首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
A meteorite fall was heard and collected on July 13, 2010 at about 18:00 (local time) in the Shibanjing village of the Huaxi district of Guiyang, Guizhou province, China. The total mass of the fall is estimated to be at least 1.6 kg; some fragments are missing. The meteorite consists mainly of olivine, low‐Ca pyroxene, high‐Ca pyroxene, plagioclase, kamacite, taenite, and troilite. Minor phases include chromite and apatite. Various textural types of chondrules exist in this meteorite: most chondrule textures can be easily defined. The grain sizes of secondary plagioclase in this meteorite range from 2 to 50 μm. The chemical composition of olivine and low‐Ca pyroxene are uniform; Fa in olivine and Fs in low‐Ca pyroxene are, respectively, 19.6 ± 0.2 and 17.0 ± 0.3 (mole%). Huaxi has been classified as an H5 ordinary chondrite, with a shock grade S2, and weathering W0. The weak shock features, rare fractures, and the high porosity (17.6%) indicates that Huaxi is a less compacted meteorite. The preatmospheric radius of Huaxi is ~11 cm, corresponding to ~21 kg. The meteorite experienced a relatively short cosmic‐ray exposure of about 1.6 ± 0.1 Ma. The 4He and 40Ar retention ages are older than 4.6 Ga implying that Huaxi did not degas after thermal metamorphism on its parent body.  相似文献   

2.
Northwest Africa 757 is unique in the LL chondrite group because of its abundant shock‐induced melt and high‐pressure minerals. Olivine fragments entrained in the melt transform partially and completely into ringwoodite. Plagioclase and Ca‐phosphate transform to maskelynite, lingunite, and tuite. Two distinct shock‐melt crystallization assemblages were studied by FIB‐TEM analysis. The first melt assemblage, which includes majoritic garnet, ringwoodite plus magnetite‐magnesiowüstite, crystallized at pressures of 20–25 GPa. The other melt assemblage, which consists of clinopyroxene and wadsleyite, solidified at ~15 GPa, suggesting a second veining event under lower pressure conditions. These shock features are similar to those in S6 L chondrites and indicate that NWA 757 experienced an intense impact event, comparable to the impact event that disrupted the L chondrite parent body at 470 Ma.  相似文献   

3.
Abstract— Shock‐recovery experiments were carried out on samples of the H6 chondrite Kernouvé at shock pressures of 10, 15, 20, 25, 30, 35, 45, and 60 GPa and preheating temperatures of 293 K (low‐temperature experiments) and 920 K (high‐temperature experiments). Using a calculated equation of state of Kernouvé, pressure‐pulse durations of 0.3 to 1.2 μs were estimated. The shocked samples were investigated by optical microscopy to calibrate the various shock effects in olivine, orthopyroxene, oligoclase, and troilite. The following pressure calibration is proposed for silicates: (1) undulatory extinction of olivine <GPa; (2) weak mosaicism of olivine from 10–15 GPa to 20–25 GPa; (3) onset of strong mosaicism of olivine at 20–25 GPa; (4) transformation of oligoclase to diaplectic glass completed at 25–30 GPa (low‐temperature experiments) and at 20–25 GPa (high‐temperature experiments); (5) onset of weak mosaicism in orthopyroxene at 30–35 GPa (low‐temperature experiments) and at 25–30 GPa (high‐temperature experiments); and (6) recrystallization or melting of olivine starting at 45–60 GPa (low‐temperature experiments) and at 35–45 GPa (high‐temperature experiments), and completed above 45–60 GPa in the high‐temperature experiments. Troilite displays distinct differences between the samples shocked at low and high temperatures. In the low‐temperature experiments, the following effects can be observed in troilite: (1) undulatory extinction up to 25 GPa, (2) twinning up to 45 GPa, (3) partial recrystallization from 30 to 60 GPa, and (4) complete recrystallization >35 GPa; whereas in the high‐temperature experiments, troilite shows (1) complete recrystallization from 10 up to 45 GPa and (2) melting and crystallization above 45 GPa. Localized shock‐induced melting is observed in samples shocked to pressures >15 GPa in the high‐temperature experiments and >30 GPa for the low‐temperature experiments in the form of FeNi metal and troilite melt injections and intergrowths and as pockets and veins of whole‐rock melt. Obviously, the onset and abundance of shock‐induced localized melting strongly depends on the initial temperature of the sample.  相似文献   

