首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
大气科学   10篇
地球物理   3篇
地质学   7篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1986年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Kyaw  Thit Oo  Esteban  Miguel  Mäll  Martin  Shibayama  Tomoya 《Natural Hazards》2021,106(3):1797-1818
Natural Hazards - The deltaic coast of Myanmar was severely hit by tropical cyclone Nargis in May 2008. In the present study, a top-down numerical simulation approach using the Weather Research and...  相似文献   
2.
Kyaw  Thit Oo  Esteban  Miguel  Mäll  Martin  Shibayama  Tomoya 《Natural Hazards》2021,106(3):1819-1819
Natural Hazards - A correction to this paper has been published: https://doi.org/10.1007/s11069-021-04687-9  相似文献   
3.
The impact of diurnal variations of the heat fluxes from building and ground surfaces on the fluid flow and air temperature distribution in street canyons is numerically investigated using the PArallelized Large-eddy Simulation Model (PALM). Simulations are performed for a 3 by 5 array of buildings with canyon aspect ratio of one for two clear summer days that differ in atmospheric instability. A detailed building energy model with a three-dimensional raster-type geometry—Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES)—provides urban surface heat fluxes as thermal boundary conditions for PALM. In vertical cross-sections at the centre of the spanwise canyon the mechanical forcing and the horizontal streamwise thermal forcing at roof level outweigh the thermal forces from the heated surfaces inside the canyon in defining the general flow pattern throughout the day. This results in a dominant canyon vortex with a persistent speed, centered at a constant height. Compared to neutral simulations, non-uniform heating of the urban canyon surfaces significantly modifies the pressure field and turbulence statistics in street canyons. Strong horizontal pressure gradients were detected in streamwise and spanwise canyons throughout the day, and which motivate larger turbulent velocity fluctuations in the horizontal directions rather than in the vertical direction. Canyon-averaged turbulent kinetic energy in all non-neutral simulations exhibits a diurnal cycle following the insolation on the ground in both spanwise and streamwise canyons, and it is larger when the canopy bottom surface is paved with darker materials and the ground surface temperature is higher as a result. Compared to uniformly distributed thermal forcing on urban surfaces, the present analysis shows that realistic non-uniform thermal forcing can result in complex local airflow patterns, as evident, for example, from the location of the vortices in horizontal planes in the spanwise canyon. This study shows the importance of three-dimensional simulations with detailed thermal boundary conditions to explore the heat and mass transport in an urban area.  相似文献   
4.
5.
The Mogok metamorphic belt (MMB), over 1450 km long and up to 40 km wide, consists of regionally metamorphosed rocks including kyanite and sillimanite schists and granites lying along the Western margin of the Shan Plateau in central Myanmar and continuing northwards to the eastern Himalayan syntaxis. Exposures in quarries allow correlation of Palaeozoic meta-sedimentary, early Mesozoic meta-igneous and late Mesozoic intrusive rocks within a 230 km long northerly-trending segment of the MMB, from Tatkon to Kyanigan north of Mandalay, and with the Mogok gemstone district 100 km to the northeast. Relationships among the metamorphic and intrusive rocks, with sparse published radiometric age controls, indicate at least two metamorphic events, one before and one after the intrusion of Late Jurassic to early Cretaceous calc-alkaline rocks. These relationships can be explained by either of two possible tectonic histories. One, constrained by correlation of mid-Permian limestones across Myanmar, requires early Permian and early Jurassic regional metamorphic events, prior to an early Tertiary metamorphism, in the western part of but within a Shan-Thai – western Myanmar block. The second, not compatible with a single laterally continuous Permian limestone, requires pre-Upper Jurassic regional metamorphism and orogenic gold mineralization in the Mergui Group and western Myanmar, early Cretaceous collision of an east-facing Mergui-western Myanmar island arc with the Shan Plateau, and early Tertiary metamorphism in the MMB related to reversal in tectonic polarity following the arc-Plateau collision.  相似文献   
6.
Turbulent statistics of neutrally stratified shear-driven flow within and above a sparse forest canopy are presented from a large-eddy simulation (LES) and compared with those from observations within and above a deciduous forest with similar height and foliage density. First- and second-order moments from the LES agree with observations quite well. Third-order moments from the LES have the same sign and similar vertical patterns as those from the observations, but the LES yields smaller magnitudes of such higher-order moments. Turbulent spectra and cospectra from the LES agree well with observations above the forest. However, at the highest frequencies, the LES spectra have steeper slopes than observations. Quadrant and conditional analyses of the LES resolved-scale flow fields also agree with observations. For example, both LES and observation find that sweeps are more important than ejections for the transport of momentum within the forest, while inward and outward interaction contributions are both small, except near the forest floor. The intermittency of the transport of momentum and scalar increases with depth into the forest. Finally, ramp structures in the time series of a passive scalar at multiple levels within and above the forest show similar features to those measured from field towers. Two-dimensional (height-time cross-section) contours of the passive scalar and wind vectors show sweeps and ejections, and the characteristics of the static pressure perturbation near the ground resemble those deduced from field tower-based measurements. In spite of the limited grid resolution (2 m × 2 m × 2 m) and domain size (192 m × 192 m × 60 m) used in this LES, we demonstrate that the LES is capable of resolving the most important characteristics of the turbulent flow within and above a forest canopy.  相似文献   
7.
