首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In-situ measurments of the topside F-region ionospheric electron and ion temperatures are very few over the low and equatorial latitudes during the last two solar cycles, particularly in the Indian sector. The SROSS C2 satellite has provided some valuable data on the thermal structure of the topside ionosphere over the Indian region. This article reports a typical evening enhancement in the topside F-region electron temperatures around 18:00 IST observed in the subtropical latitudes of 15–20°N. These enhancements that are seen during the low sunspot activity periods show a latitudinal difference with an early and sharp peak at higher latitudes (23°N). The observed features are explained on the basis of equatorial plasma dynamics associated with the Appleton ionization anomaly.  相似文献   

2.
利用漠河站、左岭站、富克站垂测仪数据和COSMIC反演的电离层资料,分析比较了太阳活动高年两种探测手段获取的电离层特征参量(NmF2、hmF2)的相关性.结果表明,两种方式获取的电离层对应特征参量相关性较高,且NmF2的相关性好于hmF2,同时相关性与纬度和季节有关.在地磁中纬度地区对应参量相关性较好,而在地磁低纬度受北驼峰控制区域相关性降低;在电离层赤道异常区域,春秋季、夏季对应特征参量相关性好于冬季.造成冬季相关性低的可能原因是,在跨越赤道中性风作用下,冬季电离层赤道异常区电子浓度梯度较大,造成掩星反演误差增大,致使两种探测手段获取的电离层特征参量相关性降低.  相似文献   

3.
The zone of anomalous diurnal variations in foF2, which is characterized by an excess of nighttime foF2 values over daytime ones, has been distinguished in the Southern Hemisphere based on the Intercosmos-19 satellite data. In English literature, this zone is usually defined as the Weddell Sea anomaly (WSA). The anomaly occupies the longitudes of 180°–360° E in the Western Hemisphere and the latitudes of 40°–80° S, and the effect is maximal (up to ∼5 MHz) at longitudes of 255°–315° E and latitudes of 60°–70° S (50°–55° ILAT). The anomaly is observed at all levels of solar activity. The anomaly formation causes have been considered based on calculations and qualitative analysis. For this purpose, the longitudinal variations in the ionospheric and thermospheric parameters in the Southern Hemisphere have been analyzed in detail for near-noon and near-midnight conditions. The analysis shows that the daytime foF2 values are much smaller in the Western Hemisphere than in the Eastern one, and, on the contrary, the nighttime values are much larger, as a result of which the foF2 diurnal variations are anomalous. Such a character of the longitudinal effect mainly depends on the vertical plasma drift under the action of the neutral wind and ionization by solar radiation. Other causes have also been considered: the composition and temperature of the atmosphere, plasma flows from the plasmasphere, electric fields, particle precipitation, and the relationship to the equatorial anomaly and the main ionospheric trough.  相似文献   

4.
Summary Measurements of plasma parameters were made by the Intercosmos 24 satellite at altitudes between 2300 km and 2500 km in the interval of 16 to 12 hours prior to the initial shock of the destructive Iranian earthquake of 20 June 1990 (210009 UT, 37° N, 49·4° E, M=6·4), and before the strong aftershock of 21 June 1990 (090214 UT, M=5·8). The anomalous behaviour of the light ionospheric ions H+ and He+ and the cold electron temperature was observed over a wide region of the Northern Hemisphere before the earthquake. Sudden increases of energetic electron fluxes were observed over the Asian zone near the epicentre. These changes appear to be a part of the solid Earth — near space interaction occurring during the preparatory stage of the great seismic event.  相似文献   

5.
This paper investigates the features of pre-earthquake ionospheric anomalies in the total electron content (TEC) data obtained on the basis of regular GPS observations from the International GNSS Service (IGS) network. For the analysis of the ionospheric effects of the 26 September 2005 Peru earthquake, Global Ionospheric Maps (GIMs) of TEC were used. The possible influence of the earthquake preparation processes on the main low-latitude ionosphere peculiarity—the equatorial anomaly—is discussed. Analysis of the TEC maps has shown that modification of the equatorial anomaly occurred a few days before the earthquake. In previous days, during the evening and night hours (local time—LT), a specific transformation of the TEC distribution had taken place. This modification took the shape of a double-crest structure with a trough near the epicenter, though usually in this time the restored normal latitudinal distribution with a maximum near the magnetic equator is observed. Additional measurements (CHAMP satellite) have also confirmed the presence of this structure. To compare the vertical TEC measurements obtained with GPS satellite signals (GPS TEC), the International Reference Ionosphere, IRI-2001, was used for calculating the IRI TEC.  相似文献   

