首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Seismic data collected at four volcanoes in Central America during 1973 and 1974 indicate three sources of seismicity: regional earthquakes with hypocentral distances greater than 80 km, earthquakes within 40 km of each volcano, and seismic activity originating at the volcanoes due to eruptive processes. Regional earthquakes generated by the underthrusting and subduction of the Cocos Plate beneath the Caribbean Plate are the most prominent seismic feature in Central America. Earthquakes in the vicinity of the volcanoes occur on faults that appear to be related to volcano formation. Faulting near Fuego and Pacaya volcanoes in Guatemala is more complex due to motion on a major E-W striking transform plate boundary 40 km north of the volcanoes. Volcanic activity produces different kinds of seismic signatures. Shallow tectonic or A-type events originate on nearby faults and occur both singly and in swarms. There are typically from 0 to 6 A-type events per day withb value of about 1.3. At very shallow depths beneath Pacaya, Izalco, and San Cristobal large numbers of low-frequency or B-type events are recorded with predominant frequencies between 2.5 and 4.5 Hz and withb values of 1.7 to 2.9. The relative number of B-type events appears to be related to the eruptive states of the volcanoes; the more active volcanoes have higher levels of seismicity. At Fuego Volcano, however, low-frequency events have unusually long codas and appear to be similar to tremor. High-amplitude volcanic tremor is recorded at Fuego, Pacaya, and San Cristobal during eruptive periods. Large explosion earthquakes at Fuego are well recorded at five stations and yield information on near-surface seismic wave velocities (α=3.0±0.2 km/sec.).  相似文献   

2.
The occurrence of the Algiers earthquake (M 6.8) of May 21, 2003, has motivated the necessity to reassess the probabilistic seismic hazard of northern Algeria. The fact that this destructive earthquake took place in an area where there was no evidence of previous significant earthquakes, neither instrumental nor historical, strongly encourages us to review the seismic hazard map of this region. Recently, the probabilistic seismic hazard of northern Algeria was computed using the spatially smoothed seismicity methodology. The catalog used in the previous computation was updated for this review, and not only includes information until June 2003, but also considers a recent re-evaluation of several historical earthquakes. In this paper, the same methodology and seismicity models are utilized in an effort to compare this methodology against an improved and updated seismic catalog. The largest mean peak ground acceleration (PGA) values are obtained in northernmost Algeria, specifically in the central area of the Tell Atlas. These values are of the order of 0.48 g for a return period of 475 years. In the City of Algiers, the capital of Algeria, and approximately 50 km from the reported epicenter of this latest destructive earthquake, a new mean PGA value of 0.23 g is obtained for the same return period. This value is 0.07 g greater than that obtained in the previous computation. In general, we receive greater seismic hazard results in the surrounding area of Algiers, especially to the southwest. The main reason is not this recent earthquake by itself, but the significant increase in the mmax magnitude in the seismic source where the city and the epicenter are included.  相似文献   

3.
徐伟进  高孟潭 《地震学报》2012,34(4):526-536
根据华北地区的地震目录,建立了4个空间光滑的地震活动性模型,并以这些模型为空间分布函数,将华北地震区每个地震带的地震年发生率分配到空间格点中,计算这一地区的地震危险性.结果表明,采用仪器记录地震计算得到的地震活动性模型和地震危险性结果能够反映华北地区现今的地震活动水平和地震危险性水平,符合人们对现今华北地区地震危险性的认识;采用历史破坏性地震(Mge;4.7)计算的地震活动性模型和地震危险性结果,较好地反映了华北地区中强地震活动区的地震危险性水平;以地震应变计算地震活动率,并根据点椭圆模型和线椭圆模型计算得到的地震活动性模型,能够较好地反映大地震的活动水平和空间构造特征.将根据4个模型计算得到的50年超越概率10%峰值加速度(PGA)分布加权平均,得到综合的华北地区PGA分布,并将该PGA分布与根据《中国地震动参数区划图》中综合潜源方案计算得到的50年超越概率10%的PGA分布做了比较,发现二者无本质差别,均能反映华北地震区的地震危险性水平.当然,二者也具有一定的差异:前者计算得到的符合PGAge;100 cm/s2条件的区域面积明显要比后者的大,而符合PGAge;250 cm/s2条件的区域面积则比后者的要小. 这主要是由于潜在震源区类型和空间分布函数不同造成的.   相似文献   

