首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Building foundation-soil interaction is studied in the frequency domain using a two-dimensional analytical model. The building is represented by an infinitely long shear wall resting on a circular foundation, embedded into an elastic homogeneous half-space. Deep and shallow foundations are considered (with depth-to-half-width ratios of 1 and 0·5). Both the dynamic interaction and the wave passage effects are included. The excitation is a plane P- or SV-wave,or a surface Rayleigh wave. The results show that for incident waves which are long relative to the width of the foundation, the foundation driving forces are larger when the embedment is deeper. For shorter incident waves, the input base rotation is larger for shallow foundations and, therefore, the relative building response may then be larger. It is also shown that the input base rotation may contribute significantly to the building excitation and that neglecting it may cause nonconservative estimates for the forces in the building.  相似文献   

2.
A simplified indirect boundary element method is applied to compute the impedance functions for L-shaped rigid foundations embedded in a homogeneous viscoelastic half-space. In this method, the waves generated by the 3D vibrating foundation are constructed from radiating sources located on the actual boundary of the foundation. The impedance functions together with the free-field displacements and tractions generated along the soil–foundation interface are used to calculate the foundation input motion for incident P, S and Rayleigh waves. This is accomplished by application of Iguchi's averaging method which, in turn, is verified by comparison with results obtained rigorously using the relation between the solutions of the basic radiation (impedance functions) and scattering (input motions) problems. Numerical results are presented for both surface-supported and embedded foundations. It is shown how the seismic response of L-shaped foundations with symmetrical wings differs from that of enveloping square foundations. The effects of inclination and azimuth of the earthquake excitation are examined as well. These results should be of use in analyses of soil–structure interaction to account for the traveling wave effects usually overlooked in practice.  相似文献   

3.
本文根据边界元方法建立了位不规则场上刚体的动阻抗和在入射平面波作用下的有效输入运动的分析模型,分析模型考虑了不规则场地和基础对入射波的散射作用以及土与基础的相互作用,通过验证确认了本方法的正确性,文中计算了凹陷,高地和盆地三种不规则场地土不同条件基础的动阻和有效输入的运动,并与半空间地基上相应基础的情况作了对比,计算表明,当基础尺寸与不规则场地范围可比时有必要用本文模型分析不规则场地的影响和土一结  相似文献   

4.
The problem of the dynamic response of rigid embedded foundations subjected to the action of external forces and seismic excitation is analysed. It is shown that to calculate the response of rigid embedded foundations, or the response of flat rigid foundations subjected to non-vertically incident seismic waves, it is necessary to obtain not only the impedance matrix for the foundation, but also the forces induced by the incident seismic waves. Under these general conditions, rocking and torsional motion of the foundation is generated in addition to translation. The case of a two-dimensional rigid foundation of semi-elliptical cross-section is used as an example to illustrate the effects of the embedment depth and angle of incidence of the seismic waves on the response of the foundation.  相似文献   

5.
The dynamic response of a finite number of flexible surface foundations subjected to harmonic incident Rayleigh or SH waves is presented. The foundations are assumed to be resting on an elastic half-space. The results show that the foundation stiffness has a marked effect on the vertical response, while there is only a minor effect on the horizontal displacements. In general, the dynamic response decreases with increasing foundation stiffness. In cases of Rayleigh wave incidence, the existence of an adjacent foundation generates a certain amount of horizontal response in the direction perpendicular to the incident wave and subsequently causes the system to undergo a torsional motion; while in cases of horizontally incident SH waves, a vertical response has been observed and its magnitude is comparable to the response in the direction of the incident wave.  相似文献   

