm for centroiding with elongated spots and the determination of the required number of photons to achieve a certain average wavefront error over the telescope aperture.  相似文献   

7.
This article describes the qualitative effects of LGS spot elongation and Rayleigh scattering on ALFA wavefront sensor images.An analytical model of Rayleigh scattering and a numerical model of laser plume generation at the altitude of the Na-layer were developed. These models, integrated into ageneral AO simulation, provide the sensor sub-apertureimages. It is shown that the centroid measurement accuracyis affected by these phenomena. The simulation was made both for the ALFA system and for the VLT Nasmyth Adaptive Optics System (NAOS).  相似文献   

8.
The new 1.5‐m German solar telescope GREGOR at the Observatorio del Teide, Tenerife, is equipped with an integrated adaptive optics system. Although partly still in the commissioning phase, the system is already being used used for most science observations. It is designed to provide diffraction‐limited observations in the visible‐light regime for seeing better than 1.2″. We describe the AO system including the optical design, software, wavefront reconstruction, and performance (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This paper discusses the use of Shack–Hartmann wavefront sensors to determine the vertical distribution of atmospheric optical turbulence above large telescopes. It is demonstrated that the turbulence altitude profile can be recovered reliably from time-averaged spatial cross-correlations of the local wavefront slopes for Shack–Hartmann observations of binary stars. The method, which is referred to as SLODAR, is analogous to the well known SCIDAR scintillation profiling technique, and a calibration against contemporaneous SCIDAR observations is shown. Hardware requirements are simplified relative to the scintillation method, and the number of suitable target objects is larger. The implementation of a Shack–Hartmann based turbulence monitor for use at the William Herschel Telescope is described. The system will be used to optimize adaptive optical observations at the telescope and to characterize anisoplanatic variations of the corrected point spread function.  相似文献   

10.
We give a short overview of the Adaptive Optics (AO) and Multi‐conjugate Adaptive Optics (MCAO) system of the planned 4 m European Solar Telescope (EST). The optimization process of the AO / MCAO parameters is shown, including the parameters and layout of the Shack‐Hartmann wavefront sensor setup and the DMs. We show the expected performance of the AO and MCAO system (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Slope Detection and Ranging (SLODAR) is a technique for the measurement of the vertical profile of atmospheric optical turbulence strength. Its main applications are astronomical site characterization and real-time optimization of imaging with adaptive optical correction. The turbulence profile is recovered from the cross-covariance of the slope of the optical phase aberration for a double star source, measured at the telescope with a wavefront sensor (WFS). Here, we determine the theoretical response of a SLODAR system based on a Shack–Hartmann WFS to a thin turbulent layer at a given altitude, and also as a function of the spatial power spectral index of the optical phase aberrations. Recovery of the turbulence profile via fitting of these theoretical response functions is explored. The limiting resolution in altitude of the instrument and the statistical uncertainty of the measured profiles are discussed. We examine the measurement of the total integrated turbulence strength (the seeing) from the WFS data and, by subtraction, the fractional contribution from all turbulence above the maximum altitude for direct sensing of the instrument. We take into account the effects of noise in the measurement of wavefront slopes from centroids and the form of the spatial structure function of the atmospheric optical aberrations.  相似文献   

12.
Integral field spectrographs are major instruments with which to study the mechanisms involved in the formation and the evolution of early galaxies. When combined with multi-object spectroscopy, those spectrographs can behave as machines used to derive physical parameters of galaxies during their formation process. Up to now, there has been only one available spectrograph with multiple integral field units, i.e. FLAMES/GIRAFFE on the European Southern Observatory (ESO) Very Large Telescope (VLT). However, current ground-based instruments suffer from a degradation of their spatial resolution due to atmospheric turbulence. In this article we describe the performance of FALCON, an original concept of a new-generation multi-object integral field spectrograph with adaptive optics for the ESO VLT. The goal of FALCON is to combine high angular resolution (0.25 arcsec) and high spectral resolution  ( R > 5000)  in the J and H bands over a wide field of view  (10 × 10 arcmin2)  in the VLT Nasmyth focal plane. However, instead of correcting the whole field, FALCON will use multi-object adaptive optics (MOAO) to perform the adaptive optics correction locally on each scientific target. This requires us then to use atmospheric tomography in order to use suitable natural guide stars for wavefront sensing. We will show that merging MOAO and atmospheric tomography allows us to determine the internal kinematics of distant galaxies up to z ≈ 2 with a sky coverage of 50 per cent, even for objects observed near the Galactic pole. The application of such a concept to extremely large telescopes seems therefore to be a very promising way to study galaxy evolution from z = 1 to redshifts as high as z = 7.  相似文献   

