首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gondwana Research》2006,9(4):449-456
From 650–500 Ma assembly, 320 Ma merger in Pangea, to 185 Ma breakup, Gondwanaland developed by the accretion of lithosphere along the convergent edge on the south and by the export of terranes from the divergent edges on the west and northeast. The interior underwent epeirogenic movement except in areas affected during the merger by farfield shortening. Synchronous or near-synchronous events on the edges and interior are linked hypothetically by convection currents in the asthenosphere driven by supercontinent-induced heat. On the convergent edge, currents countered the sinking slab to roll back the trench and generate a backarc basin. On the divergent edge, currents initiated an ocean that prised off continental rims in the form of terranes. In the interior, currents extended the lithosphere in basins and rifts.  相似文献   

2.
The Neoproterozoic-Early Cambrian evolution of peri-Gondwanan terranes (e.g. Avalonia, Carolinia, Cadomia) along the northern (Amazonia, West Africa) margin of Gondwana provides insights into the amalgamation of West Gondwana. The main phase of tectonothermal activity occurred between ca. 640–540 Ma and produced voluminous arc-related igneous and sedimentary successions related to subduction beneath the northern Gondwana margin. Subduction was not terminated by continental collision so that these terranes continued to face an open ocean into the Cambrian. Prior to the main phase of tectonothermal activity, Sm-Nd isotopic studies suggest that the basement of Avalonia, Carolinia and part of Cadomia was juvenile lithosphere generated between 0.8 and 1.1 Ga within the peri-Rodinian (Mirovoi) ocean. Vestiges of primitive 760–670 Ma arcs developed upon this lithosphere are preserved. Juvenile lithosphere generated between 0.8 and 1.1 Ga also underlies arcs formed in the Brazilide Ocean between the converging Congo/São Francisco and West Africa/Amazonia cratons (e.g. the Tocantins province of Brazil). Together, these juvenile arc assemblages with similar isotopic characteristics may reflect subduction in the Mirovoi and Brazilide oceans as a compensation for the ongoing breakup of Rodinia and the generation of the Paleopacific. Unlike the peri-Gondwanan terranes, however, arc magmatism in the Brazilide Ocean was terminated by continent-continent collisions and the resulting orogens became located within the interior of an amalgamated West Gondwana. Accretion of juvenile peri-Gondwanan terranes to the northern Gondwanan margin occurred in a piecemeal fashion between 650 and 600 Ma, after which subduction stepped outboard to produce the relatively mature and voluminous main arc phase along the periphery of West Gondwana. This accretionary event may be a far-field response to the breakup of Rodinia. The geodynamic relationship between the closure of the Brazilide Ocean, the collision between the Congo/São Francisco and Amazonia/West Africa cratons, and the tectonic evolution of the peri-Gondwanan terranes may be broadly analogous to the Mesozoic-Cenozoic closure of the Tethys Ocean, the collision between India and Asia beginning at ca. 50 Ma, and the tectonic evolution of the western Pacific Ocean.  相似文献   

3.
http://www.sciencedirect.com/science/article/pii/S1674987111001125   总被引:1,自引:1,他引:0  
<正>Greenstone belts of the eastern Dharwar Craton,India are reinterpreted as composite tectonostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new high-precision elemental data.The former are dominated by a komatiile plus Mg-tholeiitic basalt volcanic association,with deep water siliciclastic and banded iron formation(BIF) sedimentary rocks.Plumes melted at90 km under thin rifted continental lithosphere to preserve inlraoceanic and continental margin aspects.Associated alkaline basalts record subduction-recycling of Mesoarchean oceanic crust,incubated in the asthenosphere.and erupted coevally with Mg basalts from a heterogeneous mantle plume.Together.komaliites-Mg basalts-alkaline basalts plot along the Phanerozoic mantle array in Th/Yb versus Nb/Yb coordinate space,representing zoned plumes,establishing that these reservoirs were present in the Neoarchean mantle. Convergent margin magmatic associations are dominated by tholeiitic to calc-alkaline basalts eompositionally similar to recent intraoceanic arcs.As well,boninitic flows sourced in extremely depleted mantle are present,and the association of arc basalts with Mg-andesites-Nb enriched basalts-adakites documented from Cenozoic arcs characterized by subduction of young(20 Ma),hot,oceanic lithosphere. Consequently.Cenozoic style "hot" subduction was operating in the Neoarchean.These diverse volcanic associations were assembled to give composite terranes in a subduction-accretion orogen at~2.1 Ga,coevally with a global accretionary orogen at ~2.7 Ga,and associated orogenic gold mineralization. Archean lithospheric mantle,distinctive in being thick,refractory,and buoyant,formed complementary to the accreted plume and convergent margin terranes.as migrating arcs captured thick plumeplateaus. and the refractory,low density.residue of plume melting coupled with accreted imbricated plume-arc crust.  相似文献   

4.
The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150–200 °C isobaric temperature range at 5–6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure.

Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a “cratonic” geotherm (40 mW m−2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at 1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U–Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592–618].

The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at 150 Ma to the southeast of the craton, propagating to the west by 108–74 Ma, the craton interior by 85–90 Ma and the far southwest and northwest by 65–70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30–100 Ma earlier and are probably connected.

Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow in southern Africa is related to this dynamic event and is not a direct reflection of the pre-existing lithospheric architecture.  相似文献   


5.
青藏高原是由多个地体拼合而成的,在印度板块向北俯冲的长期作用下,各地体被挤压,地壳缩短,高原隆升。尽管在北北东向挤压作用下发生了高原的近南北向的断裂活动,但各地体本身的结构整体上保持相对稳定,不仅地壳浅部的地层、岩石、古生物保持着各自的特征,而且深部Moho面的变化和岩石圈的特征也是相似的。青藏高原的相距500km以上的2条宽频地震探测剖面的接收函数结果证实:高喜马拉雅地体、特提斯喜马拉雅地体、冈底斯地体、羌塘地体和巴颜喀拉地体在东西方向上保持着相近的速度特征。这充分说明,印度板块向北俯冲与青藏高原碰撞,引发各地体碰撞造山与高原隆升是地壳和岩石圈的整体构造运动,高原各地体,至少高原腹地仍然保持着大致相同的深部结构,Moho面、岩石圈底界面的深度和产状变化不大。  相似文献   

6.
The Schwarzwald is part of the central polymetamorphic crystalline belt of the Variscan Orogen (»Moldanubian Belt«). From north to south it consists of four terranes: the metasedimentary Zone of Baden-Baden, the polymetamorphic Central Schwarzwald Gneiss Complex, the sedimentary — metamorphic Zone of Badenweiler-Lenzkirch, and the Hotzenwald Complex. The largest of these terranes is the Central Schwarzwald Gneiss Complex (CSGC) whose rocks record a history of protracted regional metamorphism and anatectic melt generation. During Variscan convergence between 350 and 325 Ma the CSGC became detached from a high-temperature lower crustal substratum and was emplaced southeastward over Paleozoic clastics, volcanic rocks and crystalline slivers of the Zone of Badenweiler-Lenzkirch and the Hotzenwald Complex. Kinematic indicators suggest that these early convergent movements on retrograde shear zones and the concomitant crustal thickening were superseded by movements on divergent shear zones. The ascent of voluminous granitic plutons from a mid-crustal zone of melt generation into the upper crust was probably triggered by a change in the crustal kinematics from overall convergence to overall divergence at about 325 Ma. In detail this process was probably diachronous. Detachment of upper crust and large scale melt generation in the middle crust of the Schwarzwald was probably facilitated by the tectonic stacking of water-rich pelitic clastics and gneiss slivers, with relatively even proportions of crystalline and pelitic materials.  相似文献   

7.
李玉中 《江苏地质》2014,38(4):556-560
沉积分异作用在解释表层沉积现象时具有重要意义。在水流辐聚或辐散区域,表层沉积物将因辐聚和辐散运移而分别呈细化和粗化状态。河口区细颗粒沉积区的形成,是因为河口区存在底层余流辐聚的滞流区现象;东中国海涡旋区泥质沉积现象的形成,是因为涡旋区存在指向涡旋中心的底层辐聚流;浙闽沿岸泥质沉积现象是近岸的浙闽沿岸流和远岸的台湾暖流之间存在余流辐聚带;英吉利海峡宽度最窄处的沉积物粗化现象,是因该处沉积物在水流作用下呈分离运移趋势所引起。  相似文献   

