首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes the distribution patterns of interstitial polychaetes along morphodynamic gradients on six exposed sandy beaches in Santa Catarina and Paraná (South Brazil). Three random transects were sampled at two points on each beach, one at the swash and another at the surf zone, in winter and summer conditions. Six sediment replicates were collected at each sampling point using a corer of 4.6 cm internal diameter that removed 10 cm into the sediment. Abundance and composition of interstitial polychaete were correlated to wave height, slope, grain size, CaCO3, chlorophyll a , omega indexes, temperature and relative tide range using a canonical correspondence analysis (CCA). A factorial ANOVA showed that taxa richness, mean density and Shannon's diversity were significantly higher at the reflective beaches, but average values differ significantly between transects and these differences change according to the beach zones on both sampling dates. PERMANOVA showed that polychaete associations differ among transects according to the beach zones. The composition of interstitial polychaete associations was significantly correlated to beach morphodynamics and features (P < 0.01). Polychaete associations of reflective beaches were more diverse than in other morphodynamic states. Intermediate beaches may also sustain diverse associations due to temporal variability of the morphodynamic patterns. Beaches presenting extreme dissipative morphodynamics and compacted sediments appear to be unfavourable for the occurrence of interstitial polychaetes.  相似文献   

2.
Sandy beaches constitute nearly 46 per cent of the coastline between the Cape of Good Hope and the Orange River along the west coast of South Africa. In addition, shores of mixed sand and rock make up a further 24 per cent although these are not considered here. Sandy beaches are therefore the dominant shore type along the coastline, and most are subject to high wave energy. There are two main ecological beach types along the study coastline: those that receive a high input of organic matter in the form of stranded kelp and those that do not. Neither type appears to support large stocks of surf-zone phytoplankton, but despite this, even beaches receiving no stranded kelp bear high standing stocks of infauna. This fact may be related to the location of the beaches alongside a highly productive upwelling region. Existing ecological information on sandy beaches along the Benguela coastline is reviewed and integrated to form a composite picture of present understanding of these beaches. The definition of a sandy beach includes not only the sandy intertidal zone but also the surf zone and sand dunes associated with it. Sandy beaches are characterized by the absence of attached primary producers, although in some parts of the world primary production by surf-zone phytoplankton has been found to be important. Secondary production by the infauna usually depends on matter imported into the system, except on beaches supporting important stocks of surf-zone phytoplankton. Imported organic matter is retained by beach sediments which act as a physical sieve, filtering large quantities of water with each wave and tide.  相似文献   

3.
Meiobenthic data from two microtidal sandy beaches of the eastern Mediterranean (Crete, Greece) were used to investigate patterns of both alpha and beta diversity in space and time. Copepod assemblages and environmental variables related to sediment characteristics, morphodynamics and food were studied over a year at four distinct habitats at each beach; the retention, resurgence and saturation zones of Salvat's intertidal scheme (midlittoral zone), and the surf zone of the sublittoral. Αlpha diversity analysis indicated similar species richness at both beaches when the whole 13-month data set was considered but was higher at the sheltered site when each sampling period was examined separately. Both beaches supported higher diversity in the sublittoral zone. Species richness increased seawards at the midlittoral zone of the sheltered site whereas, no pattern was evident at the exposed site, where the intense hydrodynamic conditions homogenized the sediments. Beta diversity increased markedly towards the sublittoral, indicating greater differences in alpha diversity between the sublittoral and the midlittoral zone. Species turnover was more variable at the exposed beach and at the most landward stations, where environmental conditions change often between extremes. A proportion of the variation in alpha diversity was explained by food availability at both beaches and additionally by grain size at the sheltered site. However, no environmental variable explained beta diversity patterns. Although the results of our study support the hypothesis of Multicausal Environmental Severity proposed for sandy beach macrofauna, we believe the classic Intermediate Disturbance Hypothesis is a more appropriate framework for the meiofauna communities of the studied sites.  相似文献   

4.
Surf zones are highly dynamic, physically stressful parts of sandy beach ecosystems. The high wave energy of surf zones has in the past severely hampered ecological surveys of these systems. Here we used a novel technique to collect fauna from this environment along the Dutch coast. A large vehicle in the form a tripod that drives along the sandy seafloor and supports a sampling platform 11 m above the water line can collect both infaunal (grabs) samples and pull beam trawls for epibenthos. The distribution and diversity of macrofauna were studied at different depths in the surf zone along the Dutch coast. Species diversity and abundance increased with increasing depth of the water column. This increase was especially noticeable on the seaward side of the outer breaker bar. Within the surf zone, in the trough between the two breaker bars, there were spots of high diversity and abundance of macrobenthic infauna. Moreover, the area is also important for epibenthic and fish species, like the commercially important flatfish sole. Spatial patterns of species richness and abundance across an onshore-offshore gradient from the beach to seawards of the breakers suggest the presence of faunal zonation in this environment. The high abundance recorded in troughs was primarily caused by patches of juvenile Sand mason Lanice conchilega. The management implications of these results are that we suggest to protect the surf zone, including the trough between the two breaker bars, as a potential area of high diversity and abundance and to reconsider the objectives of the EU-Habitat Directive and the Water Framework Directive for the coastal area.  相似文献   

