首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The common reflection surface (CRS) stack method is known as a generalized stacking velocity analysis tool and was originally introduced as a data-driven method to simulate zero-offset sections. However, this method has some difficulties in imaging complex structures and low-quality data. The problem of conflicting dips is one of the drawbacks of the CRS method addressed in many studies. The common diffraction surface (CDS) method was explicitly introduced to overcome this problem. In one study, the problem was resolved by combination of the CDS method and the common offset CRS method. The method was called the common offset CDS method showed successful application on improving image quality in semi-complex media. In this study, we combined the partial CRS with the CDS to derive the partial CDS for more efficient resolve of the conflicting dips problem. In the partial CDS, thresholds in the angle spectrum were removed for full contribution of all possible dips to have volume of operators for a sample point. The aperture definition in the partial CDS is the same as in the partial CRS, where an offset and time variant aperture is used. The new method was applied on a simple synthetic data set with much diffraction points imbedded in the model. Then it was applied to a semicomplex data set to enhance the body of mud volcanoes and faults. For better comparison, it was applied to two more real data sets from a complex overthrust zone to improve the seismic quality and remove the geological ambiguities in the interpretation. In the synthetic data example, more conflicting dips were resolved than in the other methods. In all real data examples, the enhanced partial CDS data were depth-migrated to compare them with the pre-stack depth migration of partial CRS gathers. More details of the geological structures can be observed in the new results.  相似文献   

2.
Recently, the interest in PS-converted waves has increased for several applications, such as sub-basalt layer imaging, impedance estimates and amplitude-versus-offset analysis. In this study, we consider the problem of separation of PP- and PS-waves from pre-stacked multicomponent seismic data in two-dimensional isotropic medium. We aim to demonstrate that the finite-offset common-reflection-surface traveltime approximation is a good alternative for separating PP- and PS-converted waves in common-offset and common shot configurations by considering a two-dimensional isotropic medium. The five parameters of the finite-offset common-reflection-surface are firstly estimated through the inversion methodology called very fast simulated annealing, which estimates all parameters simultaneously. Next, the emergence angle, one of the inverted parameters, is used to build an analytical separation function of PP and PS reflection separation based on the wave polarization equations. Once the PP- and PS-converted waves were separated, the sections are stacked to increase the signal-to-noise ratio using the special curves derived from finite-offset common-reflection-surface approximation. We applied this methodology to a synthetic dataset from simple-layered to complex-structured media. The numerical results showed that the inverted parameters of the finite offset common-reflection-surface and the separation function yield good results for separating PP- and PS-converted waves in noisy common-offset and common shot gathers.  相似文献   

3.
In the application of a conventional common‐reflection‐surface (CRS) stack, it is well‐known that only one optimum stacking operator is determined for each zero‐offset sample to be simulated. As a result, the conflicting dip situations are not taken into account and only the most prominent event contributes to any a particular stack sample. In this paper, we name this phenomenon caused by conflicting dip problems as ‘dip discrimination phenomenon’. This phenomenon is not welcome because it not only leads to the loss of weak reflections and tips of diffractions in the final zero‐offset‐CRS stacked section but also to a deteriorated quality in subsequent migration. The common‐reflection‐surface stack with the output imaging scheme (CRS‐OIS) is a novel technique to implement a CRS stack based on a unified Kirchhoff imaging approach. As far as dealing with conflicting dip problems is concerned, the CRS‐OIS is a better option than a conventional CRS stack. However, we think the CRS‐OIS can do more in this aspect. In this paper, we propose a workflow to handle the dip discrimination phenomenon based on a cascaded implementation of prestack time migration, CRS‐OIS and prestack time demigration. Firstly, a common offset prestack time migration is implemented. Then, a CRS‐OIS is applied to the time‐migrated common offset gather. Afterwards, a prestack time demigration is performed to reconstruct each unmigrated common offset gather with its reflections being greatly enhanced and diffractions being well preserved. Compared with existing techniques dealing with conflicting dip problems, the technique presented in this paper preserves most of the diffractions and accounts for reflections from all possible dips properly. More importantly, both the post‐stacked data set and prestacked data set can be of much better quality after the implementation of the presented scheme. It serves as a promising alternative to other techniques except that it cannot provide the typical CRS wavefield attributes. The numerical tests on a synthetic Marmousi data set and a real 2D marine data set demonstrated its effectiveness and robustness.  相似文献   

