首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
Although the north‐western coast of Western Australia is highly vulnerable to tropical cyclones and tsunamis, little is known about the geological imprint of historic and prehistoric extreme wave events in this particular area. Despite a number of site‐specific difficulties such as post‐depositional changes and the preservation potential of event deposits, both tropical cyclones and tsunamis may be inferred from the geomorphology and the stratigraphy of beach ridge sequences, washover fans and coastal lagoons or marshes. A further challenge is the differentiation between tsunami and storm deposits in the geological record, particularly where modern deposits and/or historical reports on the event are not available. This study presents a high‐resolution sedimentary record of washover events from the Ashburton River delta (Western Australia) spanning approximately the last 150 years. A detailed characterization of event deposits is provided, and a robust chronostratigraphy for the investigated washover sequence is established based on multi‐proxy sediment analyses and optically stimulated luminescence dating. Combining sedimentological, geochemical and high‐resolution optically stimulated luminescence data, event layers are assigned to known historical events and tropical cyclone deposits are separated from tsunami deposits. For the first time, the 1883 Krakatoa and 1977 Sumba tsunamis are inferred from sedimentary records of the north‐western part of Western Australia. It is demonstrated that optically stimulated luminescence applied in coastal sedimentary archives with favourable luminescence characteristics can provide accurate chronostratigraphies even on a decadal timescale. The results contribute to the data pool of tropical cyclone and tsunami deposits in Holocene stratigraphies; however, they also demonstrate how short‐lived sediment archives may be in dynamic sedimentary environments.  相似文献   

2.
Geological identification of past tsunamis is important for risk assessment studies, especially in areas where the historical record is limited or absent. The main problem when using the geological evidence is to distinguish between tsunami and storm deposits. Both are high-energy events that may leave marine traces in coastal stratigraphic sequences. At Martinhal, SW Portugal both storm surge and tsunami deposits are present at the same site within a single stratigraphic sequence, which makes it suitable to study the differences between them, excluding variations caused by local factors.

The tsunami associated with the Lisbon earthquake of November 1st 1755 AD, had a major impact on the geomorphology and sedimentology of Martinhal. It breached the barrier and laid down an extensive sheet of sand, as described in eyewitness reports. Besides the tsunami deposit the stratigraphy of Martinhal also displays evidence for storm surges that have breached and overtopped the barrier, flooding the lowland and leaving sand layers. Both marine-derived flood deposits show similar grain size characteristics and distinctive marine foraminifera. The most important differences are the rip-up clasts and boulders exclusively found in the tsunami deposit and the landward extent of the tsunami deposit that everywhere exceeds that of the storm deposits. Identification of both depositional units was only possible using a collection of different data and extensive stratigraphical information from cores as well as trenches.  相似文献   


3.
Over the past 200 years of written records, the Hawaiian Islands have experienced tens of tsunamis generated by earthquakes in the subduction zones of the Pacific ‘Ring of Fire’ (for example, Alaska–Aleutian, Kuril–Kamchatka, Chile and Japan). Mapping and dating anomalous beds of sand and silt deposited by tsunamis in low-lying areas along Pacific coasts, even those distant from subduction zones, is critical for assessing tsunami hazard throughout the Pacific basin. This study searched for evidence of tsunami inundation using stratigraphic and sedimentological analyses of potential tsunami deposits beneath present and former Hawaiian wetlands, coastal lagoons, and river floodplains. Coastal wetland sites on the islands of Hawai΄i, Maui, O΄ahu and Kaua΄i were selected based on historical tsunami runup, numerical inundation modelling, proximity to sandy source sediments, degree of historical wetland disturbance, and breadth of prior geological and archaeological investigations. Sand beds containing marine calcareous sediment within peaty and/or muddy wetland deposits on the north and north-eastern shores of Kaua΄i, O΄ahu and Hawai΄i were interpreted as tsunami deposits. At some sites, deposits of the 1946 and 1957 Aleutian tsunamis are analogues for deeper, older probable tsunami deposits. Radiocarbon-based age models date sand beds from three sites to ca 700 to 500 cal yr bp , which overlaps ages for tsunami deposits in the eastern Aleutian Islands that record a local subduction zone earthquake. The overlapping modelled ages for tsunami deposits at the study sites support a plausible correlation with an eastern Aleutian earthquake source for a large prehistoric tsunami in the Hawaiian Islands.  相似文献   