6.
Global electron content (GEC) as a new ionospheric parameter was first proposed by Afraimovich et al. [2006]. GEC is equal to the total number of electrons in the near-Earth space. GEC better than local parameters reflects the global response to a change in solar activity. It has been indicated that, during solar cycle 23, the GEC dynamics followed similar variations in the solar UV irradiance and F 10.7 index, including the 11-year cycle and 27-day variations. The dynamics of the regional electron content (REC) has been considered for three belts: the equatorial belt and two midlatitude belts in the Northern and Southern hemispheres (±30° and 30°–65° geomagnetic latitudes, respectively). In contrast to GEC, the annual REC component is clearly defined for the northern and southern midlatitude belts; the REC amplitude is comparable with the amplitude of the seasonal variations in the Northern Hemisphere and exceeds this amplitude in the Southern Hemisphere by a factor of ~1.7. The dayside to nightside REC ratio, R(t), at the equator is a factor of 1.5 as low as such a GEC ratio, which indicates that the degree of nighttime ionization is higher, especially during the solar activity maximum. The pronounced annual cycle with the maximal R(t) value near 8.0 for the winter Southern Hemisphere and summer Northern Hemisphere is typical of midlatitudes.  相似文献   

7.
In this paper the analysis of the ionospheric total electron content (TEC) variations obtained with using GPS measurements before the Hokkaido earthquake (M = 8.3) is presented. Anomalous behavior of TEC was detected within several days before the main event. Anomaly appeared as the local TEC enhancement situated in the vicinity of the forthcoming earthquake epicenter. These structures occurred during 5 days prior to the shock at the same interval of local time. At the process of the earthquake approach the amplitude of modification was increased, and it has reached the 85–90% level relative to the non-disturbed conditions 18 hours before the earthquake. The area of strong positive disturbance has extended over 1500 km in latitudes and 4000 km in longitudes. The analysis have shown that according to the series of characteristics (its locality, affinity with the epicenter, dome-shaped zone of manifestation, characteristic time of existence) the detected ionospheric anomaly may be associated to the precursors of seismic activity.  相似文献   

8.
Data from meteo radar measurements of the wind in the mesosphere/lower thermosphere region at high latitudes of the Southern Hemisphere (Molodezhnaya station, 68° S, 45° E) and at middle latitudes of the Northern Hemisphere (Obninsk station, 55° N, 37° E) during solar proton events that took place in 1989, 1991, 2000, 2005, and 2012 are analyzed in the paper. In 1989 and 1991, we succeeded in observing the response to solar proton evens at both stations simultaneously. The results show that solar proton events lead to a change in the wind regime of the mesosphere and lower thermosphere. At high latitudes of the Southern Hemisphere, significant changes are observed in the values of the velocities of the meridional and zonal components of the prevailing wind. In the case of powerful solar proton events, the amplitude of the semidiurnal tide grows in the vicinity of the proton flux maximum. The response to these events depends on the season. The reaction of the prevailing wind at middle latitudes shows the same features as the reaction of the wind at high latitudes. However no unambiguous response of the tide amplitude is observed. In the summer season, even powerful events (for example, in July 2000) cause no changes in the wind regime parameters in the midlatitude region of the mesosphere/lower thermosphere.  相似文献   

9.
With the use of data from topside sounding on board the Interkosmos-19 (IK-19) satellite, the region of permanent generation of large-scale irregularities in the daytime winter ionosphere of the Southern Hemisphere is differentiated. This region is characterized by low values of foF2 and hmF2 and occupies a rather large latitudinal band, from the equatorial anomaly ridge to ~70° S within the longitudinal range from 180° to 360°. Irregularities with a dimension of hundreds kilometers are regularly observed in the period from 0700–0800 to 1800–1900 LT, i.e., mainly in the daytime. In the IK-19 ionograms, they normally appear in the form of an extra trace with a critical frequency higher than that of the main trace reflected from the ionosphere with lower density. The electron density in the irregularity maximum sometimes exceeds the density of the background ionosphere by nearly a factor of 3. A model of the ionosphere with allowance for its irregular structure was created, and it was shown on the basis of trajectory calculations how the IK-19 ionograms related to these irregularities are formed. A possible mechanism of the generation of large-scale irregularities of the ionospheric plasma is discussed.  相似文献   