8.
Lithospheric thinning beneath the eastern North China Craton is widely recognized, but the mechanism and timing of the thinning are contentious. New data on peridotitic xenoliths from the Cretaceous (∼100 Ma) Fuxin basalts at the northern edge of the craton have been integrated with data from other localities across the craton, to provide an overview of the processes involved. The Fuxin peridotite xenoliths can be subdivided into three types, which can also be recognized in other xenolith suites across the craton. The dominant Type 1, lherzolites with olivine Mg# ∼90, represents fertile mantle (5-12% partial-melt extraction) that makes up much of the Late Mesozoic-Cenozoic lithosphere beneath the craton. Type 2 consists of magnesian (olivine Mg# >92) harzburgites, interpreted as shallow relics of the Archean cratonic mantle. Type 3, minor lherzolite xenoliths with olivine Mg# ∼86 reflect the interaction of the lithosphere with magmas similar to the host basalts. In-situ Re-Os data on sulfides in xenoliths from Hebi (4 Ma, interior of the craton) and Hannuoba (22 Ma, northern edge of the Trans-North China Orogen within the craton) basalts give model ages of 3.1-3.0, 2.5, 2.2-2.1, 1.4 and 0.8 Ga, These correspond to the U-Pb ages of zircons from early Mesozoic (178 Ma) peridotitic xenoliths at the southern margin of the craton, and record events during which the Archean lithospheric mantle was modified. The dominance of fertile peridotite xenoliths in the 100 Ma Fuxin basalts indicates that the mantle replacement beneath the eastern North China Craton at least partly took place before that time. The regional synthesis suggests that Mesozoic-Cenozoic lithospheric thinning and mantle replacement was heterogeneously distributed across the North China Craton in space and time. Lateral spreading of the lithosphere, accompanied by asthenospheric upwelling and melt-peridotite interaction, is the most probable mechanism for the lithospheric thinning beneath the eastern part of the craton. Subsequent cooling of the upwelled asthenosphere caused some re-thickening of the lithosphere; this overall more fertile and hence denser lithosphere resulted in widespread basin formation.  相似文献   

9.
朱文斌  王玺  葛荣峰 《地质学报》2021,95(1):124-138
地体构造是对板块构造理论的发展和补充,它受控于全球板块动力学体系,因此不能将地体与板块割裂开来去研究.其相对于刚性板块的小规模、多样性和广泛性,对了解全球板块的离散和大陆的拼贴增生过程具有十分重要意义.地体构造无处不在,它不仅存在于中、新生代陆缘造山带中,也存在于古老造山带中,一些古老的克拉通实际上也是由不同的地体拼合...  相似文献   

10.
Neoproterozoic tectonics is dominated by the amalgamation of the supercontinent Rodinia at ca. 1.0 Ga, its breakup at ca. 0.75 Ga, and the collision between East and West Gondwana between 0.6 and 0.5 Ga. The principal stages in this evolution are recorded by terranes along the northern margin of West Gondwana (Amazonia and West Africa), which continuously faced open oceans during the Neoproterozoic. Two types of these so-called peri-Gondwanan terranes were distributed along this margin in the late Neoproterozoic: (1) Avalonian-type terranes (e.g. West Avalonia, East Avalonia, Carolina, Moravia-Silesia, Oaxaquia, Chortis block that originated from ca. 1.3 to 1.0 Ga juvenile crust within the Panthalassa-type ocean surrounding Rodinia and were accreted to the northern Gondwanan margin by 650 Ma, and (2) Cadomian-type terranes (North Armorica, Saxo-Thuringia, Moldanubia, and fringing terranes South Armorica, Ossa Morena and Tepla-Barrandian) formed along the West African margin by recycling ancient (2–3 Ga) West African crust. Subsequently detached from Gondwana, these terranes are now located within the Appalachian, Caledonide and Variscan orogens of North America and western Europe. Inferred relationships between these peri-Gondwanan terranes and the northern Gondwanan margin can be compared with paleomagnetically constrained movements interpreted for the Amazonian and West African cratons for the interval ca. 800–500 Ma. Since Amazonia is paleomagnetically unconstrained during this interval, in most tectonic syntheses its location is inferred from an interpreted connection with Laurentia. Hence, such an analysis has implications for Laurentia-Gondwana connections and for high latitude versus low latitude models for Laurentia in the interval ca. 615–570 Ma. In the high latitude model, Laurentia-Amazonia would have drifted rapidly south during this interval, and subduction along its leading edge would provide a geodynamic explanation for the voluminous magmatism evident in Neoproterozoic terranes, in a manner analogous to the Mesozoic-Cenozoic westward drift of North America and South America and subduction-related magmatism along the eastern margin of the Pacific ocean. On the other hand, if Laurentia-Amazonia remained at low latitudes during this interval, the most likely explanation for late Neoproterozoic peri-Gondwanan magmatism is the re-establishment of subduction zones following terrane accretion at ca. 650 Ma. Available paleomagnetic data for both West and East Avalonia show systematically lower paleolatitudes than predicted by these analyses, implying that more paleomagnetic data are required to document the movement histories of Laurentia, West Gondwana and the peri-Gondwanan terranes, and test the connections between them.  相似文献   