13.
The point spread function of a segmented-mirror telescope is severely affected by segment misalignment, which can nullify the performance of adaptive optics systems. The piston and tilt of each segment must be precisely adjusted in relation to the other segments. Furthermore, the direct detection of the alignment error with natural stars would be desirable in order to monitor the errors during astronomical observation.
We have studied the lost information of the piston error caused by the presence of atmospheric turbulence in the measurements of curvature, and present a new algorithm for obtaining the local piston using the curvature sensor. A phase-wrapping effect is shown as responsible for the loss of curvature information and so the piston errors can no longer adequately be mapped; this happens not only in the presence of atmospheric turbulence, but also in its absence.
Good results are obtained using a new iterative method for obtaining the local piston error map. In the presence of atmospheric perturbation, the turbulent phase information obtained from a Shack–Hartmann sensor is introduced in our new iterative method. We propose a hybrid sensor composed of a curvature sensor and a Shack–Hartmann sensor, in order to complete all the information for the phasing. This design takes a short computation time and could be used in real time inside an adaptive optics system, where tilt and piston errors must be corrected.  相似文献   

14.
This paper presents a study of the atmospheric refraction and its effect on the light coupling efficiency in an instrument using single-mode optical fibres. We show the analytical approach which allowed us to assess the need to correct the refraction in J and H bands while observing with an 8-m Unit Telescope. We then developed numerical simulations to go further in calculations. The hypotheses on the instrumental characteristics are those of AMBER (Astronomical Multi BEam combineR), the near-infrared focal beam combiner of the Very Large Telescope Interferometric mode, but most of the conclusions can be generalized to other single-mode instruments. We used the software package caos to take into account the atmospheric turbulence effect after correction by the European Southern Observatory system Multi-Application Curvature Adaptive Optics. The optomechanical study and design of the system correcting the atmospheric refraction on AMBER is then detailed. We showed that the atmospheric refraction becomes predominant over the atmospheric turbulence for some zenith angles z and spectral conditions: for z larger than 30° in J band for example. The study of the optical system showed that it allows to achieve the required instrumental performance in terms of throughput in J and H bands. First observations in J band of a bright star, α Cir star, at more than 30° from zenith clearly showed the gain to control the atmospheric refraction in a single-mode instrument, and validated the operating law.  相似文献   

15.
Adaptive optics (AO), which provides diffraction limited imaging over a field-of-view (FOV), is a powerful technique for solar observation. In the tomographic approach, each wavefront sensor (WFS) is looking at a single reference that acts as a guide star. This allows a 3D reconstruction of the distorted wavefront to be made. The correction is applied by one or more deformable mirrors (DMs). This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. With the assistance of the MAOS software package, we consider the tomography errors and WFS aliasing errors, and focus on how the performance of a solar telescope (pointing toward zenith) is related to atmospheric anisoplanatism. We theoretically quantify the performance of the to- mographic solar AO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope in a 10" - 80" diameter FOV by only employing one DM conjugated to the telescope pupil. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the AO system by selecting two atmospheric models that differ mainly in terms of atmospheric prop- erties at ground level, and present the optimum DM conjugate altitudes for different observation sites.  相似文献   