5.
It is known that the fauna of the exposed sandy beaches are primarily controlled by physical variables; but how these variables operate along and across the beach still remains fairly under discussion. In our study, we sampled a range of exposed sandy beaches along the Northwest coast of Spain to determine the relationship between the principal physical variables of the beaches (including beach morphodynamic state), and the macrofaunal community. The fauna of these beaches comprise truly marine species along the intertidal zone as well as semi-terrestrial species in the upper and supratidal environments. These two groups respond in a different manner to the physical environment. The first group is directly controlled by the morphodynamic state of the beach, and variations in the physical environment; the second group is not clearly affected by these physical conditions. In this case, other variables such as food availability and the human uses of the upper limits of the beach seem to be more relevant in explaining the patterns observed in the macrofaunal community.  相似文献   

6.
The benthic faunal spectrum including bacteria, protozoans, meiofauna, wrack epifauna and macrofauna, was quantitatively surveyed on two modally reflective, moderate energy, Western Australian beaches. The more exposed beach had coarser sand, no intertidal macrofauna and a poor interstitial fauna. The less exposed beach had a large deposit of wrack totalling 161 kg m?1 dry mass concentrated on the lower shore. The amphipod Allorchestes compressa was abundant in the fresh wrack comprising most of the macrofauna. There were also fairly abundant small epifauna on the wrack. Dry biomass of macrofauna, epifauna, meiofauna, protozoans and bacteria was 0, 0, 15, 4 and 180 g m?1 on the more exposed beach and 160, 3, 112, 9 and 901 g m?1 on the less exposed beach with wrack. On the latter beach there was an inverse correlation between meiofaunal densities and the densities of protozoans and bacteria, suggesting grazing by the former on the latter. On both beaches meiofauna was concentrated in the mid- to upper beach, protozoans near the surface and bacteria in the mid- to lower beach. It is estimated that bacteria are responsible for most of the secondary production on both beaches.  相似文献   

7.
Sandy beaches have been identified as threatened ecosystems but despite the need to conserve them, they have been generally overlooked. Systematic conservation planning (SCP) has emerged as an efficient method of selecting areas for conservation priority. However, SCP analyses require digital shapefiles of habitat and species diversity. Mapping these attributes for beaches from field data can take years and requires exhaustive resources. This study thus sought to derive a methodology to classify and map beach morphodynamic types from satellite imagery. Since beach morphodynamics is a strong predictor of macrofauna diversity, they could be considered a good surrogate for mapping beach biodiversity. A dataset was generated for 45 microtidal beaches (of known morphodynamic type) by measuring or coding for several physical characteristics from imagery acquired from Google Earth. Conditional inference trees revealed beach width to be the only factor that significantly predicted beach morphodynamic type, giving four categories: dissipative, dissipative-intermediate, intermediate and reflective. The derived model was tested by using it to predict the morphodynamic type of 28 other beaches of known classification. Model performance was good (75% prediction accuracy) but misclassifications occurred at the three breaks between the four categories. For beaches around these breaks, consideration of surf zone characteristics in addition to beach width ameliorated the misclassifications. The final methodology yielded a 93% prediction accuracy of beach morphodynamic type. Overlaying other considerations on this classification scheme could provide additional value to the layer, such that it also describes species’ spatial patterns. These could include: biogeographic regions, estuarine versus sandy beaches and short versus long beaches. The classification scheme was applied to the South African shoreline as a case study. The distribution of the beach morphodynamic types was partly influenced by geography. Most of the long, dissipative beaches are found along the west coast of the country, the south coast beaches are mostly dissipative-intermediate, and the east coast beaches range from short, estuarine pocket and embayed beaches in the former Transkei (south east), to longer intermediate and reflective beaches in KwaZulu-Natal (in the north east). Once combined with the three biogeographic regions, and distinguishing between estuarine and sandy shores, the South African coast comprised 24 different beach types. Representing shorelines in this form opens up potential for numerous spatial analyses that can not only further our understanding of sandy beach ecology at large spatial scales but also aid in deriving conservation strategies for this threatened ecosystem.  相似文献   