4.
To better image deformation structures within the inner accretionary wedge of the Nankai Trough, Japan, we apply common reflection angle migration to a legacy two-dimensional seismic data set acquired with a 6 km streamer cable. In this region, many seismic surveys have been conducted to study the seismogenic zone related to plate subduction. However, the details of the accreted sediments beneath the Kumano forearc basin are still unclear due to the poor quality of seismic images caused by multiple reflections, highly attenuated signals, and possibly complex geological structures. Generating common image gathers in the subsurface local angle domain rather than the surface offset domain is more advantageous for imaging geological structures that involve complex wave paths and poor illumination. By applying this method, previously unseen structures are revealed in the thick accreted sediments. The newly imaged geometric features of reflectors, such as the folds in the shallow part of the section and the deep reflectors with stepwise discontinuities, imply deformation structures with multiple thrust faults. The reflections within the deep accreted sediments (approximately 5 km) are mainly mapped to far angles (30°–50°) in the common reflection angles, which correspond to the recorded offset distances greater than 4.5 km. This result indicates that the far offset/angle information is critical to image the deformation structures at depth. The new depth image from the common reflection angle migration provides seismic evidence of multiple thrust faults and their relationship with the megathrust fault that is essential for understanding the structure and evolution of the Nankai Trough seismogenic zone.  相似文献   

5.
波动方程有限差分法叠前深度偏移   总被引:7,自引:1,他引:6       下载免费PDF全文
从地震叠前反射椭圆方程出发,本文导出了基于波动理论的共偏移距地震剖面叠前偏移方程,然后对此方程进行参考速度场中的浮动坐标变换,获得了叠前深度偏移方程.为了解决叠前衍射方程中含有对深度的二阶导数引起波场延拓成像的不适定问题,文中采用低阶偏微分方程组近似描述全上行波的办法,得到了衍射方程的高阶近似方程,并给出了计算衍射方程和折射方程稳定的差分格式,最后用此方法编制的程序对某一碳酸岩地区的地震资料进行了试处理,效果良好.  相似文献   

6.
We modified the common-offset–common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS operator is based on hyperbolas, thus it fits events with hyperbolic traveltimes such as reflection events in prestack data. Conversely, ground roll is linear in the common-midpoint (CMP) and common-shot gathers and can be distinguished and attenuated by the COCRS operator. Thus, we search for the dip and curvature of the reflections in the common-shot gathers prior to the common-offset section. Because it is desirable to minimize the damage to the reflection amplitudes, we only stack the multicoverage data in the ground-roll areas. Searching the CS gathers before the CO section is another modification of the conventional COCRS stacking. We tested the proposed method using synthetic and real data sets from western Iran. The results of the ground-roll attenuation with the proposed method were compared with results of the f–k filtering and conventional COCRS stacking after f–k filtering. The results show that the proposed method attenuates the aliased and nonaliased ground roll better than the f–k filtering and conventional CRS stacking. However, the computation time was higher than other common methods such as f–k filtering.  相似文献   

7.
共偏移距道集平面波叠前时间偏移与反偏移   总被引:4,自引:1,他引:3       下载免费PDF全文
在Dubrulle提出的共偏移距道集频率波数域叠前时间偏移的基础上,提出了共偏移距道集频率波数域叠前时间偏移与反偏移一对共轭算子.讨论了该对算子的变孔径实现过程.并把该对共轭算子串连起来实现了叠前地震数据的规则化处理.指出最小二乘意义下的叠前地震数据规则化会得到更好的效果.v(z)介质模型和Marmousi模型的数值试验结果表明,方法理论正确、有效.  相似文献   

8.
The method of common reflection surface (CRS) extends conventional stacking of seismic traces over offset to multidimensional stacking over offset‐midpoint surfaces. We propose a new form of the stacking surface, derived from the analytical solution for reflection traveltime from a hyperbolic reflector. Both analytical comparisons and numerical tests show that the new approximation can be significantly more accurate than the conventional CRS approximation at large offsets or at large midpoint separations while using essentially the same parameters.  相似文献   