4.
An endeavor is made to compute peak ground horizontal accelerations at bedrock level in the Delhi region due to the seismogenic sources present around Delhi. The entire area is divided into six seismogenic sources for which seismic hazard analysis is carried out using the complete and extreme part of the seismicity data. Maximum likelihood estimates of hazard parameters viz., seismic activity rate , b value and maximum probable earthquake M max are made for each zone. The return periods and the probabilities of occurrence of various magnitudes for return periods of 50, 100 and 1000 years are also computed for each zone. The peak ground acceleration (PGA) values for 20% exceedance in 50 years are then computed for the Delhi region from each zone. The maximum PGA value considering all the zones is 0.34 g, which is due to the Mathura fault zone. The seismogenic zones V and VI, i.e., Mathura fault zone and the Sohna fault zone are observed to be contributing maximum PGA values in the Delhi region governing the isoacceleration contours computed for the region. The seismic zonation map for the PGA values at the bedrock level is obtained for the Delhi region. This can be used directly as input for the microzonation of ground motion at the surface by incorporating the local site conditions.  相似文献   

5.
The seismic zoning map of Turkey that is used in connection with the national seismic design code (versions issued both in 1997 and 2007) is based on a probabilistic seismic hazard assessment study conducted more than 20 years ago (Gülkan et al. in En son verilere göre haz?rlanan Türkiye deprem bölgeleri haritas?, Report No: METU/EERC 93-1, 1993). In line with the efforts for the update of the seismic design code, the need aroused for an updated seismic hazard map, incorporating recent data and state-of-the-art methodologies and providing ground motion parameters required for the construction of the design spectra stipulated by the new Turkish Earthquake Design Code. Supported by AFAD (Disaster and Emergency Management Authority of Turkey), a project has been conducted for the country scale assessment of the seismic hazard by probabilistic methods. The present paper describes the probabilistic seismic hazard assessment study conducted in connection with this project, incorporating in an area source model, all recently compiled data on seismicity and active faulting, and using a set of recently developed ground motion prediction equations, for both active shallow crustal and subduction regimes, evaluated as adequately representing the ground motion characteristics in the region. The area sources delineated in the model are fully parameterized in terms of maximum magnitude, depth distribution, predominant strike and dip angles and mechanism of possible ruptures. Resulting ground motion distributions are quantified and presented for PGA and 5 % damped spectral accelerations at T = 0.2 and 1.0 s, associated with return periods of 475 and 2475 years. The full set of seismic hazard curves was also made available for the hazard computation sites. The second part of the study, which is based on a fault source and smoothed seismicity model is covered in Demircioglu et al. in Bull Earthq Eng, (2016).  相似文献   

6.
The region of Blida is characterized by a relatively high seismic activity, pointed especially during the past two centuries. Indeed, it experienced a significant number of destructive earthquakes such as the earthquakes of March 2, 1825 and January 2, 1867, with intensity of X and IX, respectively. This study aims to investigate potential seismic hazard in Blida city and its surrounding regions. For this purpose, a typical seismic catalog was compiled using historical macroseismic events that occurred over a period of a few hundred years, and the recent instrumental seismicity dating back to 1900. The parametric-historic procedure introduced by Kijko and Graham (1998, 1999) was applied to assess seismic hazard in the study region. It is adapted to deal with incomplete catalogs and does not use any subjective delineation of active seismic zones. Because of the lack of recorded strong motion data, three ground prediction models have been considered, as they seem the most adapted to the seismicity of the study region. Results are presented as peak ground acceleration (PGA) seismic hazard maps, showing expected peak accelerations with 10% probability of exceedance in 50-year period. As the most significant result, hot spot regions with high PGA values are mapped. For example, a PGA of 0.44 g has been found in a small geographical area centered on Blida city.  相似文献   

