首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The knowledge of fundamental frequency and damping ratio of structures is of uppermost importance in earthquake engineering, especially to estimate the seismic demand. However, elastic and plastic frequency drops and damping variations make their estimation complex. This study quantifies and models the relative frequency drop affecting low‐rise modern masonry buildings and discusses the damping variations based on two experimental data sets: Pseudo‐dynamic tests at ELSA laboratory in the frame of the ESECMaSE project and in situ forced vibration tests by EMPA and EPFL. The relative structural frequency drop is shown to depend mainly on shaking amplitude, whereas the damping ratio variations could not be explained by the shaking amplitude only. Therefore, the absolute frequency value depends mostly on the frequency at low amplitude level, the amplitude of shaking and the construction material. The decrease in shape does not vary significantly with increasing damage. Hence, this study makes a link between structural dynamic properties, either under ambient vibrations or under strong motions, for low‐rise modern masonry buildings. A value of 2/3 of the ambient vibration frequency is found to be relevant for the earthquake engineering assessment for this building type. However, the effect of soil–structure interaction that is shown to also affect these parameters has to be taken into account. Therefore, an analytical methodology is proposed to derive first the fixed‐base frequency before using these results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
An approximate solution of the classical eigenvalue problem governing the vibrations of a structure on an elastic soil is derived through the application of a perturbation analysis. For stiff soils, the full solution is obtained as the sum of the solution for a rigid-soil and small perturbing terms related to the inverse of the soil shear modulus. The procedure leads to approximate analytical expressions for the system frequencies, modal damping ratios and participation factors for all system modes that generalize those presented by other authors for the fundamental mode. The resulting approximate expressions for the system modal properties are validated by comparison with the corresponding quantities obtained by numerical solution of the eigenvalue problem for a nine-story building. The accuracy of the proposed approach and of the classical normal mode approach is assessed through comparison with the exact frequency response of the test structure.  相似文献   

3.
It is demonstrated that the addition of a tuned mass-spring-dashpot system with a relatively small mass and a high damping ratio can be an effective way to increase the inherent damping characteristics of buildings and reduce, thus, their response to earthquake excitations. The demonstration is based on a theoretical formulation and on numerical and experimental studies that confirm this formulation. In the theoretical formulation, it is shown first that, if certain conditions are satisfied, the damping ratios in two of the modes of the system that is formed by a building and an appendage in resonance are approximately equal to the average of the corresponding damping ratios of the building and the appendage. Based on this finding, it is then shown that an attached appendage with a high damping ratio and tuned to the fundamental frequency of a building may increase the damping ratio in the fundamental mode of the building to a value close to half the damping ratio of the appendage. In the numerical study, the response of a ten-storey shear building is analysed under two different earthquake ground motions with and without the proposed resonant appendages. Appendages with damping ratios of 20 and 30 per cent are considered. In this study, it is found that under one of the ground motions the maximum displacement of the building's roof is reduced 30 per cent with the appendage with 20 per cent damping and 39 per cent with the one with 30 per cent damping. Similarly, with these two appendages the building's base shear is reduced 31 and 41 per cent, respectively. In the experimental study, a wooden three-storey structural model is tested in a shaking table with and without an appendage designed and constructed to have a damping ratio of 53-5 per cent. The test is conducted under random and sinusoidal base excitations. In the shaking table test under random excitation, the attached appendage reduces the response of the model 38-6 per cent, while in that under sinusoidal vibration 45-2 per cent.  相似文献   

4.
在北京城区的一栋钢筋混凝土建筑(Reinforced Concrete building,简称RC)中,进行历时两天的地脉动和地铁振动观测.介绍了利用地脉动和地铁振动信号研究RC建筑结构响应的观测方法、仪器设备、数据采集和数据处理方法.对观测数据进行两种分析:(1)对连续的地脉动背景噪声,采用H/V谱比法;(2)对经过...  相似文献   