4.
Miller Range 07273 is a chondritic melt breccia that contains clasts of equilibrated ordinary chondrite set in a fine‐grained (<5 μm), largely crystalline, igneous matrix. Data indicate that MIL was derived from the H chondrite parent asteroid, although it has an oxygen isotope composition that approaches but falls outside of the established H group. MIL also is distinctive in having low porosity, cone‐like shapes for coarse metal grains, unusual internal textures and compositions for coarse metal, a matrix composed chiefly of clinoenstatite and omphacitic pigeonite, and troilite veining most common in coarse olivine and orthopyroxene. These features can be explained by a model involving impact into a porous target that produced brief but intense heating at high pressure, a sudden pressure drop, and a slower drop in temperature. Olivine and orthopyroxene in chondrule clasts were the least melted and the most deformed, whereas matrix and troilite melted completely and crystallized to nearly strain‐free minerals. Coarse metal was largely but incompletely liquefied, and matrix silicates formed by the breakdown during melting of albitic feldspar and some olivine to form pyroxene at high pressure (>3 GPa, possibly to ~15–19 GPa) and temperature (>1350 °C, possibly to ≥2000 °C). The higher pressures and temperatures would have involved back‐reaction of high‐pressure polymorphs to pyroxene and olivine upon cooling. Silicates outside of melt matrix have compositions that were relatively unchanged owing to brief heating duration.  相似文献   

5.
We determined the shock‐darkening pressure range in ordinary chondrites using the iSALE shock physics code. We simulated planar shock waves on a mesoscale in a sample layer at different nominal pressures. Iron and troilite grains were resolved in a porous olivine matrix in the sample layer. We used equations of state (Tillotson EoS and ANEOS) and basic strength and thermal properties to describe the material phases. We used Lagrangian tracers to record the peak shock pressures in each material unit. The post‐shock temperatures (and the fractions of the tracers experiencing temperatures above the melting point) for each material were estimated after the passage of the shock wave and after the reflections of the shock at grain boundaries in the heterogeneous materials. The results showed that shock‐darkening, associated with troilite melt and the onset of olivine melt, happened between 40 and 50 GPa with 52 GPa being the pressure at which all tracers in the troilite material reach the melting point. We demonstrate the difficulties of shock heating in iron and also the importance of porosity. Material impedances, grain shapes, and the porosity models available in the iSALE code are discussed. We also discuss possible not‐shock‐related triggers for iron melt.  相似文献   

6.
Shock pressure recorded in Yamato (Y)‐790729, classified as L6 type ordinary chondrite, was evaluated based on high‐pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host‐rock of Y‐790729 consists mainly of olivine, low‐Ca pyroxene, plagioclase, metallic Fe‐Ni, and iron‐sulfide with minor amounts of phosphate and chromite. A shock‐melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock‐melt vein. The shock pressure in the shock‐melt vein is about 14–23 GPa based on the phase equilibrium diagrams of high‐pressure polymorphs. Some plagioclase portions in the host‐rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11–19 GPa. The difference in pressure between the shock‐melt vein and host‐rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent‐body of Y‐790729 is calculated to be ~1.90 km s?1. The parent‐body would be at least ~10 km in size based on the incoherent formation mechanism of ringwoodite in Y‐790729.  相似文献   