7.
徐伟进  吴健 《地球物理学报》2017,60(8):3110-3118
本文以东北、华北及川滇地区为例,系统研究了余震时空丛集对概率地震危险性分析的影响.采用基于传染型余震序列模型(ETAS)的蒙特卡罗模拟方法,模拟了包含余震和不包含余震的两套地震序列,然后以模拟地震目录为基础输入,采用基于空间光滑地震活动性模型的地震危险性分析方法计算了两套地震危险性结果——PGA(Peak Ground Acceleration,峰值加速度),通过分析比较这两套PGA的绝对差值和相对差值来研究余震时空丛集对概率地震危险性分析的影响.研究结果表明余震对50年超越概率10%地震危险性计算结果的影响均值为6%左右,最大可达10%,并且随着超越概率水平的提高,余震影响也越大.弱地震活动区余震对概率地震危险性分析的影响要高于强地震活动区.研究结果还进一步揭示两套PGA结果绝对差值的最大值约为15 cm·s~(-2),且出现在高PGA区,这意味着余震对概率地震危险性计算结果不会产生显著影响.因此在地震区划或一般性地震危险性分析中可考虑不用删除余震.  相似文献   

8.
The earthquake risk on Romania is one of the highest in Europe, and seismic hazard for almost half of the territory of Romania is determined by the Vrancea seismic region, which is situated beneath the southern Carpathian Arc. The region is characterized by a high rate of occurrence of large earthquakes in a narrow focal volume at depth from 70 to 160 km. Besides the Vrancea area, several zones of shallow seismicity located within and outside the Romanian territory are considered as seismically dangerous. We present the results of probabilistic seismic hazard analysis, which implemented the “logic tree” approach, and which considered both the intermediate-depth and the shallow seismicity. Various available models of seismicity and ground-motion attenuation were used as the alternative variants. Seismic hazard in terms of macroseismic intensities, peak ground acceleration, and response spectra was evaluated for various return periods. Sensitivity study was performed to analyze the impact of variation of input parameters on the hazard results. The uncertainty on hazard estimates may be reduced by better understanding of parameters of the Vrancea source zone and the zones of crustal seismicity. Reduction of uncertainty associated with the ground-motion models is also very important issue for Romania.  相似文献   

9.
Kracke  D.  Heinrich  R.  Jentzsch  G.  Kaiser  D. 《Studia Geophysica et Geodaetica》2000,44(4):537-548
East Thuringia/Germany, especially the region Gera-Ronneburg, is part of the large Kyffhäuser-Jachymov-Fault-Zone and displays moderate seismicity. However, its seismic hazard is significantly higher than that of the surrounding area including the Vogtland/Northern Bohemian region. The earthquake catalogue of Germany contains for this region besides the well-investigated Central German Earthquake (March 1872, I 0 =VII-VIII) entries of up to I 0 =VIII (14th century). Epicentral intensities and coordinates of these historical earthquakes are considered as uncertain. In seismic hazard analysis historical events which are uncertain are often neglected. But, especially in regions of moderate seismicity and infrequent larger earthquakes, the time window considered should be extended as far as possible. Apart from the necessity to study the historical sources of the strongest 14th century earthquakes, we investigate the influence of these events on the seismic hazard, taking into account the uncertainties of their size and location. Generally, the investigations clearly reveal the importance of defining source regions on the one hand and the significance of the local relevant attenuation function on the other hand. A further important point in seismic hazard assessment is the strong influence of the geological site conditions on seismic hazard (amplification or damping phenomena). For both points the well-known Central German Earthquake (1872) supplies important information.  相似文献   

