首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Relatively consistent palaeomagnetic results have been obtained after alternating field demagnetization of samples from seven of eight dolerite dykes (ten sites) intruding the basement shield in Guyana. Results from five of these dykes (seven sites, 33 samples) give an average site-pole at 63°S, 138°W, k = 24.6, α95 = 12.4°. Despite KAr ages ranging from 262 to 675 m.y., the good grouping suggests that these dykes are generally contemporaneous, and they are judged to be Permo-Triassic. The remaining two dykes have distinct, apparently Precambrian, magnetizations.Comparison of these Permo-Triassic data with other studies of reputedly similar age rocks from elsewhere in South America, show a significant scatter, the cause of which cannot be uniquely determined. This problem is commonly encountered in general palaeomagnetic synthesis, and to alleviate it, the analysis of all site-poles from a single continent for a substantial time segment is recommended.A polar-wander swath should result, the dimensions and pattern of which are theoretically a function primarily of secular variation and continental drift. Such a plot of site-poles gives appropriate weight to all useful palaeomagnetic data; it can be readily updated as new results are added to the data reservoir.  相似文献   

2.
In order to study the present crustal movement and geodynamics in China‘s continent, a countrywide GPS monitoring network consisting of 22 stations was set up evenly on major tectonic blocks in China‘s continent in the early 1990s. Three-phase observations using the network were carried out in 1992, 1994, and 1996, respectively. In this paper, the data processing and accuracy of the three-phase observations are examined and the basic characteristics of present block movement in China‘s continent are analyzed based on the data of three-phase repeated observations. The study result indicates that the accuracy of data obtained in three-phase observations on the GPS network reaches 10-8 ~ 10-9, which is adequate to the need of monitoring of crustal movement. A model for block movement in China‘s continent constructed based on the result of the three-phase observations has effectively tested the results of geological and geophysical studies. In global framework, China‘s continent as a whole shows its clear eastward motion and its regional movement relative to Siberian block is characterized by that the western China is mainly affected by northward subduction and pushing of Indian Plate. Qinghai-Xizang Plateau shows clear eastward lateral slip simultaneously with longitudinal compression. It is more favorable to the escape model for the continent. Block movement of eastern China is under the combined effect of Indian, Pacific,and Philippine plates, resulting in northeastern and eastern motions of eastern China up to southeastern coastal region where the effect of Philippine Plate strengthens.  相似文献   

3.
Superimposed on a regional pattern of oroclinal bending in the Aegean and west Anatolian regions, the coastal region of western Anatolia, shows a complex and chaotic pattern of coexisting clockwise and counterclockwise rotations. Here, we report new palaeomagnetic data from the eastern Aegean island of Chios, to test whether this fits the regional palaeomagnetic pattern associated with the Aegean orocline, or should be included in the narrow zone of chaotic palaeomagnetic directions. Therefore, a combined palaeomagnetic study of Miocene sediments and volcanic rocks has been carried out. Thermal and AF demagnetization of a 130-m thick Middle Miocene succession from the Michalos claypit allowed a stable component of both polarities to be isolated while rock magnetic experiments showed that the main magnetic carrier is magnetite. When compared with the Eurasian reference, the mean declination of 348 ± 5.1° implies 15° of counterclockwise rotation since Middle Miocene times. The obtained shallow inclination of 38 ± 6.7° was corrected to 61.8 ± 3.9°, by applying the elongation/inclination correction method for inclination shallowing. This result is similar to the expected inclination of 58° for the latitude of Chios. The palaeomagnetic analysis (demagnetization treatment and corresponding rock magnetic measurements) of the volcanic rocks identify a stable, predominantly normal, ChRM with poorly constrained mean declination of about 290 ± 19.8° based on five successfully resolved components. The significantly different palaeomagnetic results obtained from an island as small as Chios (and a very short distance), and the relatively large rotation amounts do not fit the regional palaeomagnetic direction of Lesbos and basins in northwestern Turkey which show little or no significant rotation. We thus prefer to include Chios in the coastal zone of chaotic rotations, which may represent a previously inferred tectonic transfer zone that accommodates lateral differences in extensional strain within the Aegean back-arc.  相似文献   

4.
Sediments spanning the last 9000 y from two sites in lake Vatnsdalsvatn (Lat. 66°N; Long. 23°E) in northwest Iceland hold repeatable palaeomagnetic direction records. The Vatnsdalsvatn sediments have mean palaeomagnetic inclinations of 76° close to that expected for a geocentric axial dipole field, and direction fluctuations of around 20° from the mean. The palaeomagnetic directions are stable under alternating field partial demagnetization experiments. A time scale for the Vatnsdalsvatn sediments has been estimated from 14C dating. The pattern of palaeomagnetic secular change shows few similarities with British records 2000 km distant and a central North American record 5000 km distant.  相似文献   