5.
There is no consensus at the present time regarding an appropriate approach to model viscous damping in nonlinear time‐history analysis of base‐isolated buildings because of uncertainties associated with quantification of energy dissipation. Therefore, in this study, the effects of modeling viscous damping on the response of base‐isolated reinforced concrete buildings subjected to earthquake ground motions are investigated. The test results of a reduced‐scale three‐story building previously tested on a shaking table are compared with three‐dimensional finite element simulation results. The study is primarily focused on nonlinear direct‐integration time‐history analysis, where many different approaches of modeling viscous damping, developed within the framework of Rayleigh damping are considered. Nonlinear direct‐integration time‐history analysis results reveal that the damping ratio as well as the approach used to model damping has significant effects on the response, and quite importantly, a damping ratio of 1% is more appropriate in simulating the response than a damping ratio of 5%. It is shown that stiffness‐proportional damping, where the coefficient multiplying the stiffness matrix is calculated from the frequency of the base‐isolated building with the post‐elastic stiffness of the isolation system, provides reasonable estimates of the peak response indicators, in addition to being able to capture the frequency content of the response very well. Furthermore, nonlinear modal time‐history analyses using constant as well as frequency‐dependent modal damping are also performed for comparison purposes. It was found that for nonlinear modal time‐history analysis, frequency‐dependent damping, where zero damping is assigned to the frequencies below the fundamental frequency of the superstructure for a fixed‐base condition and 5% damping is assigned to all other frequencies, is more appropriate, than 5% constant damping. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The objective of this work was to assess the significance of the values of damping obtained applying the half‐power bandwidth method to the frequency response records of the steady‐state response of a system that does not possess real modes either because the damping matrix does not satisfy the orthogonality condition or because its parameters are functions of frequency. A multi‐degree of freedom system with real modes and different types of damping is considered first. A two degree of freedom system with an arbitrary damping matrix, a rigid mass on an elastic foundation subjected to vertical and coupled horizontal/rocking vibrations, and a single degree of freedom model of a building accounting for inertial soil structure interaction effects are considered next in more detail. The results show that the predictions of the method, when applicable compare very well with those provided by approximate formulae and procedures used in practice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Elastic fundamental frequency is a key-parameter of simplified seismic design and vulnerability assessment methods. Empirical relationships exist in codes to estimate this frequency but they miss experimental data to validate them accounting for national feature of building design and, above all, corresponding uncertainties. Even if resonance frequency extracted from ambient vibrations may be larger than the elastic frequency (at yield) generally used in earthquake engineering, ambient vibration recordings may provide a large set of data for statistical analysis of periods versus building characteristics relationships. We recorded ambient vibrations and estimated the fundamental frequency of about 60 buildings of various types (RC and masonry) in Grenoble City (France). These data complete the set existing yet, made of 26 RC-buildings of Grenoble (Farsi and Bard 2004) and 28 buildings in Nice (France) (Dunand 2005). Statistical analysis of these experimental data was performed for fundamental frequencies of RC shear wall structures and the results are compared with existing relationships. Only building height or number of stories has a statistical relevancy to estimate the resonance frequency but the variability associated to the proposed relationships is large. Moreover, we compared the elastic part of capacity curves of RC and masonry buildings used in the European Risk-UE method for vulnerability assessment with the experimental frequencies. The variability is also large and the curves may not be consistent with French existing buildings.  相似文献   

8.
The microtremor horizontal-to-vertical-spectral-ratio (HVSR) technique is widely used in the urban environment to assess the fundamental frequency response of the ground. Extensive literature exists about case histories using HVSR for microzonation in several cities, but no systematic studies have been devoted to check the presence of soil–structure interaction effects, and even less attention to study building behaviour after earthquake damage. To evaluate the above-mentioned effects, a series of experiments are reported in this article.We first made a series of microtremor measurements on buildings and civil structures to evaluate the reliability of fundamental frequency determinations. Then, we considered several case studies to evaluate the effect of soil–structure interaction in estimates of site response in the presence of tall buildings. Finally, an experiment on the frequency change due to damage was performed. It was possible to confirm that HVSR is able to detect building fundamental modes and once known the building frequency, it is also possible to detect the presence of soil–structure interaction. Thus, once the presence of the building natural frequency is identified, it is possible to infer the site response from free field measurements. We also found that the HVSR technique is equally useful for detecting structural damage by determining the frequency shift of the buildings.  相似文献   

9.
The dynamic properties of the twenty-two-story, steel-frame San Diego Gas and Electric Company Building in San Diego, California, have been determined experimentally in a series of co-operative tests between the California Institute of Technology and the University of California at Los Angeles. The building was vibrated by two eccentric mass exciters capable of frequencies up to 10 c/sec and forces as much as 5000 Ib each. The natural frequencies, associated mode shapes and the amounts of damping were determined for the first six modes of vibration in each of the two translational directions, and also in torsion. The mode shapes and frequencies showed, in general, the regularity and uniformity that appears typical of many tall buildings, but the three fundamental modes (nominally NS, EW and torsion) of the structure showed a coupling of translational and rotational components to a degree that was unexpected in a building whose structural frame is essentially symmetric. It is believed that this may be a consequence of the exceptionally small differences among the three fundamental frequencies. The damping in the first eighteen modes of the structure varied from 1.6 to 4.4 per cent, with a slight tendency for the larger values to be associated with the higher modes. Of the simpler damping models that might be used for analysis of the building, constant modal damping appears most appropriate and stiffness or mass proportional damping would not be realistic.  相似文献   