10.
Wheeler Ridge in the Southern San Joaquin Valley, California, is an anticlinal fold which has been progressively uplifted during the last 250 ka. Drainage networks on the ridge become younger as the anticline's eastern tip is approached. Because of the fold's asymmetric shape, surfaces on opposite flanks of the ridge have similar ages but very different gradients. The ridge provides important insights into drainage development on progressively tilted surfaces, as existing studies are restricted to static topography. A surface gradient of between 4·8° and c.10° is needed to initiate channel networks. This gradient threshold is consistent with previous studies of the gradient and upslope area needed to incise a channel through overland flow. Comparison of coeval drainage networks on opposite flanks of the ridge allows the controversial relationship between drainage density and gradient to be investigated. A lower valley density is observed on the higher gradient flank of Wheeler Ridge. Field observations from the ridge indicate that this inverse relationship is associated with hillslope erosion by shallow mass-wasting, the rate of which increases rapidly as a threshold gradient is approached. Comparison of data from Wheeler Ridge with other field studies and numerical models, shows that the form of the relationship between gradient and drainage density is process-dependent. A positive correlation occurs when erosion is a result of overland flow, whilst a negative correlation occurs where erosion is dominated by shallow mass-wasting. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Izmir, the third largest city and one of the major economic centers in Turkey, has more than three million residents and one-half million buildings. The city, located in a seismically active region in western Anatolia, was a subject of the 1997 RADIUS (Risk Assessment Tools for Diagnosis of Urban Areas against Seismic Disaster) project. In this paper, the seismic hazard of Izmir is investigated through probabilistic seismic hazard assessment. First, the seismic setting of Izmir is presented. Considering the statistics of earthquakes that took place in the region during the period 1900–2005, a simple seismic hazard model is used to facilitate the assessment. To account for modeling uncertainties associated with the values of seismicity parameters, a logic tree procedure is employed in carrying out the seismic hazard computations. The resulting weighted average seismic hazard, presented in terms of peak ground acceleration and associated probability of exceedence, could be considered the “best estimate” of seismic hazard for Izmir. Accordingly, for a return period of 475 years, for rock sites, a PGA value of 0.34 g is calculated. This PGA hazard estimate is close to the current code-recommended design acceleration level for Izmir.  相似文献   

12.
13.
The seismic microzonation of the Bengal Basin, Haldia region, India is carried out using the Analytical Hierarchy Process (AHP) on the Geographic Information System (GIS). Three themes are used for the seismic microzonation, namely Peak Ground Acceleration (PGA), predominant frequency and elevation map. An analysis of the maximum magnitude (m max) and the b value is carried out after preparing the earthquake catalogue from various sources. On the basis of the tectonic set up and seismicity of the region, five seismic zones are delineated which can be a threat to Haldia. They are broadly classified as Zone 1: Arakan-Yoma Zone (AYZ), Zone 2: Himalayan Zone (HZ), Zone 3: Shillong Plateau Zone (SPZ), Zone 4: Bay of Bengal Zone (BBZ) and Zone 5: Shield Zone (SZ). The m max for Zones 1, 2, 3, 4 and 5 are 8.30 ± 0.51, 9.09 ± 0.58, 9.20 ± 0.51, 6.62 ± 0.43 and 6.61 ± 0.43, respectively. The PGA value is computed for Haldia following the attenuation relationship taking the m max of each source zone. The expected PGA at Haldia varies from 0.09–0.19 g. The predominant frequency of Haldia is also calculated using the H/V ratio with a frequency ranging from 0.1–3.0 Hz. The elevation map of Haldia is also generated using the Shuttle Radar Topography Mission (STRM) data. A first-order seismic microzonation map of Haldia is prepared in which four zones of hazard have been broadly classified for Haldia as very high seismic hazard zone, high seismic hazard zone, moderate seismic hazard zone and less seismic hazard zone. The very high seismic hazard zone is observed along the southern part of Haldia where there are major industrial and port facilities. The PGA for the four hazard zones are: 0.09–0.13 g for low hazard zone, > 0.13–0.15 g for moderate hazard zone, > 0.15–0.16 g for high hazard zone and > 0.16–0.19 g for very high hazard zone.  相似文献   