8.
Sandy beach/surf‐zone ecosystems are unique environments that, despite the harsh and highly variable hydrodynamic conditions, present a diverse and heterogeneous fauna. However, the dynamics of these ecosystems are currently poorly understood. In this study we tested the hypothesis that surf‐zone assemblages vary with temporal factors such as time of day, tide and tidal height. To test this hypothesis, the surf‐zone community of Bastendorff, a Southern Oregon sandy beach was sampled during the summer of 2006. Samples were collected to (i) describe the smaller, benthic and larger swimming assemblages, (ii) determine whether assemblage compositions, densities, species richness and diversity vary with time of day, tide and tidal height, (iii) explore potential reasons for the variation by correlating environmental factors to the assemblages, and (iv) identify particular species that most strongly exhibit these variations. A hyperbenthic sledge, a sediment corer and a beach seine were used to collect the smaller swimming, benthic and larger swimming fauna, respectively. Sampling occurred during day and night, spring and neap tide, and high, mid and low tide. A total of 76,743 individuals belonging to 105 species were collected. Ninety‐one invertebrate (72,904 individuals), 15 invertebrates (2234 individuals), and 19 invertebrate and vertebrate species (1605 individuals) were collected with the sledge, corer and seine, respectively. Nine species of fish were caught, 98% of which were juveniles. The smaller and larger swimming assemblages varied most strongly with the time of day, suggesting certain species will actively move to the shallow surf‐zone at night. The three assemblages also varied with the tide, potentially due to the larger waves and higher abundance of detached macrophytes observed during spring tides when compared to neap tides, which could push individuals into the surf zone. The benthic assemblage most strongly varied with tidal height and sand grain size, confirming the presence of different faunal zones within Oregon sandy beaches. Finally, several variables of the swimming assemblages varied with temperature and salinity, suggesting that downwelling favorable conditions may have transported species close to shore. Bastendorff presents a complex and diverse surf‐zone community that appears to be influenced by diel species movements, environmental variables such as wave height and abundance of detached macrophytes, and regional oceanographic conditions.  相似文献   

9.
10.
This study describes the macrofauna of the three beaches situated in central Gulf of Gabès (Tunisia): Ouderef, Gabès and Zarrat. The Gulf of Gabès has the largest tides in the Mediterranean and the beaches showed a wide intertidal zone. The beaches were sampled once during the spring low tides of June 2005. A transect was extended at each beach, from above the drift line to below the swash line at five sampled levels; at each level six 0.05 m2 replicates were taken to a depth of 30 cm and sieved through a 1-mm mesh, and the organisms collected and preserved. The three beaches showed a different physical environment. Sediment type was medium sand at the steeper Ouderef beach, fine sands at Gàbes beach, and very fine sands at the flatter Zarrat beach. The total number of species collected was 31: 12 crustaceans, 10 polychaetes, four molluscs and five insects. The supralittoral and mediolittoral zones were very different. The supralittoral zone was dominated by Talitrus saltator and insects. The most abundant mediolittoral species were the amphipod crustacean Bathyporeia guilliamsoniana at Ouderef beach (23069 ind.m−1), the surf clam Donax trunculus at Gabès beach (60711 ind.m−1) and the spionid polychaete Scolelepis mesnili at Zarrat beach (18345.6 ind.m−1).  相似文献   

11.
The spatial and temporal patterns within the surf zone epibenthic assemblages were studied in a coastal fringe of Argentina to determine whether assemblage compositions, abundance, species richness and diversity vary spatially and temporarily. Sampling was conducted seasonally in two sandy beaches over 2 years with a benthic sledge used to collect the fauna in the upper centimeters of soft bottom sediments and the epifauna on the sediment surface. Physical variables were measured in the same coastal sites where biological sampling was conducted. A total of 58 morphospecies were collected. Peracarid crustaceans were the most abundant group. The mysid Pseudobranchiomysis arenae (new genus–new species) (29.73 ± 17.79 ind. per sample) and the isopod Leptoserolis bonaerensis (51.54 ± 22.35 ind. per sample) were the most abundant and common species and were present regularly throughout the sampling period. Differences in the surf zone community composition were found between the beaches; these differences could be related to variation in physical parameters such as sand grain size and wave climate, indicating the possible influence of the morphodynamic state of the beaches on the epibenthic assemblages. A seasonal abundance trend was detected, reflecting the changes in abundance of the two dominant species; the richness pattern was not easily detectable due to the sporadic appearance of non‐resident species in the surf zone, probably due to different causes, including dispersion by entry of water from surrounding areas, littoral currents and storms. The surf zone studied presents a complex and dynamic epibenthic community that appears to be influenced by the morphodynamic state of the beach and the dynamic of non‐resident species.  相似文献   