10.
A series of large‐scale dynamic tests was conducted on a passively controlled five‐story steel building on the E‐Defense shaking table facility in Japan to accumulate knowledge of realistic seismic behavior of passively controlled structures. The specimen was tested by repeatedly inserting and replacing each of four damper types, that is, the buckling restrained braces, viscous dampers, oil dampers, and viscoelastic dampers. Finally, the bare steel moment frame was tested after removing all dampers. A variety of excitations was applied to the specimen, including white noise, various levels of seismic motion, and shaker excitation. System identification was implemented to extract dynamic properties of the specimen from the recorded floor acceleration data. Damping characteristics of the specimen were identified. In addition, simplified estimations of the supplemental damping ratios provided by added dampers were presented to provide insight into understanding the damping characteristics of the specimen. It is shown that damping ratios for the specimen equipped with velocity‐dependent dampers decreased obviously with the increasing order of modes, exhibiting frequency dependency. Damping ratios for the specimen equipped with oil and viscoelastic dampers remained constant regardless of vibration amplitudes, whereas those for the specimen equipped with viscous dampers increased obviously with an increase in vibration amplitudes because of the viscosity nonlinearity of the dampers. In very small‐amplitude vibrations, viscous and oil dampers provided much lower supplemental damping than the standard, whereas viscoelastic dampers could be very efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In seismology and seismic engineering soils and structures are modeled as oscillators characterized by modal (resonance) frequencies, shapes and damping. In 1973 Cole proposed the RandomDec technique to estimate both the damping and the fundamental mode of structures from the recorded time series at a single point, with no need for spectral analyses. Here we propose a number of modifications to the original RandomDec approach, that we group under the name DECÓ, which allow to determine the damping as a function of the frequency and therefore the damping of all the vibration modes. However, the motion of structures is so amplified at the resonance frequencies that detecting the characteristic parameters by recording ambient vibrations is relatively easy. More interesting is to apply the DECÓ approach to the soil in the attempt to estimate the mode damping from single station measurements. On soils, the resonance frequencies are normally identified as peaks in the horizontal to vertical spectral ratios of microtremors. However, at these frequencies what is observed is a local minimum in the vertical spectral component, sometimes associated to local maxima in the horizontal components, whose visibility depend on the specific amount of SH and Love waves at the site. The determination of soil damping is therefore a much less trivial task on soils than on structures. By using microtremor and earthquake recordings we estimate the soil damping as a function of shear strain and observe that this is one order of magnitude larger than what is measured in the laboratory on small scale samples, at least at low-intermediate strain levels. This has severe consequences on the numerical seismic site response analyses and on soil dynamic modeling.  相似文献   

12.
The dynamic response of tall civil structures due to earthquakes is very important to civil engineers. Structures exposed to earthquakes experience vibrations that are detrimental to their structural components. Structural pounding is an additional problem that occurs when buildings experience earthquake excitation. This phenomena occurs when adjacent structures collide from their out‐of‐phase vibrations. Many energy dissipation devices are presently being used to reduce the system response. Tuned mass dampers (TMD) are commonly used to improve the response of structures. The stiffness and damping properties of the TMD are designed to be a function of the natural frequency of the building to which it is connected. This research involves attaching adjacent structures with a shared tuned mass damper (STMD) to reduce both the structures vibration and probability of pounding. Because the STMD is connected to both buildings, the problem of tuning the STMD stiffness and damping parameters becomes an issue. A design procedure utilizing a performance function is used to obtain the STMD parameters to result in the best overall system response. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper,the characteristics of forces in active control systems connected to adjacent levels of a building are analyzed.The following characteristics are observed:(1) active control can provide signifi cantly superior supplemental damping to a building,but causes a small frequency shift;(2) the linear quadratic regulator(LQR)-based control force is composed of an elastic restoring force component and a damping force component,where the damping force is almost identical to the total control force,howev...  相似文献   

14.
An analysis is presented of the transient flexural vibrations of an elastic column supported by an elastic half-space under the condition that an arbitrarily shaped free-field lateral acceleration and displacement are given as inputs. Applying Laplace transformations with respect to time and numerical inverse Laplace transformations, the time histories of the column acceleration at the interface and free end, and the column and half-space displacement distributions are obtained. After the input free-field acceleration terminates, slightly damped and almost harmonically variable acceleration is observed. The acceleration frequency after the disappearance of the input acceleration nearly coincides with the resonant frequency of the system. The slight damping with the first resonant frequency, even if the half-space is soft compared with the column, is characteristic of the transient flexural vibrations of a column supported by a half-space. Such a phenomenon is not typical of the transient longitudinal vibration problem. Therefore, it may be concluded: when buildings and structures are subjected to an earthquake or an explosive force, their flexural vibrations will continue with their first resonant frequencies, even if their foundations are soft.  相似文献   