6.
An approximate method is proposed for the scattering of SH-waves by foundations of irregular shape and the resulting soil-structure interaction problems. The scattering of elastic waves by the rigid foundation embedded in half-space is solved approximately by using integral representation of the wave equation. The procedure is the Born approximation which has been widely used in quantum mechanics for collision and scattering theory though not well-known in elastodynamics. This paper extends the previous work of the authors on the scattering of waves to account for soil-structure interaction. The motion of the foundation is evaluated by the balance of momentum under stresses due to the incident waves as well as the waves generated by its own motion and the forces coming from the superstructure. The model investigated consists of an infinitely long elastic shear wall of height H and thickness h erected on a rigid infinitely long foundation. Results are presented for the cases with circular, elliptical and rectangular foundations. For a circular foundation, excellent agreement is found with the exact solutions for the foundation displacement and the relative displacement between the top and bottom of the structure for the entire range of wave numbers. For an elliptical foundation, accuracy decreases with increasing wave numbers. Foundation displacements are compared for foundation shapes that are shallow elliptical, deep elliptical, rectangular and circular. It is observed that foundation displacements are dependent on the angle of incidence except for a semi-circle. The results on the details of the scattered field are, however, not as accurate.  相似文献   

7.
Studies of the effects of differential ground motions on structural response generally do not consider the effects of the soil-structure interaction. On the other end, studies of soil-structure interaction commonly assume that the foundation of the structure (surface or embedded) is rigid. The former ignore the scattering of waves from the foundation and radiation of energy from the structure back to the soil, while the latter ignore quasi-static forces in the foundations and lower part of the structure deforming due to the wave passage. This paper studies a simple model of a dike but considers both the soil-structure interaction and the flexibility of the foundation. The structure is represented by a wedge resting on a half-space and excited by incident plane SH-waves. The structural ‘foundation’ is a flexible surface that can deform during the passage of seismic waves. The wave function expansion method is used to solve for the motions in the half-pace and in the structure. The displacements and stresses in the structure are compared with those for a fixed-base model shaken by the free-field motion. The results show large displacements near the base of the structure due to the differential motion of the base caused by the wave passage.  相似文献   

8.
This paper deals with the effect of the foundation mass on the filtering action exerted by embedded foundations. The system under examination comprises a rigid rectangular foundation embedded in a homogeneous isotropic viscoelastic half‐space under harmonic shear waves propagating vertically. The problem is addressed both theoretically and numerically by means of a hybrid approach, where the foundation mass is explicitly included in the kinematic interaction between the foundation and the surrounding soil, thus referring to a “quasi‐kinematic” interaction problem. Based on the results of an extensive parametric study, it is shown that the filtering problem depends essentially on three dimensionless parameters, i.e.: the dimensionless frequency of the input motion, the foundation width‐to‐embedment depth ratio, and the foundation‐to‐soil mass density ratio. In complements to the translational and rotational kinematic interaction factors that are commonly adopted to quantify the filtering effect of rigid massless foundations on the free‐field motion, an additional kinematic interaction factor is introduced, referring to the horizontal motion at the top of a rigid massive foundation. New analytical expressions for the above kinematic interaction factors are proposed and compared with foundation‐to‐free‐field transfer functions computed from available earthquake recordings on two instrumented buildings in LA (California) and Thessaloniki (Greece). Results indicate that the foundation mass can have a strong beneficial effect on the filtering action with increasing foundation‐to‐soil mass density and foundation width‐to‐embedment depth ratios.  相似文献   