5.
Representative paleomagnetic collections of Lower Cambrian rocks from the northern and eastern regions of the Siberian platform are studied. New evidence demonstrating the anomalous character of the paleomagnetic record in these rocks is obtained. These data confidently support the hypothesis (Pavlov et al., 2004) that in the substantial part of the Lower Cambrian section of the Siberian platform there are two stable high-temperature magnetization components having significantly different directions, each of which is eligible for being a primary component that was formed, at the latest, in the Early Cambrian. The analysis of the world’s paleomagnetic data for this interval of the geological history shows that the peculiarities observed in Siberia in the paleomagnetic record for the Precambrian–Phanerozoic boundary are global, inconsistent with the traditional notion of a paleomagnetic record as reflecting the predominant axial dipole component of the geomagnetic field, and necessitates the assumption that the geomagnetic field at the Proterozoic–Phanerozoic boundary (Ediacaran–Lower Cambrian) substantially differed from the field of most of the other geological epochs. In order to explain the observed paleomagnetic record, we propose a hypothesis suggesting that the geomagnetic field at the Precambrian–Cambrian boundary had an anomalous character. This field was characterized by the presence of two alternating quasi-stable generation regimes. According to our hypothesis, the magnetic field at the Precambrian–Cambrian boundary can be described by the alternation of long periods dominated by an axial, mainly monopolar dipole field and relatively short epochs, lasting a few hundred kA, with the prevalence of the near-equatorial or midlatitude dipole. The proposed hypothesis agrees with the data obtained from studies of the transitional fields of Paleozoic reversals (Khramov and Iosifidi, 2012) and with the results of geodynamo numerical simulations (Aubert and Wicht, 2004; Glatzmayer and Olson, 2005; Gissinger et al., 2012).  相似文献   

6.
Summary A statistical model of the geomagnetic field is derived, based on the assumption of an axial geocentric dipole field of strengthH e at the equator perturbed by randomly directed components of constant magnitudeh. The model fits the dispersions found from an analysis of the 1945 field, and the ratioh/H e obtained for this field and from the palaeomagnetic data both average to about 0.4. The model predicts that during reversal of the dipole field, the field intensity falls to between 0.2 and 0.4 of the steady field intensity, and this agrees with estimates made from the palaeomagnetic observations.  相似文献   

7.
8.
Palaeomagnetic results from the Lower Palaeozoic inliers of northern England cover the upper part of the (Middle Ordovician) Borrowdale Volcanic Series (palaeomagnetic pole 208°E, 18°S, A95 = 9.4°), minor extrusive units relating to the Caradoc and Ashgill stages of Ordovician times, intrusive episodes of Middle Ordovician and Middle Silurian to Late Devonian age, and the Shap Granite of Devonian (393 m.y.) age (palaeomagnetic pole 313°E, 33°S, A95 = 5.6°).A complete assessment of Ordovician to Devonian palaeomagnetic data for the British region shows that the pole was nearly static relative to this region for long intervals which were separated by shifts occupying no more than a few millions of years. The mean palaeomagnetic poles are: Ordovician (6°E, 16°S), Lower Silurian (58°E, 16°N), Middle Silurian/Lower Devonian (318°E, 6°N) and Middle/Upper Devonian (338°E, 26°S); the first two shifts separating these mean poles can be explained predominantly in terms of rotational movements of the crustal plate but the last involved appreciable movement in palaeolatitude.Comparison of Lower Palaeozoic palaeomagnetic data from the British region with contemporaneous data from continental Europe/North America on the Pangaean reconstruction reveals a systematic discrepancy in palaeolatitude between the two regions prior to Middle Devonian times. This discrepancy was eliminated during a few millions of years of Lower/Middle Devonian times (ca. 395 m.y.) and can be explained in terms of ca. 3500 km of sinistral strike-slip movement close to the line of the orthotectonic Caledonides. This motion is linked both in time and place to the impingement of the Gondwanaland and Laurentian supercontinents during the Acadian orogeny; this appears to have displaced the British sub-plate until it became effectively locked between the Baltic and Laurentian regions. Although movement of the dipole field relative to the British region in Lower Palaeozoic times is now well defined, nearly one fifth of the total data show that the geomagnetic field was more complex than dipolar during this interval. Until the significance of these anomalies is fully resolved, the tectonic model derived from the palaeomagnetic data cannot be regarded as unambiguous.  相似文献   