7.
A single piece of meteorite fell on Kamargaon village in the state of Assam in India on November 13, 2015. Based on mineralogical, chemical, and oxygen isotope data, Kamargaon is classified as an L‐chondrite. Homogeneous olivine (Fa: 25 ± 0.7) and low‐Ca pyroxene (Fs: 21 ± 0.4) compositions with percent mean deviation of <2, further suggest that Kamargaon is a coarsely equilibrated, petrologic type 6 chondrite. Kamargaon is thermally metamorphosed with an estimated peak metamorphic temperature of ~800 °C as determined by two‐pyroxene thermometry. Shock metamorphism studies suggest that this meteorite include portions of different shock stages, e.g., S3 and S4 (Stöffler et al. 1991 ); however, local presence of quenched metal‐sulfide melt within shock veins/pockets suggest disequilibrium melting and relatively higher shock stage of up to S5 (Bennett and McSween 1996 ). Based on noble gas isotopes, the cosmic‐ray exposure age is estimated as 7.03 ± 1.60 Ma and nitrogen isotope composition (δ15N = 18‰) also correspond well with the L‐chondrite group. The He‐U, Th, and K‐Ar yield younger ages (170 ± 25 Ma 684 ± 93, respectively) and are discordant. A loss of He during the resetting event is implied by the lower He‐U and Th age. Elemental ratios of trapped Ar, Kr, and Xe can be explained through the presence of a normal Q noble gas component. Relatively low activity of 26Al (39 dpm/kg) and the absence of 60Co activity suggest a likely low shielding depth and envisage a small preatmospheric size of the meteoroid (<10 cm in radius). The Kr isotopic ratios (82Kr/84Kr) further argue that the meteorite was derived from a shallow depth.  相似文献   

8.
Abstract— We report a previously undocumented set of high‐pressure minerals in shock‐induced melt veins of the Umbarger L6 chondrite. High‐pressure minerals were identified with transmission electron microscopy (TEM) using selected area electron diffraction and energy‐dispersive X‐ray spectroscopy. Ringwoodite (Fa30), akimotoite (En11Fs89), and augite (En42Wo33Fs25) were found in the silicate matrix of the melt vein, representing the crystallization from a silicate melt during the shock pulse. Ringwoodite (Fa27) and hollandite‐structured plagioclase were also found as polycrystalline aggregates in the melt vein, representing solid state transformation or melting with subsequent crystallization of entrained host rock fragments in the vein. In addition, Fe2SiO4‐spinel (Fa66‐Fa99) and stishovite crystallized from a FeO‐SiO2‐rich zone in the melt vein, which formed by shock melting of FeO‐SiO2‐rich material that had been altered and metasomatized before shock. Based on the pressure stabilities of the high‐pressure minerals, ringwoodite, akimotoite, and Ca‐clinopyroxene, the melt vein crystallized at approximately 18 GPa. The Fe2SiO4‐spinel + stishovite assemblage in the FeO‐SiO2‐rich melts is consistent with crystallization of the melt vein matrix at the pressure up to 18 GPa. The crystallization pressure of ?18 GPa is much lower than the 45–90 GPa pressure one would conclude from the S6 shock effects in melt veins (Stöffler et al. 1991) and somewhat less than the 25–30 GPa inferred from S5 shock effects (Schmitt 2000) found in the bulk rock.  相似文献   

9.
An assemblage with FeNi metal, troilite, Fe‐Mn‐Na phosphate, and Al‐free chromite was identified in the metal‐troilite eutectic nodules in the shock‐produced chondritic melt of the Yanzhuang H6 meteorite. Electron microprobe and Raman spectroscopic analyses show that a few phosphate globules have the composition of Na‐bearing graftonite (Fe,Mn,Na)3(PO4)2, whereas most others correspond to Mn‐bearing galileiite Na(Fe,Mn)4(PO4)3 and a possible new phosphate phase of Na2(Fe,Mn)17(PO4)12 composition. The Yanzhuang meteorite was shocked to a peak pressure of 50 GPa and a peak temperature of approximately 2000 °C. All minerals were melted after pressure release to form a chondritic melt due to very high postshock heat that brought the chondrite material above its liquidus. The volatile elements P and Na released from whitlockite and plagioclase along with elements Cr and Mn released from chromite are concentrated into the shock‐produced Fe‐Ni‐S‐O melt at high temperatures. During cooling, microcrystalline olivine and pyroxene first crystallized from the chondritic melt, metal‐troilite eutectic intergrowths, and silicate melt glass finally solidified at about 950–1000 °C. On the other hand, P, Mn, and Na in the Fe‐Ni‐S‐O melt combined with Fe and crystallized as Fe‐Mn‐Na phosphates within troilite, while Cr combined with Fe and crystallized as Al‐free chromite also within troilite.  相似文献   