9.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Closed-form expressions and comprehensive numerical solutions are presented for the transfer functions of surface-supported, rigid, rectangular foundations excited by horizontally polarized, incoherent shear waves for which the motions are parallel to one of the foundation sides. The free-field ground motion is specified stochastically in terms of a local power spectral density function and an orthotropic incoherence function which decays exponentially with the square of the excitation frequency and the separation distance. The response quantities examined include the lateral and torsional components of the foundation motion. Displayed graphically, the results elucidate the effects and relative importance of the numerous parameters involved. For vertically incident incoherent wave fields, the lateral transfer function of a rectangular foundation is related to that of a judiciously selected square foundation, and the interrelationship of the results is examined. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
The influence of stochastic kinematic interaction (SKI) on structural response is investigated in this paper. The SKI is evaluated through a computational model based on the boundary element method (BEM) formulated in the frequency domain. The singular integrals required in the computation of BEM are evaluated in a closed form. It is assumed that the foundation input motion (FIM) is the result of the superposition of many plane, stationary, correlated stochastic SH‐, P‐ and SV‐waves travelling within a homogeneous viscoelastic soil at different angles. The results obtained indicate that the effect of SKI on the foundation response is qualitatively similar to that of wave passage. Both effects involve a reduction of translational components of the response at intermediate and high frequencies and creation of a rotational response component at intermediate frequencies, which decreases at high frequencies. While, it is found that the SKI decreases the maximum response of structures built on embedded rigid strip foundations excited by SH‐ and P‐waves, it increases the maximum response for SV‐waves, except when the natural frequency of the structure is less than 0.5 Hz and for short structures excited by shallowly incident SV‐waves. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
The response of an elastic circular wedge on a flexible foundation embedded into a half-space is investigated in the frequency domain for incident pane SH-waves. The problem is solved by expansion of the motion in all three media (wedge, foundation and half-space) in cylindrical wave functions (Fourier-Bessel series). The structural model is simple, but accounts for both differential motions of the base and for the effects of soil-structure interaction. Usually, structural models in earthquake engineering consider either differential ground motion, but ignore soil-structure interaction, or consider soil-structure interaction, but for a rigid foundation, thus ignoring differential ground motion. The purpose of the study is to find how stiff the foundation should be relative to the soil so that the rigid foundation assumption in soil-structure interaction models is valid. The shortest wavelength of the incident waves considered in this study is one equal to the width of the base of the wedge. It is concluded that, for this model, a foundation with same mass density as the soil but 50 times larger shear modulus behaves as ‘rigid’. For ratio of shear moduli less than 16, the rigid foundation assumption is not valid. Considering differential motions is important because of additional stresses in structures that are not predicted by fixed-base and rigid foundation models.  相似文献   

13.
An evaluation of the wave passage effects on the relevant dynamic properties of structures with flexible foundation is presented. A simple soil–structure system similar to that used in practice to take into account the inertial interaction effects by the soil flexibility is studied. The kinematic interaction effects due to non‐vertically incident P, SV and Rayleigh waves are accounted for in this model. The effective period and damping of the system are obtained by establishing an equivalence between the interacting system excited by the foundation input motion and a replacement oscillator excited by the free‐field ground motion. In this way, the maximum structural response could be estimated from standard free‐field response spectra using the period and damping of the building modified by both the soil flexibility and the travelling wave effects. Also, an approximate solution for the travelling wave problem is examined over wide ranges of the main parameters involved. Numerical results are computed for a number of soil–structure systems to identify under which conditions the effects of wave passage are important. It comes out that these effects are generally negligible for the system period, but they may significantly change the system damping since the energy dissipation within the soil depends on both the wave radiation and the diffraction and scattering of the incident waves by the foundation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
In this research, a parametric study is carried out on the effect of soil–structure interaction on the ductility and strength demand of buildings with embedded foundation. Both kinematic interaction (KI) and inertial interaction effects are considered. The sub‐structure method is used in which the structure is modeled by a simplified single degree of freedom system with idealized bilinear behavior. Besides, the soil sub‐structure is considered as a homogeneous half‐space and is modeled by a discrete model based on the concept of cone models. The foundation is modeled as a rigid cylinder embedded in the soil with different embedment ratios. The soil–structure system is then analyzed subjected to a suit of 24 selected accelerograms recorded on alluvium deposits. An extensive parametric study is performed for a wide range of the introduced non‐dimensional key parameters, which control the problem. It is concluded that foundation embedment may increase the structural demands for slender buildings especially for the case of relatively soft soils. However, the increase in ductility demands may not be significant for shallow foundations with embedment depth to radius of foundation ratios up to one. Comparing the results with and without inclusion of KI reveals that the rocking input motion due to KI plays the main role in this phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Differential ground motions due to horizontally propagating surface waves are of importance in determining the stresses and displacements developed in extended structures such as large mat foundations for nuclear power stations, dams, bridges and pipe-lines. A general method is developed for determining the motion of a large rigid mat foundation subjected to travelling surface waves and observations made on the relative displacements of individual foundations and their importance in bridge failure.  相似文献   