12.
13.
We analysed the consistence of vertical patterns of distribution (i.e. zonation) for macrofauna at different spatial scales on four intermediate exposed beaches in the North of Portugal. We tested the hypothesis that biological zonation on exposed sandy beaches would vary at the studied spatial scales. For this aim, abundance, diversity and structure of macrobenthic assemblages were examined at the scales of transect and beach. Moreover, the main environmental factors that could potentially drive zonation patterns were investigated. Univariate and multivariate analyses revealed that the number of biological zones ranged from two to three depending on the beach and from indistinct zonation to three zones at the scale of transect. Therefore, results support our working hypothesis because zonation patterns were not consistent at the studied spatial scales. The median particle size, sorting coefficient and water content were significantly correlated with zonation patterns of macrobenthic assemblages. However, a high degree of correlation was not reached when the total structure of the assemblage was considered.  相似文献   

14.
Abstract. Macropetasma africanus is an important component of the nearshore macrofauna in South African marine waters. Juveniles utilize high energy surf zones as nursery and maturation areas before offshore migration to spawning areas. Samples were taken from two surf zone areas and an offshore spawning area over a two year period. Spatial, seasonal, and diel variations in diet, established from stomach content analysis (N = 1020), indicate that M. africanus is an omnivorous feeder with a diet reflecting general food availability in the environment. Five major food groups were identified. Detritus was the most important food group identified in a medium energy surf zone and offshore spawning area. Phytoplankton was the major food group utilized in a high energy surf area characterized by phytoplankton blooms. Crustaceans were an important component of the diet in all three areas sampled and the remains of copepods, ostracods, isopods, amphipods, and mysids were identified. Benthic macrofauna and meiofauna are not important components of the M. africanus diet in the turbulent surf zone areas but appear more important in the offshore area. Feeding behaviour is adapted to turbulent conditions found in surf areas and the passage of food through the foregut is rapid.  相似文献   

15.
The aim of this paper is to study the macrofaunal community dynamics and the biological–environmental interactions in the mid- and sublittoral ecosystems of the microtidal Mediterranean sandy shores. Four sandy beaches, three on the island of Crete and one on the northwest coast of Italy were selected to investigate the spatial and temporal changes in the community structure and the associated environmental variables. The littoral zone, which has not been adequately studied in the Eastern Mediterranean, presents special interest not only from the scientific point of view but also for practical reasons of ecological management. The multivariate techniques revealed that the community pattern of the sandy beach macrofauna is mainly spatial rather than temporal. There are pronounced differences in species composition and abundance of the macrofaunal assemblages of the mid- and sublittoral zone. The multicausal environmental severity hypothesis appears to be valid for the sandy beach macrofaunal communities of the Mediterranean. The abundance and composition of the macrofaunal assemblages are highly variable and are affected by the synergistic effects of many environmental variables. The polychaete taxonomic assemblage structure closely follows the macrofaunal community pattern. Differences between the two patterns may arise from the different responses that polychaetes may show to the environmental stress.  相似文献   

16.
人工海滩研究进展   总被引:11,自引:0,他引:11  
海滩是激浪作用下泥沙在激浪带的堆积,是海岸带最活跃的地貌单元。近年来,由于世纪性的海平面上升,侵蚀型海滩范围扩大,侵蚀加重,海滩宽度变窄、坡度变陡和滩面物质粗化等问题日益严重,引起了广泛关注,亦成为海岸工程研究的热点课题之一。几十年的工程实践表明,海滩喂养与人工海滩是当前防护海滩侵蚀最有效的措施,并已为欧、美、日等国广泛应用。利用海岸地貌学原理方法,借鉴模拟环境条件类似的周边自然海滩的形成和演变规律,合理的设计海滩物质的颗粒大小和组成,海滩的坡度、高度、宽度以及填砂范围等关键参数,能够有效地使人工海滩更快的达到平衡状态并维持其稳定。在海滩的娱乐休闲功能在国际范围内日益受到重视的今天,这一方法在海岸工程应用上具有重要的现实意义。  相似文献   