10.
Abstract— Shock metamorphic features in opaque minerals (FeNi metal and troilite) of 22 L chondrites have been studied petrographically and geochemically in an attempt to establish a connection between the present silicate-based shock classification scheme (Stöffler et al., 1991) and the peak-shock and postshock thermal history recorded in these minerals. Unshocked to weakly shocked (S1–S3) L chondrites contain FeNi metal and troilite that display textures related to normal, slow cooling. They may also contain rare disequilibrium shock features, which suggest localized departures from equilibrium shock conditions. Above shock stage S3, selected melting of FeNi metal and troilite produces melt droplets whose composition and abundance correspond to the maximum equilibrium shock state achieved by the sample. At these higher shock levels, the abundance of other shock-induced features, such as polycrystalline kamacite, sheared and fizzed troilite, coarse-grained pearlitic plessite, polycrystalline troilite, and polymineralic melt veins serve as textural criteria that can be used to establish peak-shock conditions. Minimum postshock temperatures obtained from analyses of plessite components show a systematic increase in temperature with an increase in shock stage, thereby providing additional information about the postshock thermal histories of L chondrites. At the highest shock levels recorded in L chondrites (S6 and above), melting and chemical homogenization of FeNi metal produces flattened Ni profiles that may partially to completely obscure any evidence for an earlier, slow-cooling history. All of these features serve as aids for shock classifying L chondrites as well as for quantifying minimum peak temperatures that resulted during shock metamorphism.  相似文献   

11.
Northwest Africa (NWA) 11042 is a heavily shocked achondrite with medium‐grained cumulate textures. Its olivine and pyroxene compositions, oxygen isotopic composition, and chromium isotopic composition are consistent with L chondrites. Sm‐Nd dating of its primary phases shows a crystallization age of 4100 ± 160 Ma. Ar‐Ar dating of its shocked mineral maskelynite reveals an age of 484.0 ± 1.5 Ma. This age coincides roughly with the breakup event of the L chondrite parent body evident in the shock ages of many L chondrites and the terrestrial record of fossil L chondritic chromite. NWA 11042 shows large depletions in siderophile elements (<0.01×CI) suggestive of a complex igneous history involving extraction of a Fe‐Ni‐S liquid on the L chondrite parent body. Due to its relatively young crystallization age, the heat source for such an igneous process is most likely impact. Because its mineralogy, petrology, and O isotopes are similar to the ungrouped achondrite NWA 4284 (this work), the two meteorites are likely paired and derived from the same parent body.  相似文献   

12.
We have sampled sulfide grains from one pristine CM2 chondrite (Yamato [Y‐] 791198), one thermally metamorphosed CM2 chondrite (Y‐793321), and two anomalous, metamorphosed CM/CI‐like chondrites (Y‐86720 and Belgica [B‐] 7904) by the focused ion beam (FIB) technique and studied them by analytical transmission electron microscopy (TEM). Our study aims at exploring the potential of sulfide assemblages and microstructures to decipher processes and conditions of chondrite petrogenesis. Complex exsolution textures of pyrrhotite (crystallographic NC‐type with ≈ 6), troilite, and pentlandite occur in grains of Y‐791198 and Y‐793321. Additionally, polycrystalline 4C‐pyrrhotite‐pentlandite‐magnetite aggregates occur in Y‐791198, pointing to diverse conditions of gas–solid interactions in the solar nebula. Coarser exsolution textures of Y‐793321 grains indicate higher long‐term average temperatures in the <100 °C range compared to Y‐791198 and other CM chondrites. Sulfide mineralogy of Y‐86720 and B‐7904 is dominated by aggregates of pure troilite and metal, indicating metamorphic equilibration at sulfur fugacities (fS2) of the iron‐troilite buffer. Absence of magnetite in equilibrium with sulfide and metal in Y‐86720 indicates higher peak temperatures compared with B‐7904, in which coexistence of troilite, metal, and magnetite constrains metamorphic temperature to less than 570 °C. NC‐pyrrhotite occurs in both meteorites as nm‐wide rims on troilite grains and, together with frequent anhydrite, indicates a retrograde metamorphic stage at higher fS2 slightly above the fayalite‐magnetite‐quartz‐pyrrhotite buffer. Fine‐grained troilite‐olivine intergrowths in both meteorites suggest the pre‐metamorphic presence of tochilinite‐serpentine interlayer phases, pointing to mineralogical CM affinity. Pseudomorphs after euhedral pyrrhotite crystals in Y‐86720 in turn suggest CI affinity as do previously published O isotopic data of both meteorites.  相似文献   