9.
The finite-offset (FO) common-reflection-surface (CRS) stack has been shown to be able to handle not only P-P or S-S but also arbitrarily converted reflections. It can provide different stack sections such as common-offset (CO), common-midpoint (CMP) and common-shot (CS) sections with significantly increased signal-to-noise ratio from the multi-coverage pre-stack seismic data in a data-driven way. It is our purpose in this paper to demonstrate the performance of the FO CRS stack on data involving converted waves in inhomogeneous layered media. In order to do this we apply the FO CRS stack for common-offset to a synthetic seismic data set involving P-P as well as P-S converted primary reflections. We show that the FO CRS stack yields convincing improvement of the image quality in the presence of noisy data and successfully extracts kinematic wavefield attributes useful for further analyses. The extracted emergence angle information is used to achieve a complete separation of the wavefield into its P-P and P-S wave components, given the FO CRS stacked horizontal and vertical component sections.  相似文献   

10.
声波反射成像测井能够获得井眼周围构造的重要信息,然而,由于接收到的反射波信号远小于井眼模式波、信噪比较低,且每次发射只有8道接收,因此应用常规的偏移成像处理方法成像效果不好。本文应用一种基于散射理论的等效偏移距偏移方法,对声波反射成像测井模拟数据及现场数据进行偏移处珲。结果表明,与常规叠后深度偏移方法相比,等效偏移距方法可以有效提高覆盖次数,对于低信噪比的声波反射测井资料可以获得较好的井旁构造成像效果。  相似文献   

11.
深反射地震剖面法为了获取深部结构特征常常采取大的偏移距采集数据.目前公开发表的相关资料中,鲜有利用深反射地震炮集数据获取近地表的结构特征.为此,本文通过正演测试了相关数据处理流程,即利用有限差分正演了起伏地表模型的大偏移距地震单炮弹性波场特征,通过共检波点域面波信号F-K频谱叠加构建新方法,从深反射地震数据集中提取了高品质的多阶面波频散曲线,再利用多阶面波联合反演获得了近地表的结构特征.在前述正演流程基础上,利用跨越班公湖—怒江缝合带的SinoProbe深反射地震剖面中的实际炮集数据,求取了基阶和一阶瑞利波频散曲线,联合反演后得到近地表横波速度结构.该结果与初至波走时反演获取的纵波速度结构具有较好的一致性,且在近地表的浅层分辨率较纵波速度结构特征更高,而更与已有地质认识相吻合.本文提供的相关数据处理流程表明利用深反射地震炮集数据,也能够获取近地表浅层的横波速度结构.  相似文献   

12.
地震反射走时拾取是反射走时层析成像的首要环节。本文提出一种基于共炮点域、共检波点域、共中心点域、共偏移距域的多域人机交互反射波走时拾取方法。通过分析地震记录在不同域的特征,选择最佳的域进行反射波同相轴的拾取,在人机交互的环境下采用人工和计算机相结合,提高拾取的准确度和效率。利用Qt语言编程实现了地震资料的多域显示及反射波走时多域人机交互拾取软件。合成地震记录和实际地震资料的走时拾取结果表明,该软件操作灵活方便,对复杂地震资料的反射波走时拾取取得良好效果。   相似文献   

13.
横向线性变速介质中的共炮检距波场延拓   总被引:10,自引:3,他引:7       下载免费PDF全文
对横向变速介质中振幅保真的共炮检距波场延拓方法进行了研究.在横向线性变速条件下,通过引入新的偏微分方程,给出了该介质中振幅保真的波场延拓方程.这一波场延拓方程是均匀介质中振幅保真延拓方程在横向线性变速介质中的推广.首先由线性变速介质中地震波射线的走时函数,证明了该延拓方程的运动学等价方程对横向线性变速介质中的所有炮检距和各种反射层倾角都适用.然后,通过对模型数据的计算并与传统的DMO方法比较,证明了这一波场延拓方程能很好地保持波前的振幅特性,特别是能保持焦散点的波前的特性.  相似文献   

14.
基于照明补偿的单程波最小二乘偏移   总被引:7,自引:6,他引:1       下载免费PDF全文
最小二乘偏移是一种基于反射地震数据与地下反射率间线性关系而建立起来的地震数据线性反演方法,相比常规偏移成像具有更好的保幅性能.本文提出了一种基于照明补偿的单程波最小二乘偏移方法,首先利用单程波方程的稳定Born近似广义屏波场传播算子构建反射地震数据与地下反射率间的线性算子,然后再应用线性最优化方法求解最小二乘偏移所对应的线性反问题.在迭代求解最优化问题的过程中,以地震波场的地下照明强度作为迭代反演的预条件算子加快迭代的收敛速度.单程波传播过程中考虑了速度分界面产生的透射效应,并用单极震源代替常规偏移中的偶极震源.把本文提出的方法应用于层状理论模型和Marmosi模型地震数据的数值试验中均取得了理想的结果.  相似文献   