4.
中国东海、南海等近海临近琉球海沟、马尼拉海沟等俯冲带,地震频发。过去的海啸研究主要关注历史文献分析、海啸数值模拟等,据此评估中国近岸海啸灾害的历史和风险。历史时期是否引发了海啸,特别是具有特大致灾风险的大海啸记录,目前还不明确。近年来,本课题组通过对海岛、海洋沉积和海岸带及其岛屿的沉积过程、海啸遗迹和历史记录研究,阐述了确定古海啸的系列研究方法。首先通过对南海西沙群岛东岛湖泊沉积序列、大量砗磲和珊瑚块在海岛分布的特征分析,识别出距今千年的一次海啸事件。以此为标志,根据湖泊沉积结构作为识别海岛海啸沉积的特征。同时提出了确定海岛海啸发生时代的样品采集和定年方法,其中包括根据事件沉积层顶部和底部植物残体14C年龄定年和历史文献记录的印证。首次确定在过去1 300年中,南海发生过一次海啸,其发生时间为公元1076年。为了寻找更古老的海啸记录,结合对东海闽浙沿岸过去两千年海洋泥质沉积的分析,发现南海海啸在沉积序列中留下记录,但除此之外沉积记录中并无更强的扰动,因此东海在过去两千年中受到海啸的影响较小。1076年的海啸同时冲击了南海沿岸,通过对广东南澳岛考察发现,岛屿东南海岸保存着距今约1 000年的海啸沉积层,其中夹杂着宋代陶器瓷器残片。对遗迹数量变化的分析显示,岛上的文化受海啸破坏出现了长达500年的文化中断,直至明代中后期设镇之后才逐渐恢复。根据海啸层植物残体、贝壳14C测年、覆盖海啸层的海砂光释光定年以及瓷器碎片的年代鉴定了海啸的发生时代,并据此提出了海岸带古海啸沉积的定年方法。此外,不同环境下海啸沉积的特征也存在较大区别,需要结合地形、沉积物来源以及地球化学特征等多种指标进行识别。有迹象表明海南岛东侧海岸带有海啸破坏的明显证据,需要进行深入的研究。  相似文献   

5.
Four sand units deposited by tsunamis and one sand unit deposited by storm surge(s) were identified in a muddy marsh succession in a narrow coastal lowland along the Pacific coast of central Japan. Tsunamis in ad 1498, 1605, 1707 and 1854 that were related to large subduction‐zone earthquakes along the Nankai Trough, and storm surges in 1680 and/or 1699 were responsible for the deposition of these sand units. These sand units are distinguished by lithofacies, sedimentary structures, grain‐size and mineral composition, and radiocarbon ages; their ages are supported by events in local historical records. The tsunami deposits in the study area are massive or parallel‐laminated sands, with associated intraclasts, gravels, draping mud layers and, rarely, a return‐flow subunit. The storm surge deposits are devoid of these characteristics, and are composed of groups of thin, current ripple‐laminated sand layers. The differences in sedimentary structures between the tsunami and storm surge deposits are attributed to the different characteristics of tsunami and storm waves.  相似文献   

6.
The Indian Ocean tsunami flooded the coastal zone of the Andaman Sea and left tsunami deposits with a thickness of a few millimetres to tens of centimetres over a roughly one-kilometre-wide tsunami inundation zone. The preservation potential and the post-depositional changes of the onshore tsunami deposits in the coastal plain setting, under conditions of a tropical climate with high seasonal rainfall, were assessed by reinvestigating trenches located along 13 shore-perpendicular transects; the trenches were documented shortly after the tsunami and after 1, 2, 3 and 4 years. The tsunami deposits were found preserved after 4 years at only half of the studied sites. In about 30% of the sites, the tsunami deposits were not preserved due to human activity; in a further 20% of the sites, the thin tsunami deposits were eroded or not recognised due to new soil formation. The most significant changes took place during the first rainy season when the relief of the tsunami deposits was levelled; moderate sediment redeposition took place, and fine surface sediments were washed away, which frequently left a residual layer of coarse sand and gravel. The fast recovery of new plant cover stabilised the tsunami deposits and protected them against further remobilisation during the subsequent years. After five rainy seasons, tsunami deposits with a thickness of at least a few centimetres were relatively well preserved; however, their internal structures were often significantly blurred by roots and animal bioturbation. Moreover, soil formation within the deposits caused alterations, and in the case of thin layers, it was not possible to recognise them anymore. Tsunami boulders were only slightly weathered but not moved. Among the various factors influencing the preservation potential, the thickness of the original tsunami deposits is the most important. A comparison between the first post-tsunami survey and the preserved record suggests that tsunamis with a run-up smaller than three metres are not likely to be preserved; for larger tsunamis, only about 50% of their inundation area is likely to be presented by the preserved extent of the tsunami deposits. Any modelling of paleotsunamis from their deposits must take into account post-depositional changes.  相似文献   

