首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   11篇
大气科学   1篇
地球物理   11篇
  2020年   3篇
  2019年   2篇
  2016年   2篇
  2014年   1篇
  2010年   2篇
  2007年   1篇
  1954年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
基于热层电离层耦合数据同化的热层参量估计   总被引:1,自引:0,他引:1       下载免费PDF全文
本文采用高效集合卡尔曼滤波(EnKF)算法和背景场热层电离层理论模式NCAR-TIEGCM,开发了热层电离层数据同化系统.基于全球空地基GNSS电离层斜TEC观测、CHAMP和TIMED/GUVI热层参量观测构型设计了系列观测系统模拟实验,对热层参量进行估计.实验结果表明,(1)通过集合卡尔曼滤波算法同化电离层TEC观测能够较好地优化热层参量.(2)中性质量密度优化效果在整个同化阶段均有提升,提升百分比能达到40%.(3)积分氧氮比在同化阶段也能得到较好的优化,但在电子密度水平梯度变化剧烈区域效果较差.最后本文对中性质量密度进行了预报评估,结果表明,由于中性成分优化,在地磁平静条件下其预报时间尺度可长达24h.  相似文献   
2.
非相干散射理论谱是理解非相干散射雷达探测的理论基础,其求解过程分为微观法和宏观法.在考虑碰撞不考虑磁场的条件下,本文使用这两种方法对理论谱分别进行求解,给出了关键求解过程,并对等离子体的归一化导纳和极化率以及非相干散射的微分散射截面和谱密度函数进行分析,得到了它们各自之间的数学关系,概括性分析了两种方法在理论选择、最终结论及多种因素下求解的异同点.  相似文献   
3.
基于LWPC和IRI模型的NWC台站信号传播幅度建模分析   总被引:2,自引:0,他引:2       下载免费PDF全文
频率为3~30 kHz的甚低频(VLF,Very Low Frequency)电磁波具有波长长、传播距离远的特点,能够沿地面-低电离层波导进行传播,在通信、导航等许多领域都被广泛应用.基于波导模理论的长波传播模型(LWPC,Long-Wavelength Propagation Capability)能够用于计算甚低频波的传播路径及幅度,进而研究耀斑、磁暴、地震等事件对电离层的扰动.本文利用国际电离层参考模型(IRI,International Reference Ionosphere)对LWPC中电子密度和碰撞频率进行改进,并将模拟结果与武汉大学VLF接收机实际观测到的NWC (North West Cape)台站信号幅度进行比较分析,结果表明改进后LWPC模型得到的幅度及变化趋势与实际值更加接近.LWPC模型给出的电子密度与IRI模型得到的电子密度在日间基本一致,但是在夜间存在差异,造成夜间部分区域NWC台站信号幅度的差异性,验证了电离层电子密度对于VLF信号传播具有的重要影响.传播路径上的晨昏变化也可以引起VLF信号幅度分布的突变,在日出和日落时间段内存在明显的过渡区域.基于IRI模型的LWPC,改善了VLF电波传播过程的预测分析效果,提供了一种长波导航通信质量的评估方法.  相似文献   
4.
本文基于IRI模型、地面数字测高仪和GNSS TEC数据,提出了一种利用经验正交函数(Empirical Orthogonal Function,简称EOF)估算顶部电离层电子密度剖面的方法,并将其应用于美国Millstone Hill测高仪和GNSS数据以估算顶部电离层电子密度剖面.通过将估算的临界频率、峰值高度、400km以上电子密度分别与测高仪实测临界频率、测高仪实测峰值高度以及非相干散射雷达实测400km以上电子密度作对比以对方法的有效性进行验证.统计结果显示估算临界频率、峰值高度与测高仪实测数据基本一致,400km以上估算电子密度相较于非相干散射雷达实测的绝对误差平均值仅是测高仪推算400km以上电子密度绝对误差平均值的一半左右.所以本文提出的方法可以更加精确地估算顶部电离层电子密度.  相似文献   
5.
本文给出了一个基于Gauss-Markov卡尔曼滤波的电离层数据同化系统的初步构建和试验结果.我们选择中国及周边地区部分涉及电离层观测的台站(包括子午工程台站、中国地壳形变网和部分IGS台站)作为观测系统进行模拟试验,背景场利用IRI模式,观测值则由NeQuick模式计算得到.我们的同化结果表明,采用Kalman滤波算法,把部分斜TEC同化到背景模式当中,能够获得较好的同化结果,说明我们设计的算法可行、所选择的各种参数比较合理,采用Gauss-Markov假设进行短期预报也取得了较合理的结果.本项研究经过进一步的改进和完善,可以用来对中国地区的电离层进行现报和短期预报,一方面满足相关空间工程应用,另一方面可以提升现有观测系统的科学意义.  相似文献   
6.