15.
16.
倾角分解共反射面元叠加方法   总被引:13,自引:4,他引:9       下载免费PDF全文
共反射面元(Common Reflection Surface)叠加是一种独立于宏观速度模型的零偏移距剖面成像方法,传统的CRS叠加实现是以数据驱动的方式对属性参数进行自动搜索并对其进行优化合成相应的CRS叠加算子,通过该算子进行叠加能够得到信噪比和连续性更高的零偏移距剖面.但是数据驱动的实现方式带来了不可避免的“倾角歧视现象”,它造成了弱有效反射信号损失和运动学特征失真的问题.本文提出的倾角分解CRS叠加方法成功解决了上述问题,使CRS叠加方法更具实用价值.  相似文献   

17.
共反射面道集偏移速度建模   总被引:11,自引:0,他引:11       下载免费PDF全文
共反射面(CRS)叠加是一种与宏观速度模型无关,仅依赖于近地表速度的地震成像方法.其通过地震三参数的优化实现地震成像.本文推导了基于CRS叠加得出的优化三参数与偏移速度之间的解析关系,提出了在CRS道集通过优化三参数实现速度估计的CRS道集偏移速度建模方法.模型试算表明,这种速度建模方法效率较高,速度分析精度取决于优化三参数的精度,适于较复杂地质体的速度建模.   相似文献   

18.
地震绕射波是地下非连续性地质体的地震响应,绕射波成像对地下断层、尖灭和小尺度绕射体的识别具有重要的意义.在倾角域共成像点道集中,反射波同相轴表现为一条下凸曲线,能量主要集中在菲涅耳带内,绕射波能量则比较发散.由于倾角域菲涅耳带随偏移距变化而存在差异,因此本文提出一种在倾角-偏移距域道集中精确估计菲涅耳带的方法,在各偏移距的倾角域共成像点道集中实现菲涅耳带的精确切除,从而压制反射波.在倾角-偏移距域道集中还可以分别实现绕射波增强,绕射波同相轴相位校正,因此能量弱的绕射波可以清晰地成像.在倾角域共成像点道集中,反射波同相轴的最低点对应于菲涅耳带估计所用的倾角,因此本文提出一种在倾角域共成像点道集中直接自动拾取倾角场的方法.理论与实际资料试算验证了本文绕射波成像方法的有效性.  相似文献   

19.
Offset continuation is a technique that was recently proposed for the dip moveout correction. This correction can be carried out in the time-wavenumber domain using a proper partial differential equation that links sections with different offset. It has been shown that a single spike in a common-offset section—corresponds to a semi-elliptically shaped reflector with foci located at the source and receiver in the section migrated after dip moveout correction. The sections that result after offset continuation, stack, and migration are thus a superposition not only of semicircles, but also of semi-ellipses with different lengths of axes. This effect smears the migration alias-noise which, without offset continuation, would appear as migration circles not close enough together to interfere destructively. Offset continuation can improve the quality of seismic sections in several ways: —the velocity analyses are more readable, less dispersed and dip independent; diffraction tails arrive with the same normal moveout velocity as the apex and thus diffraction-noise can be “stacked out”; —noise produced by aliasing in the migrated section is reduced. In this paper we give a practical and conceptual interpretation of the offset continuation method, with a generalization to three-dimensional volumes of data. A critical examination of several synthetic and field data examples shows the actual possibilities and advantages of offset continuation.  相似文献   

20.
局部倾角约束最小二乘偏移方法研究   总被引:6,自引:5,他引:1       下载免费PDF全文
随着石油勘探难度的进一步加大,地震数据往往存在采样不规则、地震道缺失等现象,如果不对其进行处理,会对后续的地震成像产生影响,引入成像噪音.针对这一问题,一般是通过地震道插值或数据规则化对叠前数据进行处理,然后采用常规的偏移方法进行成像,本文则是将地震成像看作最小二乘反演问题,在共成像点道集引入平滑算子,在共偏移距/角度道集引入平面波构造算子(PWC)进行约束,通过预条件共轭梯度法使得反偏移后数据与输入数据之间的误差达到最小,最终得到信噪比更高、振幅属性更为可靠的成像结果.理论模型和实际资料处理表明,本文方法不仅可以有效压制数据不规则对成像产生的噪音,而且具有更高的成像精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号