17.
世界各海沿岸的潮间带大部分区域是沙滩,这主要是由于波浪的强烈冲击所致。与碎石、石砾滩一样,沙滩对底栖生物的生存显然不利,因而其栖息生物种类比较贫乏,数量也少,完全缺乏大型植物,除了某些特定的沙栖种外,主要是一些小型无脊椎动物和植物。河口附近和内湾水下平台则例外,丰富的有机物质使之成为完全不同的生境。 虽然潮间带生态研究已有一百多年的历史,但有关沙滩生境的研究较少,对沙滩生物的生态特点缺乏系统的探讨。有的学者直接采用岩岸潮间带生态研究方法,这不仅与客观实际不符,而且造成术语上的混乱。另外,在群落结构的研究中也存在不少问题,例如往往没有按生态特点区别底内生物和底表生物,造成对区系性质的错误判断。为此,我们想通过对小场沙滩生境的调查研究,对沙滩潮间带研究中的一些问题进行初步探讨。  相似文献   

18.
Coastal groundwater systems can have a considerable impact on sediment transport and foreshore evolution in the surf and swash zones. Process-based modeling of wave motion on a permeable beach taking into account wave-aquifer interactions was conducted to investigate the effects of the unconfined coastal aquifer on beach profile evolution, and wave shoaling on the water table. The simulation first dealt with wave breaking and wave runup/rundown in the surf and swash zones. Nearshore hydrodynamics and wave propagation in the cross-shore direction were simulated by solving numerically the two-dimensional Navier–Stokes equations with a k–ε turbulence closure model and the Volume-Of-Fluid technique. The hydrodynamic model was coupled to a groundwater flow model based on SEAWAT-2000, the latter describing groundwater flow in the unconfined coastal aquifer. The combined model enables the simulation of wave-induced water table fluctuations and the effects of infiltration/exfiltration on nearshore sediment transport. Numerical results of the coupled ocean/aquifer simulations were found to compare well with experimental measurements. Wave breaking and infiltration/exfiltration increase the hydraulic gradient across the beachface and enhance groundwater circulation inside the porous medium. The large hydraulic head gradient in the surf zone leads to infiltration across the beachface before the breaking point, with exfiltration taking place below the breaking point. In the swash zone, infiltration occurs at the upper part of the beach and exfiltration at the lower part. The simulations confirm that beaches with a low water table tend to be accreted while those with a high water table tend to be eroded.  相似文献   

19.
In most ecosystems, community structure emerges as a result of the complex interaction between biotic and environmental variables. Sandy beaches connected to adjacent ecosystem like estuaries/creeks provide an opportunity to understand the role of the environment on the community. Kalbadevi beach along the central west coast of India, invaded by creeks at the northern and southern ends, provides an opportunity to investigate the role of environmental heterogeneity in structuring the intertidal macrofaunal communities. Further, the annual tropical rainfall brings about drastic changes in the environmental parameters. Seasonal survey was carried out at 10 transects covering the entire ~5-km beach of Kalbadevi for environmental and macrofaunal studies. We quantified the abundance, biomass, assemblage structure and distribution of macrofauna at different spatio-temporal scales. The univariate and multivariate analyses showed significant spatio-temporal variability in the biotic and abiotic variables. BIOENV analyses showed the best correlation with OC, phaeopigment and grain size. High abundance of macrofauna in the north and south was due to food availability, influenced by the creek. The low abundance during monsoon and subsequent increase in the post-monsoon can be attributed to annual spawning and recruitment of tropical fauna. Therefore, the present research suggests that the other environmental variables also play an important role in structuring the macrofauna of sandy beach. This supports our hypothesis that environmental heterogeneity influences the structuring of macrofaunal community.  相似文献   

20.
Habitat heterogeneity can influence biological communities by providing a diversity of areas that can be occupied by different species. Sandy beach surf zones are often considered homogenous environments; however, sand bars moved by currents and waves can produce trench‐like shapes or troughs that provide heterogeneity. The influence of habitat heterogeneity produced by sand movement is unclear despite the fact that surf zones are an important habitat for larval and juvenile fish and macrocrustaceans. To determine if, and how, the fish and macroinvertebrate communities present in trough and non‐trough or flat areas of Oregon surf zones differ, we compared species assemblages in both areas at three beaches adjacent to estuary mouths over 2 years. Troughs had different communities compared with flat areas, with higher total catch (mean ± SD = 123.2 ± 122.1 versus 43.6 ± 44.5 individuals × 100 m?2) and taxon richness (6.7 ± 2.7 versus 4.0 ± 2.3 taxa); these differences were potentially due to water movement, prey availability and sediment size. The fish and macroinvertebrate communities did not vary between years but there were significant differences among beaches, with the most distinct community present at the only beach adjacent to an estuary without a jetty at its mouth, which was possibly due to higher species movement between the surf zones and estuary. Fish and macrocrustacean surf zone communities varied spatially within and among beaches in relation to habitat heterogeneity provided by sand movement and, potentially, the influence of adjacent habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号