9.
The results of palaeomagnetic surveys of Mesozoic and Tertiary rocks from Gondwanaland can be reconciled with the results of modelling the evolution of oceanic floors from analyses of marine magnetic anomalies. Previous inconsistencies were mainly due to errors apparent in the Australian Cenozoic palaeomagnetic data. An alternative Tertiary apparent polar wander path (APWP) has been constructed from an analysis of all published laterite and weathered profile data. Palaeomagnetic results for Africa, Antarctica, Australia, India, Madagascar and South America are compared for rotations corresponding to marine magnetic anomalies 16, 22, 28, 34 and M1 and for “fit”. India has been selected as the reference continent since it provides the most detailed APWP having drifted about 50° of latitude since breakup.  相似文献   

10.
The conventional corrections for bedding dip in palaeomagnetic studies involve either untilting about strike or about some inclined axis—the choice is usually governed by the perceived fold hinge orientation. While it has been recognised that untilting bedding about strike can be erroneous if the beds lie within plunging fold structures, there are several types of fold which have plunging hinges, but whose limbs have rotated about horizontal axes. Examples are interference structures and forced folds; restoration about inclined axes may be incorrect in these cases. The angular errors imposed upon palaeomagnetic lineation data via the wrong choice of rotation axis during unfolding are calculated here and presented for lineations in any orientation which could be associated with an upright, symmetrical fold. This extends to palaeomagnetic data previous analyses which were relevant to bedding-parallel lineations. This numerical analysis highlights the influence of various parameters which describe fold geometry and relative lineation orientation upon the angular error imparted to lineation data by the wrong unfolding method. The effect of each parameter is described, and the interaction of the parameters in producing the final error is discussed. Structural and palaeomagnetic data are cited from two field examples of fold structures which illustrate the alternative kinematic histories. Both are from thin-skinned thrust belts, but the data show that one is a true plunging fold, formed by rotation about its inclined hinge, whereas the other is an interference structure produced by rotation of the limbs about non-parallel horizontal axes. Since the angle between the palaeomagnetic lineations and the inclined fold hinge is equal on both limbs in the former type of structure, but varies from limb to limb in the latter, a simple test can be defined which uses palaeomagnetic lineation data to identify rotation axes and hence fold type. This test can use pre- or syn-folding lineations and could be useful in areas of non-coaxial folding.  相似文献   

11.
Palaeomagnetic and mineral magnetism measurements have been carried out on two cores from Lake Vuokonjarvi in Finnish Karelia. The sediment probably covers 5000 years of continuous deposition at a mean sedimentation rate of about 0.8 mm/yr.The magnetic declination exhibits fluctuations of similar amplitude(~20°) and character to those recorded in northern England and northern Ireland. Magnetic inclination variations are of higher amplitude(~15°) than those found in Britain. Matching the palaeomagnetic patterns with the dated British master curves permits an estimate of the rate of deposition of the Finnish sediments, which is suggested to be more reliable than estimates from radiocarbon dating of the Vuokonjarvi sediment.The stable natural remanence is shown to be carried by fine-grained magnetite and titanomagnetite grains and to have grown by post-depositional alignment during a period of the order of 100 years. Laboratory dehydration of the sediment results in loss of around 40% of the stable natural remanence. Such behaviour is also found in lake sediments from central and southern Europe and should be considered in interpreting palaeomagnetic data from dried out lake sections and ocean cores.  相似文献   

12.
Summary In order to obtain basic palaeomagnetic data on Upper Carboniferous, Permian and Triassic sediments collected from the NW Bulgaria, laboratory stability tests were extended from A.C. and thermal treatments to studies of mineral phase changes and to investigations of changes of magnetic anisotropy during laboratory procedures. Laboratory criteria were found which permitted to distinguish samples suitable for palaeomagnetic analyses from those representing rocks totally or almost totally chemically reworked during their history. Palaeomagnetic directions and pole positions derived from Stephanian, Lower Permian and Triassic rocks from the southern margin of the Moesian Platform are compatible with the values obtained for the tectonically stable North-European Platform.  相似文献   