11.
The metamorphic core of the Himalaya is composed of Indian cratonic rocks with two distinct crustal affinities that are defined by radiogenic isotopic geochemistry and detrital zircon age spectra. One is derived predominantly from the Paleoproterozoic and Archean rocks of the Indian cratonic interior and is either represented as metamorphosed sedimentary rocks of the Lesser Himalayan Sequence(LHS) or as slices of the distal cratonic margin. The other is the Greater Himalayan Sequence(GHS) whose provenance is less clear and has an enigmatic affinity. Here we present new detrital zircon Hf analyses from LHS and GHS samples spanning over 1000 km along the orogen that respectively show a striking similarity in age spectra and Hf isotope ratios. Within the GHS, the zircon age populations at 2800-2500 Ma,1800 Ma, 1000 Ma and 500 Ma can be ascribed to various Gondwanan source regions; however, a pervasive and dominant Tonianage population(~860-800 Ma) with a variably enriched radiogenic Hf isotope signature(eHf = 10 to-20) has not been identified from Gondwana or peripheral accreted terranes. We suggest this detrital zircon age population was derived from a crustal province that was subsequently removed by tectonic erosion. Substantial geologic evidence exists from previous studies across the Himalaya supporting the Cambro-Ordovician Kurgiakh Orogeny. We propose the tectonic removal of Tonian lithosphere occurred prior to or during this Cambro-Ordovician episode of orogenesis in a similar scenario as is seen in the modern Andean and Indonesian orogenies, wherein tectonic processes have removed significant portions of the continental lithosphere in a relatively short amount of time. This model described herein of the pre-Himalayan northern margin of Greater India highlights the paucity of the geologic record associated with the growth of continental crust. Although the continental crust is the archive of Earth history, it is vital to recognize the ways in which preservation bias and destruction of continental crust informs geologic models.  相似文献   

12.
Species richness and abundance of seagrass-associated fauna are often positively correlated with seagrass biomass and structure complexity of the habitat. We found that while shoot density and plant biomass were greater in interior portions of turtle grass (Thalassia testudinum) beds than at edges, mean faunal density was significantly greater at edges than interior sites during 1994. This pattern was also observed in 1995, although differences were not significant. The four numerically dominant taxonomic groups showed varying degrees of elevated densitities at edges ofT. testudinum beds. Peracarids and polychaetes had significantly greater densities at edges oft. testudinum beds, while both decapods and gastropods showed dramatic temporal variability in density, with reversals in density between edge and interior occurring during the course of the study. This within-habitat variability in abundance may reflect both active accumulation of fauna at edges and settlement shadows for species with pelagic larvae. Active accumulation of highly mobile taxa seeking refuge in seagrass beds may explain the differences in density between edge and interior ofT. testudinum patches for peracarids in 1994 and in 1995. Active accumulation at edges may also explain differeces in density for some decapod taxa. Chauges in gastropod densities between habitats may reflect larval settlement patterns. Results showed a distinct settlement shadow for the gastropodCaecum nitidum whose densities (primarily second stage protoconch) increased by more than an order of magnitude in 1994. Settlement shadows and post-settlement processes may also explain density differences of polychaetes between the edge and interior ofT. testudinum patches. The differences in faunal densities between edge and interior habitat resulted in habitat specific differences in secondary production among the major taxonomic groups. On four of five dates in 1994 and in 1995, secondary production was greater at edge than interior locations. These unexpected results suggest that differences in faunal densities and secondary production between edges and interiors of seagrass patches represent a potentially vital link in seagrass trophic dynamics. If this elevated secondary production leads to increases in trophic transfer, then edges may serve as a significant trophic conduit to higher-level consumers in this system.  相似文献   

13.
大陆弧岩浆幕式作用与地壳加厚:以藏南冈底斯弧为例   总被引:1,自引:0,他引:1  
大陆弧岩浆带位于汇聚板块的前缘,记录了洋陆俯冲过程和大陆地壳生长过程,是研究壳幔相互作用的天然实验室.越来越多的研究发现,大陆弧岩浆的生长与侵位并不是均一的、连续的过程,而是呈现阶段性、峰期性特征,即幕式岩浆作用.弧岩浆峰期与岩浆平静期相比,岩浆增生速率显著增强,易于发生岩浆聚集,继而形成大的岩基,如北美西部科迪勒拉造...  相似文献   