10.
Using the data of the topside ionosphere sounding from the Intercosmos-19 satellite, longitudinal variations in foF2 at low latitudes at the daytime hours are considered. It is obtained that these variations in particular days in the majority of cases have a regular wave-like character with periods of about 75°–100° in longitude and amplitudes on the average of 2–4 MHz. In other words, along the valley and crests of the equatorial anomaly, a structure with four maximums and four minimums which have a tendency to be located near certain longitudes (the same in all seasons) is observed. The variations in foF2 along the crests of the equatorial anomaly are usually in anti-phase to variations along its valley. Comparing the characteristics of this wavelike structure at the daytime and nighttime hours, we obtained that the average positions of its extremes at the nighttime hours are shifted eastwards by 10°–50° relative to the daytime extremes. As a cause of formation of such a structure, high harmonics of atmospheric tides are assumed which, uplifting from below to heights of the E region, via the electric currents in this region influence the longitudinal structure of the electrodynamic plasma drift over the equator and by that impact the structure of the entire daytime low-latitude ionosphere.  相似文献   

11.
The deterministic chaotic behaviour of ionosphere, over Indian subcontinent falling under equatorial/low latitude region, ?0.3 to 22.19°N (geomagnetic), was studied using GPS-TEC time series. The values of Lyapunov exponent are low at Thiruvananthapuram and Agatti (?0.30 and 2.38°N, geomagnetic, respectively), and thereafter increase through Bangalore and Hyderabad (4.14 and 8.54°N, geomagnetic, respectively), and attain maximum at Mumbai (10.09°N, geomagnetic), which is near/at the edge of an anomaly crest. The values of correlation dimension computed for TEC time series are in the range 3.1–3.6, which indicate that equatorial/low latitude ionosphere can be described with four variables. Entropy values estimated for TEC time series show no appreciable latitudinal variabilites. The values of non-linear prediction error exhibit a trough, around the latitude sector, 4.14–16.15°N (Geomagnetic). Based on the values of the above quantifiers, the features of chaotic behaviour of equatorial/low latitude ionosphere are briefly discussed.  相似文献   

12.
大尺度行进式大气扰动(LS-TAD)通常被认为起源于极区高纬,本文报道了一起激发于低纬赤道地区、在北半球向高纬传播的LS-TAD观测事例.2002年8月10日07:30 UT,CHAMP卫星在30°W磁赤道附近观测到显著的大气密度增强,在随后的2个连续轨道上,该密度增强依次出现在北半球更高纬度上,表现出明显的极向位移,...  相似文献   

13.
获取COSMIC掩星2级数据, 基于球谐函数使用最小二乘拟合法计算模型值, 为2008年5月12日汶川MS8.0地震前电离层电子密度变化提供背景依据. 同时应用主成分分析法研究最大电子密度, 得到各主成分所占能量百分比随时间的变化. 研究结果发现, 震前在震中邻近区域出现电离层扰动增强现象, 且随高度不同存在一定差异, 主要集中在F2层300—450 km. 主成分分析结果显示, 4月15日—29日19:00—24:00(地方时)第三主成分能量百分比显著增加. 上述结果表明, 震前电离层存在异常扰动现象. 这一研究结果有助于加强地震电离层耦合机理方面的研究.   相似文献   

14.
Volcanic gases such as SO 2, H 2S, HCl and COS emitted during explosive eruptions significantly affect atmospheric chemistry and therefore the Earth's climate. We have evaluated the dependence of volcanic gas emission into the atmosphere on altitude, latitude, and tectonic setting of volcanoes and on the season in which eruptions occurred. These parameters markedly influence final stratospheric gas loading. The latitudes and altitudes of 360 active volcanoes were compared to the height of the tropopause to calculate the potential quantity of volcanic gases injected into the stratosphere. We calculated a possible stratospheric gas loading based on different volcanic plume heights (6, 10, and 15 km) generated by moderate-scale explosive eruptions to show the importance of the actual plume height and volcano location. At a plume height of 15 km for moderate-scale explosive eruptions, a volcano at sea level can cause stratospheric gas loading because the maximum distance to the tropopause is 15–16 km in the equatorial region (0–30°). Eruptions in the tropics have to be more powerful to inject gas into the stratosphere than eruptions at high latitudes because the tropopause rises from ca. 9–11 km at the poles to 15–16 km in the equatorial region (0–30°N and S). The equatorial region is important for stratospheric gas injection because it is the area with the highest frequency of eruptions. Gas injected into the stratosphere in equatorial areas may spread globally into both hemispheres.  相似文献   