13.
古地磁多磁成分的分离技术   总被引:1,自引:4,他引:1  
在古地磁的研究中,如何从复杂多样的退磁数据中获取能够代表岩石形成时期的古地磁场方向的原生剩磁组分,是关系到古地磁数据是否可靠、古地磁结果是否令人信服的根本环节之一,因此,如何充分利用实验室退磁数据所提供的各种信息去获取同源磁化的一组样品的原生剩磁方向是一个很有研究价值的问题。在总结前人的各种定性或定量的多磁成分分离技术的基础上,详细讨论了重磁化大圆的极和线性坳陷区内退磁平面的极的最佳拟合大圆的最小二乘拟合法,提出了综合使用主成分分析法、线性谱分析法、重磁化圆法以及退磁平面及重磁化大圆的二次拟合法,对来自同源磁化的一组样品进行系统分析,以获取一组样品的特征剩磁方向的方法,并应用于实际研究工作中。  相似文献   

14.
本文通过处理琼东南盆地现有的重磁数据资料,得到琼东南盆地重磁特征,并采用三维Parker法进行重磁基底深度的反演,获得琼东南盆地的重力基底深度变化在1~11 km之间,磁力基底深度变化在5~11 km之间,结合地震剖面的重磁震联合反演结果和钻井资料推断琼东南盆地的基底岩性主要以酸性花岗岩和中性安山岩为主,少量陆相中生界地层.琼东南盆地的基底演化表现为早期主要与古特提斯洋的演化相关,晚期则与太平洋板块的俯冲密切相关.  相似文献   

15.
A palaeomagnetic pole is established at 25.1°N 273.9°E (dp = 10.6°, dm = 14.3°) from the norite-charnockite complex at Angmagssalik, emplaced at 1800 Ma. A somewhat older palaeomagnetic pole at 4.2°S 246.7°E (dp = 4.2°, dm = 8.3°) is obtained from Archaean gneisses close to the northern boundary of the Nagssugtoqidian mobile belt; reversals of magnetization are present here. Both magnetizations were imposed during slow cooling following the (late) Nagssugtoqidian metamorphism.In general the gneisses, dyke amphibolites and granite of the Nagssugtoqidian mobile belt are unstably magnetized; their magnetization is attributable to the Earth's present field, and is often extremely weak.A pseudotachylyte within the Archaean gneisses has had a long cooling history. A fragment of the remanence reflects the magnetization characteristic of the Archaean gneisses, whereas most of the magnetization corresponds to a palaeomagnetic pole near that of the Angmagssalik complex. The pseudotachylyte is much older than its magnetizations.An apparent polar wander path is presented for Greenland at ca. 1750 Ma based on the above results and data from west Greenland.  相似文献   

16.
A new analysis of palaeomagnetic data for igneous rocks from Deception Island, 25 de Mayo Island (King George Island) and Cape Spring, are given.K-Ar age determinations indicate that most of the igneous samples from 25 de Mayo Island included in the palaeomagnetic study are of Late Mesozoic/Early Tertiary age. The significance of these palaeomagnetic-radiometric data on the hypothesis of oroclinal bending of the Antarctic Peninsula and on the apparent polar movement of Antarctica is discussed.The positions of palaeomagnetic poles for the Andean igneous complex indicate that there has not been any apparent post-Late Cretaceous/Early Tertiary oroclinal bending in the Antarctic Peninsula from 74°S to 62°S.A comparison of the positions of palaeomagnetic poles for Antarctica and Australia suggests that the direction of apparent polar movement relative to Antarctica reversed after the Miocene.  相似文献   

17.
中国大陆现今水平形变动态特征   总被引:2,自引:0,他引:2       下载免费PDF全文
2001~2004大陆水平应变场大致沿玉树、阿尼玛沁、鲜水河、小江等断裂带形成一条由东西走向转为南北走向的应变高值带.2004~2007高值带向局部收缩,并维持前期高值.新疆于田MS7.3、四川汶川MS8.0分别位于该高值带的东段、西段剪应变梯度带上,具备大尺度形变背景.分析认为昆仑山MS8.1对青藏高原内部块体、川滇块体的相对运动产生重大影响,导致震中两侧一系列断裂带附近区域水平差异运动处于较高水平,印尼MS8.7地震则有利于上述区域应变能进一步积累.此外,2001~2004、2004~2007应变分布特征总体从无序趋向有序,体现构造应力场经历调整与再积累过程.现阶段太平洋板块、菲律宾板块俯冲作用可能有所增强.  相似文献   