7.
This study proposes a tsunami depositional model based on observations of emerged Holocene tsunami deposits in outcrops located in eastern Japan. The model is also applicable to the identification of other deposits, such as those laid down by storms. The tsunami deposits described were formed in a small bay of 10–20-m water depth, and are mainly composed of sand and gravel. They show various sedimentary structures, including hummocky cross-stratification (HCS) and inverse and normal grading. Although, individually, the sedimentary structures are similar to those commonly found in storm deposits, the combination of vertical stacking in the tsunami deposits makes a unique pattern. This vertical stacking of internal structures is due to the waveform of the source tsunamis, reflecting: 1) extremely long wavelengths and wave period, and 2) temporal changes of wave sizes from the beginning to end of the tsunamis.

The tsunami deposits display many sub-layers with scoured and graded structures. Each sub-layer, especially in sandy facies, is characterized by HCS and inverse and normal grading that are the result of deposition from prolonged high-energy sediment flows. The vertical stack of sub-layers shows incremental deposition from the repeated sediment flows. Mud drapes cover the sub-layers and indicate the existence of flow-velocity stagnant stages between each sediment flow. Current reversals within the sub-layers indicate the repeated occurrence of the up- and return-flows.

The tsunami deposits are vertically divided into four depositional units, Tna to Tnd in ascending order, reflecting the temporal change of wave sizes in the tsunami wave trains. Unit Tna is relatively fine-grained and indicative of small tsunami waves during the early stage of the tsunami. Unit Tnb is a protruding coarse-grained and thickest-stratified division and is the result of a relatively large wave group during the middle stage of the tsunami. Unit Tnc is a fine alternation of thin sand sheets and mud drapes, deposited from waning waves during the later stage of the tsunami. Unit Tnd is deposited during the final stage of the tsunami and is composed mainly of suspension fallout. Cyclic build up of these sub-layers and depositional units cannot be explained by storm waves with short wave periods of several to ten seconds common in small bays.  相似文献   


8.
Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300–1000 years with an average of 500–600 years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas.  相似文献   

9.
Most of the countries around the North Indian Ocean are threatened by storm surges associated with severe tropical cyclones. The destruction due to the storm surge flooding is a serious concern along the coastal regions of India, Bangladesh, Myanmar, Pakistan, Sri Lanka, and Oman. Storm surges cause heavy loss of lives and property damage to the coastal structures and losses of agriculture which lead to annual economic losses in these countries. About 300,000 lives were lost in one of the most severe cyclones that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated part of the eastern coast of India, killing about 10,000 persons in November 1977. More recently, the Chittagong cyclone of April 1991 killed 140,000 people in Bangladesh, and the Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15,000 people besides enormous loss to the property in the region. These and most of the world’s greatest natural disasters associated with the tropical cyclones have been directly attributed to storm surges. The main objective of this article is to highlight the recent developments in storm surge prediction in the Bay of Bengal and the Arabian Sea.  相似文献   

10.
Coastal flooding induced by storm surges associated with tropical cyclones is one of the greatest natural hazards sometimes even surpassing earthquakes. Although the frequency of tropical cyclones in the Indian seas is not high, the coastal region of India, Bangladesh and Myanmar suffer most in terms of life and property caused by the surges. Therefore, a location-specific storm surge prediction model for the coastal regions of Myanmar has been developed to carry out simulations of the 1975 Pathein, 1982 Gwa, 1992 Sandoway and 1994 Sittwe cyclones. The analysis area of the model covers from 8° N to 23° N and 90° E to 100° E. A uniform grid distance of about 9 km is taken along latitudinal and longitudinal directions. The coastal boundaries in the model are represented by orthogonal straight line segments. Using this model, numerical experiments are performed to simulate the storm surge heights associated with past severe cyclonic storms which struck the coastal regions of Myanmar. The model results are in agreement with the limited available surge estimates and observations.  相似文献   