15.
To study the occurrence characteristics of equatorial spread-F irregularities and their latitudinal extent, simultaneous digital ionosonde data (January–December 2001) from Trivandrum (8.2°N), Waltair (17.7°N) and Delhi (28.6°N) and 4 GHz scintillation data from Sikandarabad (26.8°N) and Chenglepet (10.4°N), and 250 MHz scintillation data from Bhopal (23.2°N) for equinoxes period are analysed. It is noted that except summer months, occurrence of spread F is always maximum at Trivandrum, minimum at Delhi and moderate at Waltair. During equinoxes and winter months. Their occurrences at higher latitude station are always conditional to their prior occurrences at lower latitudes indicating their association with the generation of equatorial plasma bubble and associated irregularities. Scintillation occurrences also follow the similar pattern. During the summer months, the spread-F occurrences are highest at equatorial location Trivandrum, moderate at Delhi and minimum at Waltair and seem to be caused by irregularities generated locally especially over Delhi.To gain forecasting capability, night-to-night occurrences of spread-F/scintillation at these locations are examined in relation to post sunset rise of h’F and upward ExB drift velocity over the magnetic equator using Trivandrum ionosonde data. It is noted that except the summer months, the spread-F at Trivandrum, Waltair and Delhi are observed only when equatorial ExB (h’F) is more than about 15 m/s (325 km), 20 m/s (350 km) and 25 m/s (375 km), respectively. With these threshold values their corresponding success rate of predictions are more than 90%, 50% and 15% at the respective locations. Whereas in the case of GHz scintillations near equator are observed only when ExB (h’F) is more than 15 m/s (325 km), whereas for low latitude, the same should be 30 m/s (400 km) and their success rate of prediction is about 90% and 30%, respectively. The intensity of 4 GHz scintillation at low latitude is also found to be positively correlated with equatorial upward ExB drift velocity values, whereas correlation is poor with that of equatorial scintillations. In conclusions, near magnetic equator threshold values of ExB or h’F can be successfully used for the night-to-night prediction of spread-F/scintillations occurrences, whereas these are necessary but not sufficient for their prediction at higher latitudes. For that some other controlling parameters like background electron density, neutral winds, gravity waves, etc. should also be examined.  相似文献   

16.
汶川MS8.0、 海地MW7.0地震 电磁信号小波能谱分析   总被引:2,自引:0,他引:2       下载免费PDF全文
应用小波变换方法处理了2008年汶川MS8.0地震前后成都、 江油台地电阻率观测数据及汶川地震、 2010年海地MW7.0地震前后DEMETER卫星记录的电离层磁场观测数据, 研究了地电阻率和电离层磁场的小波能谱及其相对变化.结果表明: ① 对应汶川大震前成都台N58°E测道地电阻率中期下降变化和短期上升变化的时段, 地电阻率小波能谱相对变化显著增大, 江油台N10°E测道地电阻率在主震前记录到了临震异常, 在临近主震前后, 电离层磁场特别是x分量的能谱及相对变化显著增大, 展现了与汶川大震明显对应的地电阻率、 电离层磁场变化的似同步异常; ② 在海地地震前夕, 电离层磁场x, z分量的能谱也出现了显著增大的现象, 类似于汶川大震前后电离层磁场的能谱增大变化.   相似文献   

17.
The unique geometry of the geomagnetic field lines over the equatorial ionosphere coupled with the E–W electric field causes the equatorial ionization anomaly (EIA) and equatorial spread-F (ESF). lonosonde data obtained at a chain of four stations covering equator to anomaly crest region (0.3 to 33 °N dip) in the Indian sector are used to study the role of EIA and the associated processes on the occurrence of ESF. The study period pertains to the equinoctial months (March, April, September and October) of 1991. The ratios of critical frequency of F-layer (f0F2) and electron densities at an altitude of 270 km between Ahmedabad (33 °N dip) and Waltair (20 °N dip) are found to shoot up in the afternoon hours on spread-F days showing strengthening of the EIA in the afternoon hours. The study confirms the earlier conclusions made by Raghava Rao et al. and Alex et al. that a well-developed EIA is one of the conditions conducive for the generation of ESF. This study also shows that the location of the crest is also important in addition to the strength of the anomaly.  相似文献   

18.
The zonally averaged UK Meteorological Office (UKMO) zonal mean temperature and zonal winds for the latitudes 8.75°N and 60°N are used to investigate the low-latitude dynamical response to the high latitude sudden stratospheric warming (SSW) events that occurred during winter of the years 1998–1999, 2003–2004 and 2005–2006. The UKMO zonal mean zonal winds at 60°N show a short-term reversal to westward winds in the entire upper stratosphere and lower mesosphere and the low-latitude winds (8.75°N) show enhanced eastward flow in the upper stratosphere and strong westward flow in the lower mesosphere during the major SSW events at high latitudes. The mesosphere and lower thermosphere (MLT) zonal winds acquired by medium frequency (MF) radar at Tirunelveli (8.7°N, 77.8°E) show a change of wind direction from eastward to westward several days before the onset of SSW events and these winds decelerate and weak positive (eastward) winds prevail during the SSW events. The time variation of zonal winds over Tirunelveli is nearly similar to the one reported from high latitudes, except that the latter shows intense eastward winds during the SSW events. Besides, the comparison of daily mean meridional winds over Tirunelveli with those over Collm (52°N, 15°E) show that large equatorial winds are observed over Tirunelveli during the 2005–2006 event and over Collm during the 1998–1999 events. The variable response of MLT dynamics to different SSW events may be explained by the variability of gravity waves.  相似文献   