13.
The fall of a meteorite shower in Parambú, Ceará State, Brazil, is described. Parambú is an L-group chondrite (Urey and Craig, 1953). The mineralogical composition is olivine Fa28. ortho- and clinopyroxenes, plagioclase, maskelynite, whitlockite, nickel-iron, troilite, chromite, and ilmenite. The structure of Parambú is characteristically polymict and shows an advanced brecciation. Interesting features of metamorphism are notable, with good evidence of shock.  相似文献   

14.
Abstract— Here we report the transmission electron microscopy (TEM) observations of the mineral assemblages and textures in shock‐induced melt veins from seven L chondrites of shock stages ranging from S3 to S6. The mineral assemblages combined with phase equilibrium data are used to constrain the crystallization pressures, which can be used to constrain shock pressure in some cases. Thick melt veins in the Tenham L6 chondrite contain majorite and magnesiowüstite in the center, and ringwoodite, akimotoite, vitrified silicate‐perovskite, and majorite in the edge of the vein, indicating crystallization pressure of ?25 GPa. However, very thin melt veins (5–30 μm wide) in Tenham contain glass, olivine, clinopyroxene, and ringwoodite, suggesting crystallization during transient low‐pressure excursions as the shock pressure equilibrated to a continuum level. Melt veins of Umbarger include ringwoodite, akimotoite, and clinopyroxene in the vein matrix, and Fe2SiO4‐spinel and stishovite in SiO2‐FeO‐rich melt, indicating a crystallization pressure of ?18 GPa. The silicate melt veins in Roy contain majorite plus ringwoodite, indicating pressure of ?20 GPa. Melt veins of Ramsdorf and Nakhon Pathon contain olivine and clinoenstatite, indicating pressure of less than 15 GPa. Melt veins of Kunashak and La Lande include albite and olivine, indicating crystallization at less than 2.5 GPa. Based upon the assemblages observed, crystallization of shock veins can occur before, during, or after pressure release. When the assemblage consists of high‐pressure minerals and that assemblage is constant across a larger melt vein or pocket, the crystallization pressure represents the equilibrium shock pressure.  相似文献   

15.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

16.
A large shock‐induced melt vein in L6 ordinary chondrite Roosevelt County 106 contains abundant high‐pressure minerals, including olivine, enstatite, and plagioclase fragments that have been transformed to polycrystalline ringwoodite, majorite, lingunite, and jadeite. The host chondrite at the melt‐vein margins contains olivines that are partially transformed to ringwoodite. The quenched silicate melt in the shock veins consists of majoritic garnets, up to 25 μm in size, magnetite, maghemite, and phyllosilicates. The magnetite, maghemite, and phyllosilicates are the terrestrial alteration products of magnesiowüstite and quenched glass. This assemblage indicates crystallization of the silicate melt at approximately 20–25 GPa and 2000 °C. Coarse majorite garnets in the centers of shock veins grade into increasingly finer grained dendritic garnets toward the vein margins, indicating increasing quench rates toward the margins as a result of thermal conduction to the surrounding chondrite host. Nanocrystalline boundary zones, that contain wadsleyite, ringwoodite, majorite, and magnesiowüstite, occur along shock‐vein margins. These zones represent rapid quench of a boundary melt that contains less metal‐sulfide than the bulk shock vein. One‐dimensional finite element heat‐flow calculations were performed to estimate a quench time of 750–1900 ms for a 1.6‐mm thick shock vein. Because the vein crystallized as a single high‐pressure assemblage, the shock pulse duration was at least as long as the quench time and therefore the sample remained at 20–25 GPa for at least 750 ms. This relatively long shock pulse, combined with a modest shock pressure, implies that this sample came from deep in the L chondrite parent body during a collision with a large impacting body, such as the impact event that disrupted the L chondrite parent body 470 Myr ago.  相似文献   