11.
The sandy deposits produced by tsunamis and liquefaction share many sedimentary features, and distinctions between the two are important in seismically active coastal zones. Both types of deposits are present in the wetlands bordering Puget Sound, where one or more earthquakes about 1100 years ago caused both tsunami flooding and sediment venting. This co‐occurrence allows an examination of the resulting deposits and a comparison with tsunami and liquefaction features of modern events. Vented sediments occur at four of five wetland field localities and tsunami deposits at two. In comparison with tsunami deposits, vented sediments in this study and from other studies tend to be thicker (although they can be thin). Vented sediments also have more variable thickness at both outcrop and map scale, are associated with injected dykes and contain clasts derived from underlying deposits. Further, vented sediments tend to contain a greater variety of sedimentary structures, and these structures vary laterally over metres. Tsunami deposits compared with vented sediments are commonly thinner, fine and thin landward more consistently, have more uniform thickness on outcrop and map scales, and have the potential of containing coarser clasts, up to boulders. For both tsunami deposits and vented sediments, the availability and grain size of source material condition the characteristics of the deposit. In the cases presented in this paper, both foraminifera and diatom assemblages within tsunami deposits and vented sediments consisted of brackish and marine species, and no distinction between processes could be made based on microfossils. In summary, this study indicates a need for more careful analysis and mapping of coastal sediments associated with earthquakes to avoid misidentification of processes and misevaluation of hazards.  相似文献   

12.
13.
Large earthquakes along the Kuril subduction zone in northern Japan are known to have caused damaging tsunami, although there is a little information on historical earthquakes and tsunami in this area because no documents exist before the 19th century that might refer to tsunami events. To determine the likely timing and size of future events we need information on their recurrence intervals and to do this for the prehistoric past we have investigated sediments located in the Kiritappu marsh in eastern Hokaido that we interpret as laid down by tsunami. Using reliable multiple lines of evidence from sedimentological, geomorphological, micropaleontological, and chronological results, we identify 13 tsunami sands. Two of these lie within a peat bed above a historical tephra, Ta-a (AD 1739); the upper one probably corresponds to the AD 1843 Tempo Tokachi-oki earthquake (M 8.2) tsunami, and the lower to either the AD 1952 Tokachi-oki earthquake (M 8.2) tsunami or the AD 1960 Chilean earthquake (M 9.5) tsunami. Underlying are 11 prehistoric tsunami sand beds (nine large sand beds and two smaller sand beds) deposited during the past 4000 years. Because of the wide spatial distribution of the large sand beds, and inundation distances inland of between 1200 to 3000 m, we suggest that they record unusually large tsunamis along the Kuril subduction zone. According to our analyses, these tsunami sands were derived from the coastal area and, although they do not show clear graded bedding, they commonly have gradational upper boundaries and erosional bases and include internal sedimentary structures such as plane beds, dunes, and current ripples, reflecting bedload transportation. Based on our results we calculate the recurrence interval of unusually large earthquakes (probably M 8.6) along the Kuril subduction zone as about 365–553 years and estimate the youngest large event to have occurred in the 17th century.  相似文献   

14.
Bangladesh is highly susceptible to tropical cyclones. Unfortunately, there is a dearth of climatological studies on the tropical cyclones of Bangladesh. The Global Tropical Cyclone Climatic Atlas (GTCCA) lists historical storm track information for all the seven tropical cyclone ocean basins including the North Indian Ocean. Using GIS, tropical cyclones that made landfall in Bangladesh during 1877–2003 are identified and examined from the climatological perspective. For the convenience of study, the coast of Bangladesh is divided into five segments and comparisons are made among the coastal segments in terms of cyclone landfall and vulnerability. There is a large variability in the year-to-year occurrence of landfalling tropical cyclones in Bangladesh. Most of the tropical cyclones (70%) hit in the months of May–June and October–November generally show the well-known pattern of pre- and post-monsoon cyclone seasons in that region.  相似文献   

15.
Kyaw  Thit Oo  Esteban  Miguel  Mäll  Martin  Shibayama  Tomoya 《Natural Hazards》2021,106(3):1797-1818
Natural Hazards - The deltaic coast of Myanmar was severely hit by tropical cyclone Nargis in May 2008. In the present study, a top-down numerical simulation approach using the Weather Research and...  相似文献   

16.
We review geologic records of both historic and prehistoric tsunami inundations at three widely separated localities that experienced significant damage from the 1964 Alaskan tsunami along the Cascadia margin. The three localities are Port Alberni, Cannon Beach, and Crescent City, representing, respectively, the north, central, and south portions of the study area (1,000 km in length). The geologic records include anomalous sand sheets from marine surges that are hosted in supratidal peaty mud deposits. Paleotsunami sand sheets that exceed the thickness, continuity and/or extent of the 1964 historic tsunami are counted as major paleotsunami inundations. Major paleotsunamis (6–7 in number) at each locality during the last 3,000 years demonstrate mean recurrence intervals of 450–540 years, and within-cluster intervals (three events each) of 270–460 years. It has been 313 years since the last major paleotsunami from a great Cascadia earthquake in AD 1700. We compare the dated sequences of major paleotsunami inundations to the nearest regional records of coastal coseismic subsidence in Willapa Bay in the central margin, Waatch/Neah Bay in the northern margin, and Coquille in the southern margin. Similar numbers of events from both types of records suggest that the major paleotsunamis are locally derived (near-field) from ruptures of the Cascadia margin megathrust fault zone, rather than from transoceanic tsunamis (far-field) originating at other subduction zones around the Pacific Rim. Given the catastrophic hazard of the near-field Cascadia margin tsunamis, we propose a basic rule for reminding the general public of the need for self-initiated evacuation following a great earthquake at the Cascadia margin.  相似文献   