19.
Longitudinal and local time variations in the structure of the equatorial anomaly under high solar activity in the equinox are considered according to the Intercosmos-19 topside sounding data. It is shown that the anomaly begins to form at 0800 LT, when the southern crest is formed. The development of the equatorial anomaly is associated with well-known variations in the equatorial ionosphere: a change in the direction of the electric field from the west to the east, which causes vertical plasma drift W (directed upward) and the fountain effect. At 1000 LT, both anomaly crests appear, but they become completely symmetrical only by 1400 LT. The average position of the crests increases from I = 20° at 1000 LT to I = 28° at 1400 LT. The position of the crests is quite strong, sometimes up to 15°, varies with longitude. The foF2 value above the equator and the equatorial anomaly intensity (EAI) at 1200–1400 LT vary with the longitude according to changes in the vertical plasma drift velocity W. At this time, four harmonics are observed in the longitudinal variations of W, foF2, and EAI. The equatorial anomaly intensity increases to the maximum 1.5–2 h after the evening burst in the vertical plasma drift velocity. Longitudinal variations of foF2 for 2000–2200 LT are also associated with corresponding variations in the vertical plasma drift velocity. The equatorial anomaly intensity decreases after the maximum at 2000 LT and the crests decrease in size and shift towards the equator, but the anomaly is well developed at midnight. On the contrary, after midnight, foF2 maxima in the region of the anomaly crests are farther from the equator, but this is obviously associated with the action of the neutral wind. At 0200 LT, in contrast to the morning hours, only the northern crest of the anomaly is clearly pronounced. Thus, in the case of high solar activity during the equinoxes, a well-defined equatorial anomaly is observed from 1000 to 2400 LT. It reaches the maximum at 2000 LT.  相似文献   

20.
Nonlinear local Lyapunov exponent and atmospheric predictability research   总被引:7,自引:0,他引:7  
Because atmosphere itself is a nonlinear system and there exist some problems using the linearized equations to study the initial error growth, in this paper we try to use the error nonlinear growth theory to discuss its evolution, based on which we first put forward a new concept: nonlinear local Lyapunov exponent. It is quite different from the classic Lyapunov exponent because it may characterize the finite time error local average growth and its value depends on the initial condition, initial error, variables, evolution time, temporal and spatial scales. Based on its definition and the at-mospheric features, we provide a reasonable algorithm to the exponent for the experimental data, obtain the atmospheric initial error growth in finite time and gain the maximal prediction time. Lastly, taking 500 hPa height field as example, we discuss the application of the nonlinear local Lyapunov exponent in the study of atmospheric predictability and get some reliable results: atmospheric predictability has a distinct spatial structure. Overall, predictability shows a zonal distribution. Prediction time achieves the maximum over tropics, the second near the regions of Antarctic, it is also longer next to the Arctic and in subtropics and the mid-latitude the predictability is lowest. Particularly speaking, the average prediction time near the equation is 12 days and the maximum is located in the tropical Indian, Indonesia and the neighborhood, tropical eastern Pacific Ocean, on these regions the prediction time is about two weeks. Antarctic has a higher predictability than the neighboring latitudes and the prediction time is about 9 days. This feature is more obvious on Southern Hemispheric summer. In Arctic, the predictability is also higher than the one over mid-high latitudes but it is not pronounced as in Antarctic. Mid-high latitude of both Hemispheres (30°S―60°S, 30°―60°N) have the lowest predictability and the mean prediction time is just 3―4 d. In addition, predictability varies with the seasons. Most regions in the Northern Hemisphere, the predictability in winter is higher than that in summer, especially in the mid-high latitude: North Atlantic, North Pacific and Greenland Island. However in the Southern Hemisphere, near the Antarctic regions (60°S―90°S), the corresponding summer has higher predictability than its winter, while in other areas especially in the latitudes of 30°S―60°S, the prediction does not change obviously with the seasons and the average time is 3―5 d. Both the theoretical and data computation results show that nonlinear local Lyapunov exponent and the nonlinear local error growth really may measure the predictability of the atmospheric variables in different temporal and spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号