17.
All Martian meteorites have experienced shock metamorphism to some degree. We quantitatively determined shock‐related strain in olivine crystals to measure shock level and peak shock pressure experienced by five Martian meteorites. Two independent methods employing nondestructive in situ micro X‐ray diffraction (μXRD) are applied, i.e., (1) the lattice strain method, in which the lattice strain value (ε) for each olivine grain is derived from a Williamson–Hall plot using its diffraction pattern (peak width variation with diffraction angle) with reference to a best fit calibration curve of ε values obtained from experimentally shocked olivine grains; (2) the strain‐related mosaicity method, allowing shock stage to be estimated by measuring the streaking along the Debye rings of olivine grain diffraction spots to define their strain‐related mosaic spread, which can then be compared with olivine mosaicity in ordinary chondrites of known shock stage. In this study, both the calculated peak shock pressures and the estimated shock stages for Dar al Gani 476 (45.6 ± 0.6 GPa), Sayh al Uhaymir 005/8 (46.1 ± 2.2 GPa), and Nakhla (18.0 ± 0.6 GPa) compare well with literature values. Formal shock assessments for North West Africa 1068/1110 (53.9 ± 2.1 GPa) and North West Africa 6234 (44.6 ± 3.1 GPa) have not been reported within the literature; however, their calculated peak shock pressures fall within the range of peak shock pressures defining their estimated shock stages. The availability of nondestructive and quantitative μXRD methods to determine shock stage and peak shock pressure from olivine crystals provides a key tool for shock metamorphism analysis.  相似文献   

18.
The Seoni (India) chondrite is an H6 group ordinary chondrite that contains olivine (Fa, 19.7 mole%), orthopyroxene (Fs, 15.9 mole%), clinopyroxene, plagioclase (An, 10.3; Or, 5.6 mole%), together with chromite, troilite, kamacite, taenite, chlorapatite, and whitlockite. Recrystallization has been quite extensive as indicated by the presence of few remnant chondrules, low abundance of clinopyroxene and relatively high abundance of well formed plagioclase. Treatment of Fe2+ and Mg partitioning between clinopyroxene and orthopyroxene and between olivine and chromite indicates equilibration temperatures of between 875–920 °C.  相似文献   

19.
Abstract— We have carried out shock-recovery experiments on the Allende CV3 carbonaceous chondrite using a single-stage propellant gun and succeeded in reproducing oriented, flattened chondrules like those observed in some natural CV3 chondrites. The Allende samples were shocked at equilibrium pressures of 11 and 21 GPa, which are close to the highest values in shock stages S2 and S3, respectively (Stöffler et al., 1991). Chondrules are flattened nearly perpendicular to the compaction axis with mean aspect ratios of 1.34 and 1.62 at pressures of 11 and 21 GPa, respectively; thus, the degree of chondrule flattening is proportional to the shock intensity. The chondrule flattening and foliation are mainly due to collapse of pores in the matrix under shock pressure. High matrix abundance of CV3 chondrites could result in much apparent chondrule flattening relative to ordinary chondrites. Optical and electron microscope observations show that textural and mineralogical characteristics of chondrules and matrix in the shock-loaded samples are very similar to those observed in naturally shocked CV3 chondrites. Our results provide strong support for the interpretation that the chondrule flattening and foliation in CV3 chondrites were caused by shock-induced pressure due to hypervelocity impacts on the meteorite parent bodies.  相似文献   

20.
A combination of shock recovery experiments and numerical modeling of shock deformation in the low‐shock pressure range from 2.5 to 20 GPa for two dry sandstone types of different porosity, a completely water‐saturated sandstone, and a well‐indurated quartzite provides new insights into strongly heterogeneous distribution of different shock features. (1) For nonporous quartzo‐feldspathic rocks, the traditional classification scheme (Stöffler 1984 ) is suitable with slight changes in pressure calibration. (2) For water‐saturated quartzose rocks, a cataclastic texture (microbreccia) seems to be typical for the shock pressure range up to 20 GPa. This microbreccia does not show formation of PDFs but diaplectic quartz glass/SiO2 melt is formed at 20 GPa (~1 vol%). (3) For porous quartzose rocks, the following sequence of shock features is observed with progressive increase in shock pressure (1) crushing of pores, (2) intense fracturing of quartz grains, and (3) increasing formation of diaplectic quartz glass/SiO2 melt replacing fracturing. The formation of diaplectic quartz glass/SiO2 melt, together with SiO2 high‐pressure phases, is a continuous process that strongly depends on porosity. This experimental observation is confirmed by our concomitant numerical modeling. Recalibration of the shock classification scheme results in a porosity versus shock pressure diagram illustrating distinct boundaries for the different shock stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号