17.
Tsunamis versus storm deposits from Thailand   总被引:3,自引:0,他引:3  
Along the Andaman (west) coast of Thailand, the 2004 tsunami depositional features associated with the 2004 tsunami were used to describe the characteristics of tsunamis in a place far away from the effect of both recent and ancient storms. The current challenge is that a lack of precise sedimentological characteristics have been described that will differentiate tsunami deposits from storm deposits. Here, in sedimentological senses, we reviewed the imprints of the sedimentological characteristics of the 2004 tsunami and older deposits and then compared them with storm deposits, as analyzed from the deposits found along the eastern (Gulf of Thailand; GOT) coast of Thailand. We discuss the hydraulic conditions of the 2004 tsunami and its predecessors, on the Andaman coast, and compare them to storm flows found on the coast of the GOT. Similar to an extensive tsunami inflow deposit, a storm flow overwash has very similar sedimentary structures. Well-preserved sedimentary structures recognized in sand sheets from both tsunami and storms include single and multiple normal gradings, reverse grading, parallel, incline and foreset lamina, rip-up clasts, and mud drapes. All these sedimentary structures verify the similarity of tsunami and storm inflow behavior as both types of high-energy flow start to scour the beach zone. Antidunes are likely to be the only unique internal sedimentary structures observed in the 2004 tsunami deposit. Rip-up clasts are rare within storm deposits compared to tsunami deposits. We found that the deposition during the outflow from both tsunami and storms was rarely preserved, suggesting that it does not persist for very long in the geological record.  相似文献   

18.
Sand beach ridges are considered to be derived either from aeolian processes and/or waves but their deposition by individual or multiple storms has not been investigated in any detail. We use numerical meteorological and oceanographic models to determine the origin of a sequence of 29 shore parallel sand beach ridges in northeastern Australia. The results suggest that the ridges were constructed by waves and that the final form or height of the ridges is a function of high-energy tropical cyclone generated waves plus storm tides. Hence these landforms archive a nearly 6000 year long history of intense tropical cyclones. The record implies that these extreme tempests occur considerably more frequently than that suggested by the short historical record for this region. The genesis of this sand beach ridge plain has implications for the interpretation of similar sequences elsewhere along the northeast coast of Australia and in comparable environments globally. If other similar sand beach ridge plains have also been deposited by like processes it stands to reason that these long-term records of high intensity tropical cyclones can be used to ascertain a regional scale risk assessment from this hazard.  相似文献   

19.
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity.

Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally < 25 cm thick, extend hundreds of meters inland from the beach, and fill microtopography but generally conform to the antecedent landscape. They commonly are a single homogeneous bed that is normally graded overall, or that consists of only a few thin layers. Mud intraclasts and mud laminae within the deposit are strong evidence of tsunami deposition. Twig orientation or other indicators of return flow during bed aggradation are also diagnostic of tsunami deposits. Sandy storm deposits tend to be > 30 cm thick, generally extend < 300 m from the beach, and will not advance beyond the antecedent macrotopography they are able to fill. They typically are composed of numerous subhorizontal planar laminae organized into multiple laminasets that are normally or inversely graded, they do not contain internal mud laminae and rarely contain mud intraclasts. Application of these distinguishing characteristics depends on their preservation potential and any deposit modifications that accompany burial.

The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly < 3 m, sediment is transported primarily as bed load by traction, and the load is deposited within a zone relatively close to the beach.  相似文献   


20.
Geological evidence of severe tsunami inundation has been discovered in northern Japan. In the dune fields of Shimokita, in northernmost Tohoku, we have found two distinctive sand layers that are tsunami deposits. The run-up height of >20 m and inland inundation of at least 1.4 km are notably larger than any known historical case in Japan. The tsunami-genic earthquake that resulted in these deposits is thought to have taken place in the Kuril Forearc-Trench system nearly 700 years ago. The recurrence interval of major tsunamis originating in the Kuril subduction zone is about 400 years. Given that the most recent unusually large earthquake took place in AD 1611 (corresponding to the Keicho earthquake tsunami), the findings presented here increase the potential and hazard for an outsized tsunami striking the Pacific coast of northern Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号