14.
青藏高原及其部分邻区地震各向异性和土地幔特征   总被引:29,自引:1,他引:29       下载免费PDF全文
通过研究在青藏高原及其部分邻区由三分量宽频地震资料获得的剪切波各向异性的特征,得出了上地幔构造的若干认识,在本区200km以上的上地幔范围内各向异性的方向性变化主要是上地幔物质运移方向的影响,各地体的岩石圈与地壳在相当长时间内是连贯的运移,各向异性的主要方向决定于上地幔承受的主应力剪切作用方向常常与地表的山系和构造方向不一致,最强的各向异性特征出现在高速体地体边缘,与深部热的地幔物质有关,在各地体边缘的走滑断裂附近各向异性与断裂带走向一致。  相似文献   

15.
The age of the Ashburton Province, comprising an older divergent‐margin megasequence and a younger convergent‐margin megasequence, is poorly constrained. The Boolaloo Granodiorite, which intruded the divergent‐margin megasequence on the western margin of the Ashburton Province, has given a SHRIMP zircon U–Pb age of 1786 ± 5 Ma, and therefore post‐dates convergent‐margin, backarc basin sequences, with established conventional zircon U7sbnd;Pb ages of ca 1843–1828 Ma. However, it pre‐dated deformation of convergent‐margin, remnant‐ocean sequences. Similarly aged (ca 1797–1791 Ma) granitoids are present in the adjacent Gascoyne Province, thereby identifying a magmatic fold‐thrust belt that abutted a remnant ocean in the Ashburton Province.  相似文献   

16.
在位场数据边界识别传统方法理论的基础上,前人研究了各种场源边界增强技术来提高信噪比和定位精度,但仍然存在受噪声影响大、场源边界不够收敛等问题。本文在传统边界识别方法的基础上进行改进,利用小波变换与传统方法相结合来增强对噪声的压制能力,并且提出了幂次变换法对识别出的边界进行有效收敛。将改进方法与传统方法应用于地质体的边界识别;同时选取3种传统数值计算方法,结合模型数据、四川盆地重力异常数据及朱日和地区磁异常数据进行对比分析。结果表明:小波结合幂次变换法能够有效识别出研究区域内地质体的边界,能很好地起到压制噪声的作用;并且识别出的边界收敛,提高了边界识别的精度,在边界识别中取得了良好的效果。  相似文献   

17.
Metamorphic mineral assemblages suggest the existence of variable geotherms and lithospheric thicknesses beneath late Archean continental crust. Archean granite-greenstone terranes reflect steep geotherms (50–70°C/km) while high-grade terranes reflect moderate geotherms similar to present continental crust with high heat flow (25–40°C/km). Corresponding lithosphere thicknesses for each terrane during the late Archean are 35–50 km and 50–75 km, respectively.Early Archean ( 3.0 b.y.) greenstones differ from late Archean ( 2.7 b.y.) greenstones by the rarity or absence of andesite and graywacke and the relative abundance of pelite, quartzite, and komatiite. Mature clastic sediments in early greenstones reflect shallow-water, stable-basin deposition. Such rocks, together with granite-bearing conglomerate and felsic volcanics imply the existence of still older granitic source terranes. The absence or rarity of andesite in early greenstones reflects the absence of tectonic conditions in which basaltic and tonalitic magmas are modified to produce andesite.A model is presented in which early Archean greenstones form at the interface between tonalite islands and oceanic lithosphere, over convective downcurrents; high-grade supracrustals form on stable continental edges or interiors; and late Archean greenstones form in intracontinental rifts over mantle plumes.  相似文献   