16.
This research studies the impact of the incident angle of SH waves on the seismic response of two-dimensional sedimentary basins by using a nonlinear method. At first Ricker wavelet is input for a detailed analysis, followed by a statistical analysis based on a total of 100 real earthquake motions recorded at rock sites. The results show that the incident angle has a significant implication on the basin ground motion. First, the incident angle affects the short-period components more than the long-period ones of the spectral response acceleration, but the dominant period of the spectral response acceleration is insensitive to incident angle and location. Second, the MDIA of a basin is not necessarily 0° (vertical incidence) but in the range of approximately 0°–30°, and hence due attention should be paid to the influence of incident angle in seismic response analysis. Third, basin central areas are seismically preferable to edge regions for short-period buildings located on the basin, while, for long-period buildings, the edge areas become preferable. However, with the increase in incident angle, the difference between edge and central areas diminishes gradually. Finally, given that the dimensions of a basin are perceivable to incidence waves, the slope angle has a considerable impact on the PGA distribution pattern by controlling whether or not peak appears in the edge area. The MDP is most likely to be in the edge area of a basin with small slope angle when subjected to excitation with small incident angle (including vertical incidence).  相似文献   

17.
In this paper, a simple two-dimensional soil–structure interaction model, based on Biot's theory of wave propagation in fluid saturated porous media, is used to explain the observed increase of the apparent frequencies of Millikan library in Pasadena, California, during heavy rainfall and recovery within days after the rain. These variations have been measured for small amplitude response (to microtremors and wind excitation), for which Biot's linear theory is valid. The postulated hypothesis is that the observed increases in frequency are due to the water saturation of the soil. The theoretical model used to explore this hypothesis consists of a shear wall supported by a circular foundation embedded in a poroelastic half-space. This rigid foundation model may be appropriate only for the NS response of Millikan library. This paper presents results for the foundation stiffness, and for the system response for model parameters similar to those for Millikan library (located on alluvium with shear wave velocity of about 300 m/s). The foundation impedance matrix, foundation input motion and system response are compared for dry and fully saturated half-space, with permeable and impermeable foundation. The results show that for embedded foundations, the effects of saturation on the horizontal foundation stiffness are as significant as for the vertical stiffness, contrary to what has been known for surface foundations investigated by other authors. Further, the results suggest a 1–2% increase in system frequency of the first two modes of vibration, depending on the drainage condition along the foundation–soil interface. Such increases agree qualitatively with the observations.  相似文献   

18.
Factors α and β used in equivalent static analysis to account for natural and accidental torsion are evaluated with consideration of soil–structure interaction. The combined torsional effects of structural asymmetry and foundation rotation are examined with reference to a single monosymmetric structure placed on a rigid foundation that is embedded into an elastic half‐space, under to the action of non‐vertically incident SH waves. Dynamic and accidental eccentricities are developed such that when used together with the code‐specified base shear, the resulting static displacement at the flexible edge of the building is identical to that computed from dynamic analysis. It is shown that these eccentricities do not have a unique definition because they depend on both the selection of the design base shear and the criterion used for separation of the torsional effects of foundation rotation from those of structural asymmetry. Selected numerical results are presented in terms of dimensionless parameters for their general application, using a set of appropriate earthquake motions for ensuring generality of conclusions. The practical significance of this information for code‐designed buildings is elucidated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
20.
In this paper, the origin of rocking‐type excitations and their effects on the response of base isolated structures are studied. In particular, the role of kinematic interaction in the determination of the rocking excitation is highlighted. The cases of surface foundations subjected to horizontally propagating waves, as well as of embedded foundations under vertically incident shear waves are examined. The validity of the kinematic interaction based on the rigid base mat assumption is discussed. It is shown that, in the case of classical horizontal isolation, rocking input may amplify significantly the response of the lower non‐isolated modes. The examination of full three‐dimensional isolation and active and semi‐active control methods demonstrates the efficacy of these methods to improve the performance of seismically isolated structures subjected to rocking excitations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号