ABSTRACT

The impact of climate variables on monthly reference evapotranspiration (ETo) is a critical issue in water resources management and irrigation planning. The spatio-temporal contribution of climate variables to ETo in the Pearl River Basin (PRB), China, from 1960 to 2016 were calculated based on sensitivity and relative change of each climatic variable. The results show that annual ETo total decreased by 1.64% and diminished in magnitude from the southeast to the northwest. Sunshine duration, wind speed and relative humidity decreased by 15.5%, 7.4%, and 4.0%, respectively, while average temperature increased by 4.25%. The ETo showed a positive sensitivity to all variables except relative humidity, which showed a negative sensitivity. Sunshine duration had the highest contribution of ?4.26%, and the overall decrease in ETo was mainly caused by the declines in sunshine duration and wind speed, which offset the positive impact of rises in average temperature and reduction in relative humidity.  相似文献   
8.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   
9.
Pseudo-wavelet analysis of turbulence patterns in three vegetation layers   总被引:4,自引:0,他引:4  
Ramp patterns in scalar traces such as temperature are the signature of coherent structures. A pseudo-wavelet analysis technique was developed in which ideal saw-tooth patterns of varying size were used as basis functions and fitted to temperature and velocity data. Data recorded from three very different vegetation stands were examined in this study. It was found that the most probable structure duration for the forest canopy was in the range 35–40 s, for the orchard canopy it was 20–25 s and for the maize it was 15–20 s. When expressed in non-dimensional form, the structure duration probability distribution for the maize canopy was about a decade larger than for the forest canopy, with the orchard canopy intermediate. The mean eddy duration versus wind shear relation falls on a narrow band for all three canopies, indicating that wind shear at the canopy top is the determining factor for the scale of the coherent eddies. The inverse of duration and intermittency of coherent structures exhibits a tendency of independence from wind shear at higher wind shear values. Coherent structures transport heat in a more efficient way than do smaller scale, less coherent motions. In all the canopies, the heat flux fractions associated with coherent structures are at least 10% higher than the corresponding time fraction.  相似文献   
10.
Two-point space-time correlations ofvelocities, a passive scalar and static pressure arecalculated using the resolvable flow fields computedby large-eddy simulation (LES) of neutrally stratifiedflow within and above a sparse forest. Zero-time-lagspatial auto-correlation contours in thestreamwise-vertical cross-section for longitudinal andlateral velocities and for a scalar are tilted fromthe vertical in the downstream direction, as istypical in near-wall sheared flow. On the other hand,auto-correlations of vertical velocity and of staticpressure are vertically coherent. Zero-time-lagspatial auto-correlations in the spanwise-verticalcross-section show no distinct tilt, and those forboth longitudinal and vertical velocities demonstratedistinct negative side lobes in the middle forest andabove, while longitudinal velocity in the subcrowntrunk space is laterally in-phase. Static pressureperturbations appear to be spatially coherent in thespanwise direction at all heights, especially insidethe forest. Near the forest floor, longitudinalvelocity is found to be in-phase with static pressureperturbation and to be closely linked to theinstantaneous streamwise pressure gradient, supportinga previous proposal that longitudinal velocity in thisregion is dominantly modulated by the pressurepatterns associated with the coherent sweep/ejectionevents. Near treetop height, a lack of linkage betweenthe pressure gradient and the local time derivative ofthe longitudinal velocity supports the hypothesis ofadvection dominating turbulent flow.The major phase characteristics of the two-pointcorrelations essentially remained the same from fourLES runs with different domain size and/or gridresolution. A larger LES domain yielded betteragreement with field observations in a real forest onboth the magnitudes of the correlations and thesingle-point integral time scales. A finer gridresolution in the LES led to a faster rate of decreaseof correlation with increasing separation in space ortime, as did the higher frequency fluctuations in theturbulent records from field measurements. Convectivevelocities estimated from the lagged two-pointauto-correlations of the calculated flow fields werecompared with similar calculations from wind-tunnelstudies. At the canopy top, estimates from thecorrelation analyses agree with the translationvelocity estimated from instantaneous snapshots of ascalar microfront using both LES and field data. Thistranslation velocity is somewhat higher than the localmean wind speed. Convective velocities estimated fromlagged correlations increase with height above thecanopy. It is suggested that an appropriate filteringprocedure may be necessary to reduce the effects ofsmall-scale random turbulence, as was reported in astudy over an orchard canopy. The mean longitudinalvelocity near the treetops is found to be moreappropriate than the local mean longitudinal velocityat each height to link single-point integral timescales with directly calculated spatial integralstreamwise length scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号