本文利用GCITEM-IGGCAS模式,从电动力学耦合作用和直接上传两种作用方式,详细模拟研究了DE2潮汐4种Hough波模分量对电离层的影响.我们将不同种类的Hough波模分别输入到模式当中作为底层边界条件,驱动模式模拟得到电离层的电子密度变化,从中分离两种作用机制的响应进行分析.模拟结果发现电离层对DE2的4种Hough波模的响应都表现为半年变化,波峰出现在春季和秋季,波谷则出现在冬季和夏季.一天的变化特性上,赤道对称波模的响应出现明显的4个峰值和谷值,其他3种波模响应主要表现为一个峰值和谷值.4种波模当中赤道对称波模对电离层的作用最为明显,占据主导地位,对电离层的影响表现为波动效应,其中3波分量的响应最强,主要由电动力学作用控制.其他3种波模对电离层则是削弱作用.本研究可以帮助我们更深刻的理解非迁移潮汐对电离层的作用方式和效果.  相似文献   
7.
近地空间环境的GNSS无线电掩星探测技术   总被引:1,自引:1,他引:0       下载免费PDF全文
从GPS/MET计划开始,基于GNSS的无线电掩星技术已成为一种强大的近地空间环境探测手段.截至到目前,已经有20多颗发射的低轨道卫星带GPS掩星接收机,其中COSMIC是首个专门用于掩星探测的卫星星座.这些掩星数据被广泛应用于气象预报、气候与全球变化研究、及空间天气监测和电离层研究.由于COSMIC的成功,相关合作单位目前正积极推动COSMIC-2计划,该计划将总共有12颗卫星,于2016年与2019年各发射6颗.COSMIC-2将携带一个高级的GNSS掩星接收机,它将接受GPS与GLONASS信号,并具备接受其他可获得信号源的能力(如中国北斗定位信号),其每日观测的掩星数量将是COSMIC的4~6倍.同时COSMIC-2还将携带两个空间天气载荷,加强空间天气的监测能力.本文以COSMIC与COSMIC-2计划为主线,对掩星的发展历史、技术要点进行了简单介绍,并简要综述了COSMIC取得的部分科学成果,同时对未来包括技术发展和众多的掩星观测进行了展望.  相似文献   
8.
利用青藏高原地区COSMIC掩星资料反演的大气湿廓线Wet Prf数据和8个站点的探空数据,分析了COSMIC反演大气廓线和可降水量与探空观测的偏差,并考查了偏差随高度的变化特征。结果显示:(1)COSMIC反演的温度、压强和水汽压廓线与探空观测具有很好的正相关;与探空观测相比,COSMIC的温度、压强和水汽压的偏差为-0.2℃、1.7 h Pa和0 h Pa,均方差为1.8℃、1.6 h Pa和0.4 h Pa;COSMIC反演大气廓线与探空观测的偏差基本上在大气低层较大,然后随高度增加而减小。(2)COSMIC反演的可降水量与探空观测正相关较好;COSMIC反演的可降水量低于探空观测,两者的偏差为-5.0 mm,均方差为5.7 mm;两者的负偏差在大气低层最明显。(3)探空观测在近地层的不稳定性和COSMIC反演方法中背景模式在青藏高原地区描述大气状态的能力有限,是造成COSMIC反演大气廓线和探空观测的偏差在近地层较大的主要原因;COSMIC观测的折射率偏小导致其反演的可降水量偏低。  相似文献   
9.
利用漠河站、左岭站、富克站垂测仪数据和COSMIC反演的电离层资料,分析比较了太阳活动高年两种探测手段获取的电离层特征参量(NmF2、hmF2)的相关性.结果表明,两种方式获取的电离层对应特征参量相关性较高,且NmF2的相关性好于hmF2,同时相关性与纬度和季节有关.在地磁中纬度地区对应参量相关性较好,而在地磁低纬度受北驼峰控制区域相关性降低;在电离层赤道异常区域,春秋季、夏季对应特征参量相关性好于冬季.造成冬季相关性低的可能原因是,在跨越赤道中性风作用下,冬季电离层赤道异常区电子浓度梯度较大,造成掩星反演误差增大,致使两种探测手段获取的电离层特征参量相关性降低.  相似文献   
10.
本文对磁化等离子体非相干散射理论谱下的共振线进行了研究,简要介绍了等离子体线和回旋线的色散关系,并通过理论分析给出了二次回旋谐频处等离子体线分裂现象的色散关系.结合三亚非相干散射雷达(Sanya Incoherent Scatter Radar,SYISR)实际参数,对回旋线以及低频振荡、高频共振进行了分析讨论.分析后认为:SYISR拥有观测夜间200 km以下和400 km以上回旋线的可能性;在白天仅存在观测到H+振荡谱线的可能性;若观测数据足够良好,将可以观测到二次以及三次回旋谐频处的等离子体线分裂现象.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号