16.
The usefulness of tracking the Rayleigh portion of a mesospheric sodium laser guide star as reference for absolute tip–tilt recovery in the frame of the auxiliary telescopes technique is shown. This approach leads to the reduction of the ground occupation needed to attain a given sky coverage by more than one order of magnitude. Speed, tracking precision, and the number of auxiliary telescopes are also reduced, making this new approach a more attractive one. The use of a low-altitude Rayleigh spot reinforces the fundamental limitations affecting this and other techniques, thus degrading significantly the quality of the recovered tip–tilt. However, it is shown that, provided adequate care is taken in the collection and treatment of data, an interesting tilt signal can still be retrieved.  相似文献   

17.
用于自适应光学系统的激光引导星   总被引:2,自引:0,他引:2  
自适应光学系统应用于天文观测时应满足一些技术要求,其中的关键技术之一是自适应光学系统为了对畸变的光波进行采样,需要在其很小的等晕角内有足够的信标强度。激光引导星,即人造信标,就是解决这种问题的方法之一。特别是在观测天文暗目标时,其自身的光强度不能为有探测提供信息,激光引导星就蛤得非常重要。根据国际上的最新进展对激光引导星技术给予了介绍。重点介绍了激光引导星的局限性,对近几年提出的对激光引导星可能的  相似文献   

18.
Ground-based observations at near-infrared wavelengths are severely affected by atmospheric OH bands. Many authors have recognized the potential gains in sensitivity from suppressing these features. Dispersive instruments show some promise but are both expensive and complicated to build. OH suppression filters using single or periodic notches have the advantage of simplicity but significant gains have not yet been realized.   Rugate filters (with graded index inhomogeneous coatings) offer key advantages for astronomical imaging. It is possible to produce a transmission profile comprising a series of irregular and sharply defined bandpasses. We demonstrate through numerical simulation of rugate filters that it should be possible to achieve 95 per cent suppression of the OH features in the J photometric band, while retaining roughly half of the spectral coverage. This would lead to extraordinary gains in sensitivity even for observations of continuum sources. In addition, these filters allow longer exposures before the detector saturates on the sky background. I - and z -band filters can also be envisaged.   In 1-arcsec seeing, a J -band rugate filter used in conjunction with a 4-m telescope would detect a J  = 23 continuum source at 5.0σ in a single 10-min exposure. In comparison, a conventional J filter requires multiple exposures for a 10-min integration time and achieves only a 2.5σ detection. For emission-line sources, the rugate filter has an even bigger advantage over conventional filters, with a fourfold increase in signal-to-noise ratio possible in certain instances.   Astrophysical studies that could benefit from rugate filters are searches for very low-mass stars and galaxy evolution out to z  = 3.  相似文献   

19.
In this paper, we present simulation results of a ground-layer correction adaptive optics system (GLAO), based on four laser guide stars and a single deformable mirror. The goal is to achieve a seeing improvement over an 8-arcmin field of view, in the near-infrared (from 1.06 to 2.2 μm). We show results on the scaling of this system (number of subapertures, frame rates), and the required number of tip-tilt stars. We investigate the use for GLAO of both sodium and Rayleigh guide stars. We also show that if the lasers can be repositioned, the performance of the adaptive optics can be tailored to the astronomical observations.  相似文献   

20.
Further imaging observations of a sample of radio sources in the North Ecliptic Cap are presented and a number of new identifications are made. Using redshifts from spectroscopic data presented in a companion paper by Lacy et al., the photometric properties of the galaxies in the sample are discussed. It is shown that: (1) out to at least z ≈0.6 radio galaxies are good standard candles irrespective of radio luminosity; (2) for 0.6≲ z ≲1 a large fraction of the sample has magnitudes and colours consistent with a non-evolving giant elliptical, and (3) at higher redshifts, where the R -band samples the rest-frame UV flux, most objects have less UV luminosity than expected if they form their stellar populations at a constant rate from a high redshift to z ∼1 in unobscured star-forming regions (assuming an Einstein–de Sitter cosmology). The consequences of these observations are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号