15.
A study of the dynamics of building-soil interaction is presented that includes embedding of the foundation and material damping. By considering buildings on rigid footings embedded into linear elastic soil with hysteretic damping, it is shown that the earthquake response of the building-foundation model may be found from the response to modified excitation of equivalent one-degree-of-freedom linear, viscously damped oscillators resting on rigid ground. For a single-storey building approximate formulas are developed for the modified natural frequency and damping ratio. Results show that the natural frequency and damping in the system increase with embedding. Effective damping also increases with internal friction in the soil. Ignoring these two factors may underestimate considerably the effective natural frequency and damping in the system. In spite of additional sources of energy dissipation provided by the soil, damping in the equivalent oscillator may be greater or smaller than that corresponding to the superstructure alone, depending upon the system parameters. For lightly damped superstructures, the peak amplitude of the steady-state overturning moment at the base of a building supported on flexible soil is significantly smaller than that corresponding to rigid ground. This result has practical implications for earthquake design.  相似文献   

16.
Building frequencies (fundamental and higher modes) are a critical parameter especially in the field of structural health monitoring mainly based on the stability of the structural dynamic parameters of individual building (frequencies, damping and modes shape). One of the most used methods to find out these parameters is based on the use on ambient vibration analysis. In this work, we study the fluctuations over a month period of the fundamental frequencies (transverse and longitudinal) of a 3.5-story RC-building made of 2 identical units connected by a structural joint. Time independent building frequencies is a strong assumption; as illustrated by our experiment showing that over an observation period of a month, building frequencies fluctuate of about 3.5 %. A clear correlation is found between the building frequency fluctuations and temperature variations, with a phase-shift interpreted as the characteristic time of heat diffusion within the walls. This allows: (1) determining the thermal diffusivity of the structure, (2) inferring its relative stiffness variations, and (3) showing that its Young modulus varies linearly with temperature.  相似文献   

17.
An approximate solution of the classical eigenvalue problem governing the vibrations of a relatively stiff structure on a soft elastic soil is derived through the application of a perturbation analysis. The full solution is obtained as the sum of the solution for an unconstrained elastic structure and small perturbing terms related to the ratio of the stiffness of the soil to that of the superstructure. The procedure leads to approximate analytical expressions for the system frequencies, modal damping ratios and participation factors for all system modes that generalize those presented earlier for the case of stiff soils. The resulting approximate expressions for the system modal properties are validated by comparison with the corresponding quantities obtained by numerical solution of the eigenvalue problem for a nine-story building. The accuracy of the proposed approach and of the classical normal mode approach is assessed through comparison with the exact frequency response of the test structure.  相似文献   

18.
A procedure which involves a non‐linear eigenvalue problem and is based on the substructure method is proposed for the free‐vibration analysis of a soil–structure system. In this procedure, the structure is modelled by the standard finite element method, while the unbounded soil is modelled by the scaled boundary finite element method. The fundamental frequency, and the corresponding radiation damping ratio as well as the modal shape are obtained by using inverse iteration. The free vibration of a dam–foundation system, a hemispherical cavity and a hemispherical deposit are analysed in detail. The numerical results are compared with available results and are also verified by the Fourier transform of the impulsive response calculated in the time domain by the three‐dimensional soil–structure–wave interaction analysis procedure proposed in our previous paper. The fundamental frequency obtained by the present procedure is very close to that obtained by Touhei and Ohmachi, but the damping ratio and the imaginary part of modal shape are significantly different due to the different definition of damping ratio. This study shows that although the classical mode‐superposition method is not applicable to a soil–structure system due to the frequency dependence of the radiation damping, it is still of interest in earthquake engineering to evaluate the fundamental frequency and the corresponding radiation damping ratio of the soil–structure system. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper (TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom (MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.  相似文献   

20.
The non-linear behavior of Taipei Silty Clay under cyclic strain loading was investigated through a series of undrained cyclic strain-controlled tests. The Ramberg–Osgood equation was used with our proposed stiffness degradation model to calculate degraded secant moduli. The proposed degradation model is simple in that it has only one more component than Idriss's model, the modulus ratio for the first cycle, which reflects the effects of the previous cyclic strain history and the current level of the cyclic strain amplitude, and can be used to describe softening and hardening behavior under irregular cyclic straining. It was found that the Ramberg–Osgood equation successfully predicts the damping ratio for small to medium strains. However, it overestimates the damping ratio for larger strains, so we suggest it can be corrected with a damping ratio index. In addition, the proposed equation for describing the evolution of the damping ratio provides the means to assess the variation for Taipei Silty Clay in the measured damping ratio with both the number of cycles and the strain amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号