18.
We obtain the preliminary result of crustal deformation velocity field for the Chinese continent by analyzing GPS data from the Crustal Motion Observation Network of China (CMONOC), particularly the data from the regional networks of CMONOC observed in 1999 and 2001. We delineate 9 technically active blocks and 2 broadly distributed deformation zones out of a dense GPS velocity field, and derive block motion Euler poles for the blocks and their relative motion rates. Our result reveals that there are 3 categories of deformation patterns in the Chinese continent. The first category, associated with the interior of the Tibetan Plateau and the Tianshan orogenic belt, shows broadly distributed deformation within the regions. The third category, associated with the Tarim Basin and the region east of the north-south seismic belt of China, shows block-like motion, with deformation accommodated along the block boundaries only. The second category, mainly associated with the borderland of the Tibetan Plateau, such as the Qaidam, Qilian, Xining (in eastern Qinghai), and the Diamond-shaped (in western Sichuan and Yunnan) blocks, has the deformation pattern between the first and the third, i.e. these regions appear to deform block-like, but with smaller sizes and less strength for the blocks. Based on the analysis of the lithospheric structures and the deformation patterns of the regions above, we come to the inference that the deformation modes of the Chinese continental crust are mainly controlled by the crustal structure. The crust of the eastern China and the Tarim Basin is mechanically strong, and its deformation takes the form of relative motion between rigid blocks. On the other hand, the northward indentation of the Indian plate into the Asia continent has created the uplift of the Tibetan Plateau and the Tianshan Mountains, thickened their crust, and raised the temperature in the crust. The lower crust thus has become ductile, evidenced in low seismic velocity and high electric conductivity observed. The brittle part of the crust, driven by the visco-plastic flow of the lower crust, deforms extensively at all scales. The regions of the second category located at the borderland of the Tibetan Plateau are at the transition zone between the regions of the first and the third categories in terms of the crustal structure. Driven by the lateral boundary forces, their deformation style is also between the two, in the form of block motion and deformation with smaller blocks and less internal strength.  相似文献   

19.
福建GPS台位移时间序列分析   总被引:1,自引:0,他引:1  
使用福建GPS台网2004年3月到2006年9月的连续观测资料,经数据处理获得时间序列分析结果。初步估算了各测站的运动速率和定位精度,水平向在1.5~3.2 mm,垂直向在6.6~8.2 mm。选取区域相对水平位移变化量较小的5个台站组成的一组稳定点作为基准,讨论了各测点的相对运动速率及时空变化特征。从水平位移结果分析表明,现今福建地壳运动的趋势仍十分缓慢且整体较为平稳,与华南地块同中国大陆其他地区比较呈相对稳定相吻合。  相似文献   

20.
中国陆域居里等温面深度特征   总被引:14,自引:1,他引:13       下载免费PDF全文
基于最新编制的1/100万全国航陆域磁异常图数据,采用功率谱法对中国陆域的居里点深度进行了估算,获得了8004个居里点深度,完成了中国陆域居里面深度图的编制,首次完整的展现了中国陆域的居里面起伏特征.研究表明,居里面在稳定地块表现为坳陷,埋深为28~45km,如塔里木盆地,准噶尔盆地,柴达木盆地,可可西里—巴颜喀拉坳陷区,扬子盆地区,华北盆地区,松辽盆地,二连盆地,巴彦浩特—武威—潮水盆地,珠江口—琼东南盆地等.华北盆地区的居里面深度与塔里木陆块和扬子陆块有较大的差异,相对偏浅,这可能与华北陆块遭受了复杂的后期改造,导致软流圈上隆和岩石圈减薄有关.可可西里—巴颜喀拉地块是青藏高原北部发育的呈NWW向展布的巨型居里面坳陷带,其原因是该地区发育大面积的三叠系沉积地层和较少的岩浆活动,这些稳定的地块都具有莫霍面隆起和居里面坳陷的特征.在活动频繁的造山带居里面以隆起为特征,埋深为18~26km,如东北部山岭区、西北部山岭区、秦岭—大别山地区、西昆仑—西藏—三江—康滇地区、东南沿海地区等.这反映了构造运动及岩浆活动所引起的地壳地温梯度的差异.根据我国816个大地热流数据,对比研究居里面深度与地温梯度和大地热流的关系,结果显示居里面深度与热流值并非线性关系,居里面深度大于30km时,热流值较低,均小于100mW·m~(-2);在居里面深度小于30km的地区,热流值变化范围较大.并且,随着热流值的升高,热流值有向中国东部沿海、藏南—三江地区、秦岭—大别地区、辽东等集中的趋势,这些地区都呈现出居里面隆起的特征,是地热资源勘探开发的重要远景区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号