14.
本文采用了空间光滑地震活动性模型,该模型无需潜在震源区划分,同时发展了概率地震危险性分析新方法。根据三种地震目录资料建立了三种地震活动性模型,利用高斯光滑函数获得了湖南区域内的比值分布特征,使用了两种典型的衰减模型,计算了50年内超越概率10%的地震动峰值加速度(PGA)分布。其分析结果显示PGA分布特征与中国地震动参数区划图大体一致,部分区域PGA提高,PGA达0.05g的区域显著扩大,其中包括邵阳、湘潭、吉首、怀化等重要城市,而这种PGA分布特征与该地区地震活动性特征是一致的。概率危险性曲线的结果表明常德等地区的潜在地震危险性比湖南区域内其他城市高。表明此模型用于地震危险性计算中是简便易行的,且具有较高的精度。尤其对于地质和地震构造信息缺乏的弱震区和中强震区,该方法作为替代方法并有着广泛的应用价值。  相似文献   

15.
An alternative method is presented for generating uniform-hazard response spectra making use of a seismic hazard curve expressing annual probability of exceedance as a function of Peak Ground Acceleration (PGA), a set of normalized (PGA = 1g) mean response spectra, and a coefficient-of-variation function for the random normalized spectral values in terms of period T. The practice of using mean + 1σ normalized response spectra, scaled to specified PGA levels, is discussed and associated mean return periods are evaluated.  相似文献   

16.
New probabilistic seismic hazard and Arias Intensity maps have beendeveloped for the territory of the Kyrgyz Republic and bordering regions.Data were mainly taken from the seismic catalogue of Kyrgyzstan and partlyfrom the world seismic catalogue. On the base of seismicity and activetectonics, seismic zones were outlined over the area. For these,Gutenberg-Richter laws were defined using mainly instrumental data, butregarding also historical events. Attenuation of acceleration inside the targetarea could not be determined experimentally since existing strong motiondata are insufficient. Therefore, empirical laws defined for other territories,principally Europe and China, were applied to the present hazardcomputations. Final maps were calculated with the SEISRISKIII programaccording to EUROCODE8 criteria, i.e. for a period of 50 years with90% probability of non-exceedance. For long-term prediction, 100 yearsmaps with 90% probability of non-exceedance have been developed. Theprocedure used for seismic hazard prediction in terms of PGA (PeakGround Acceleration) was also applied to Arias intensities in order to beable to define regional seismogenic landslide hazard maps.  相似文献   

17.
The volcanic events of the last 3,000?years at San Salvador volcanic complex are reviewed using detailed stratigraphic records exposed in new excavations between 2005 and 2007, at El Cambio archeological site (Zapotitán Valley, El Salvador), and in other outcrops on the northern and northwestern sectors of the complex. The sequences that overlie Tierra Blanca Joven (cal. 429?±?107?ad), from the Ilopango caldera, comprise the Loma Caldera (cal. 590?±?90?ad) and El Playón (1658?C1671) deposits and the San Andrés Tuff (cal. 1031?±?29?ad), related to El Boquerón Volcano. The surge deposits within the El Playón, San Andrés Tuff and overlying Talpetate II sequences indicate the significance of phreatomagmatic phases in both central vent and flank eruptions during the last 1,600?years. Newly identified volcanic deposits underlying Tierra Blanca Joven at El Cambio extend the stratigraphic record of the area to 3,000?years?bp. Paleosols interstratified with those deposits contain cultural artifacts which could be associated with the Middle Preclassic period (900?C400?bc). If correct, human occupation of the site during the Preclassic period was more intense than previously known and volcanic eruptions must have affected prehistoric settlements. The archeological findings provide information on how prehistoric populations dealt with volcanic hazards, thousands of years ago in the eastern Zapotitán Valley, where several housing projects are currently being developed. The new stratigraphic and volcanological data can be used as a basis for local and regional hazard assessment related to future secondary vent activity in the San Salvador Volcanic Complex.  相似文献   