18.
Revision of crustal architecture and evolution of the Central Asian Orogenic Supercollage (CAOS) between the breakup of Rodinia and assembly of Pangea shows that its internal pattern cannot be explained via a split of metamorphic terranes from and formation of juvenile magmatic arcs near the East European and Siberian cratons, followed by zone-parallel complex duplication and oroclinal bending of just one or two magmatic arcs/subduction zones against the rotating cratons. Also, it cannot be explained by breakup of multiple cratonic terranes and associated magmatic arcs from Gondwana and their drift across the Paleoasian Ocean towards Siberia. Instead, remnants of early Neoproterozoic oceanic lithosphere at the southern, western and northern periphery of the Siberian craton, as well as Neoproterozoic arc magmatism in terranes, now located in the middle of the CAOS, suggest oceanic spreading and subduction between Eastern Europe and Siberia even before the breakup of Rodinia at 740–720 Ma. Some Precambrian terranes in the western CAOS and Alai-Tarim-North China might have acted as a bridge between Eastern Europe and Siberia.The CAOS evolution can be rather explained by multiple regroupings of old and juvenile crust in eastern Rodinia in response to: 1) 1000–740 Ma propagation of the Taimyr-Paleoasian oceanic spreading centres between Siberian and East European cratons towards Alai-Tarim-North China; 2) 665–540 Ma opening and expansion of the Mongol-Okhotsk Ocean, collision of Siberian and East European cratons with formation of the Timanides and tectonic isolation of the Paleoasian Ocean; 3) 520–450 Ma propagation of the Dzhalair-Naiman and then Transurals-Turkestan oceanic spreading centres, possibly from the Paleotethys Ocean, between Eastern Europe and Alai-Tarim, essentially rearranging all CAOS terranes into a more or less present layout; and 4) middle to late Paleozoic expansion of the Paleotethys Ocean and collision of Alai-Tarim-North China cratons with CAOS terranes and Siberian craton to form the North Asian Paleoplate prior to its collision with Eastern Europe along the Urals to form Laurasia. Two to five subduction zones, some stable long-term and some short-living or radically reorganized in time, can be restored in the CAOS during different phases of its evolution.  相似文献   

19.
The continental margin orogenic systems of the western Americas are enormous features that formed along the Pacific margins of the North and South American plates during late Mesozoic through Cenozoic time. There has been considerable debate concerning their origin, and they are often compared with intra-oceanic fringing arc-trench systems more typical of the Australasian margins of the Pacific Ocean, in that both involve the subduction of oceanic lithosphere, often with similar convergent relative motion vectors. The onset of orogenesis in the two Cordilleras, as shown in reversal of sedimentary polarity from sources generally on the continent to sources along the Pacific margin, seems to date from shortly after emplacement of the oldest oceanic crust in that part of the Atlantic Ocaen east of each continent — i.e., about 170 Ma, or Middle Jurassic, in the case of the Central Atlantic, and about 135 to 100 Ma, or Early to mid-Cretaceous, in the case of the South Atlantic. These ages also seem to mark the onset of westward motion of the two continents over the Pacific Ocean basin and subsequent crustal thickening and uplift, with development of thrust belts, foreland basins, and foredeeps. Prior to this prolonged westward drift, both margins had been convergent for at least several hundred million years, but no massive mountain building had taken place. Instead, the margins were tectonically “neutral”, with typically submarine fringing arc-trench systems or shallow marine to continental margin arcs which stood “outboard” of shallow marine platformal shelves or basins whose main sedimentary polarity was from the continent. Although accretion of “suspect” terranes, high rates of convergence, and age of subducting lithosphere all may have influenced particularly local tectonic response and/or phases of orogenic activity in the two chains, the absolute motion of the two continental margins over the Pacific Ocean basin is considered to have been the dominant factor in Cordilleran tectonic evolution.  相似文献   

20.
青藏高原的新生代火山作用是印度-亚洲大陆碰撞的火山响应,它显示了系统的时、空变化。随着印度-亚洲大陆碰撞从~65 Ma的接触-碰撞(即"软碰撞")转变到~45 Ma的全面碰撞(即"硬碰撞"),火山作用也逐渐从钠质+钾质变为钾质-超钾质+埃达克质。65~40 Ma的钾质和钠质熔岩主要分布于藏南的拉萨地块,少量分布于藏中的羌塘地块。从45~26 Ma,在藏中的羌塘地块中广泛发育钾质-超钾质熔岩和少量埃达克岩。随后的碰撞后火山作用向南迁移,在拉萨地块中产生~26~10 Ma间的同时代超钾质和埃达克质熔岩。尔后,从~18 Ma始,钾质和少量埃达克质火山作用重新向北,在西羌塘和松潘-甘孜地块中呈广泛和半连续状分布。此种时-空变异对形成青藏高原的深部地球动力学过程提供了重要约束。该过程包括:已消减的新特提斯大洋板片的回转、断离及随后增厚拉萨岩石圈根的去根作用,及因此而造成的印度岩石圈向北下插。青藏高原的隆升是自南向北穿时发生的。高原南部被创建于渐新世晚期,并保持至今;直到中新世中期,由于下插印度岩石圈的持续向北推挤,西羌塘和松潘-甘孜岩石圈的下部开始塌陷和拆离,高原北部才达到其现今的高度和规模。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号