18.
利用华北地区地震活动性资料,建立了地震危险性计算的一致性模型.在此模型的基础上,得出了北京、天津、唐山和济南等7个城市未来2500年内地震的时空强度分布,并计算了2500年回复周期的地震动峰值加速度(PGA).结果表明,唐山和太原的PGA最大(>0.2g),石家庄和北京次之(≈0.17g).对华北地区2500年地震记录的正演计算结果表明,太原和唐山地区的潜在地震危险最有可能来源于震级在6.0~7.0、震中距离在12~15km的地震活动;而北京、天津和石家庄地区则可能来源于震级在5.5~6.0、震中距离在10km左右的地震活动.采用IBC(International Building Code)方法计算后的结果显示,太原、唐山等地区的PGA与2001年我国地震动峰值加速度值基本一致,与此地区的较高地震活动性特征相符.利用随机震源模型,还给出了影响此7个城市的最大地震记录的加速度、速度及位移时程曲线,这对本区工程建筑的抗震性设计以及对救援设施的选址等有重要作用.  相似文献   

19.
Numerous cases of precursory seismic quiescence have been reported in recent years. Some investigators have interpreted these observations as evidence that seismic quiescence is a somewhat reliable precursor to moderate or large earthquakes. However, because failures of the pattern to predict earthquakes may not, in general, be reported, and because numerous earthquakes are not preceded by quiescence, the validity and reliability of the quiescence precursor have not been established.We have analyzed the seismicity rate prior to, and in the source region of, 37 shallow earthquakes (M 5.3–7.0) in central California and Japan for patterns of rate fluctuation, especially precursory quiescence. Nonuniformity in rate for these pre-mainshock sequences is relatively high, and numerous intervals with significant (p<0.10) extrema in rate are observed in some of the sequences. In other sequences, however, the rate remains within normal limits up to the time of the mainshock. Overall, in terms of an observational basis for intermediate-term earthquake prediction, no evidence is found in the cases studied for a systematic, widespread or reliable pattern of quiescence prior to the mainshocks.In earthquake sequences comprising full seismic cycles for 5 sets of (M 3.7–5.1) repeat earthquakes on the San Andreas fault near Bear Valley, California, the seismicity rates are found to be uniform. A composite of the estimated rate fluctuations for the sequences, normalized to the length of the seismic cycle, reveals a weak pattern of a low rate in the first third of the cycle, and a high rate in the last few months. While these observations are qualitative, they may represent weak expressions of physical processes occurring in the source region over the seismic cycle.Re-examination of seismicity rate fluctuations in volumes along the creeping section of the San Andreas fault specified by Wyss and Burford (1985) qualitatively confirms the existence of low-rate intervals in volumes 361, 386, 382, 372 and 401. However, only the quiescence in volume 386 is found by the present study to be statistically significant.  相似文献   

20.
Automatic seismic shutoff devices are used to reduce the risk to gas and liquid distribution systems from earthquakes. In the USA, the gas shutoff devices are tested and certified according to the American Society of Civil Engineers' Standard ASCE 25. During tests, devices are shaken by simple harmonic (sinusoidal) motions of different frequencies and checked for actuation. Because earthquake motions are not sinusoidal, the amplitude of earthquake motions that will actuate these devices is not clearly understood. This paper determines the probability of actuating devices by earthquake motions of different amplitudes. The probability of actuation increases with increase in the resultant peak horizontal ground acceleration (PGA). The probability of actuation is 50% for PGA = 0.23g and 90% for PGA = 0.31g, where g = 9.81 m/s2 = acceleration due to gravity. On a ‘stiff soil’ site in San Francisco, CA, the mean recurrence interval of actuation is 51 years. On a similar site in Boston, MA, the mean recurrence interval of actuation is 3000 years. ASCE 25 compliant devices are actuated by high frequencies in ground motions. There is greater uncertainty in the actuation of these devices by ground motions that are damaging to very flexible systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号