首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The impact of GPS radio occultation (RO) data assimilation on severe weather predictions in East Asia is introduced and reviewed. Both the local observation operator that assimilates the retrieved refractivity as local point measurement, and the nonlocal observation operator that assimilates the integrated retrieved refractivity along a straight raypath have been utilized in WRF 3DVAR to improve the initial analysis of the model. A general evaluation of the impact of these approaches on Asian regional analysis and daily prediction is provided in this paper. In general, the GPS RO data assimilation may improve prediction of severe weather such as typhoons and Mei-yu systems when COSMIC data were available, ranging from several points in 2006 to a maximum of about 60 in 2007 and 2008 in this region. Based on a number of experiments, regional model predictions at 5 km resolution were not significantly influenced by different observation operators, although the nonlocal observation operator sometimes results in slightly better track forecast. These positive impacts are seen not only in typhoon track prediction but also in prediction of local heavy rainfall associated with severe weather over Taiwan. The impact of 56 GPS RO soundings on track prediction of Cyclone Gonu (2007) over the Indian Ocean is also appealing when compared to other tracks assimilated with different observations. From a successive evaluation of skill scores for real-time forecasts on Mei-yu frontal systems operationally conducted over a longer period and predictions of six typhoons in 2008, assimilation of GPS RO data appears to have some positive impact on regional weather predictions, on top of existent assimilation with all other observations.  相似文献   

2.
An airborne radio occultation (RO) system has been developed to retrieve atmospheric profiles of refractivity, moisture, and temperature. The long-term objective of such a system is deployment on commercial aircraft to increase the quantity of moisture observations in flight corridors in order to improve weather forecast accuracy. However, there are several factors important to operational feasibility that have an impact on the accuracy of the airborne RO results. We investigate the effects of different types of navigation system noise on the precision of the retrieved atmospheric profiles using recordings from the GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) test flights, which used an Applanix POS/AV 510 Global Positioning System (GPS)/Inertial Navigation System (INS). The data were processed using a carrier phase differential GPS technique, and then the GPS position and inertial measurement unit data were combined in a loosely coupled integrated inertial navigation solution. This study quantifies the velocity precision as a function of distance from GPS reference network sites, the velocity precision with or without an inertial measurement unit, the impact of the quality of the inertial measurement unit, and the compromise in precision resulting from the use of real-time autonomous GPS positioning. We find that using reference stations with baseline lengths of up to 760?km from the survey area has a negligible impact on the retrieved refractivity precision. We also find that only a small bias (less than 0.5% in refractivity) results from the use of an autonomous GPS solution rather than a post-processed differential solution when used in an integrated GPS/INS system. This greatly expands the potential range of an operational airborne radio occultation system, particularly over the oceans, where observations are sparse.  相似文献   

3.
Availability of reliable, timely and accurate rainfall data is constraining the establishment of flood forecasting and early warning systems in many parts of Africa. We evaluated the potential of satellite and weather forecast data as input to a parsimonious flood forecasting model to provide information for flood early warning in the central part of Nigeria. We calibrated the HEC-HMS rainfall-runoff model using rainfall data from post real time Tropical Rainfall Measuring Mission (TRMM) Multi satellite Precipitation Analysis product (TMPA). Real time TMPA satellite rainfall estimates and European Centre for Medium-Range Weather Forecasts (ECMWF) rainfall products were tested for flood forecasting. The implication of removing the systematic errors of the satellite rainfall estimates (SREs) was explored. Performance of the rainfall-runoff model was assessed using visual inspection of simulated and observed hydrographs and a set of performance indicators. The forecast skill was assessed for 1–6 days lead time using categorical verification statistics such as Probability Of Detection (POD), Frequency Of Hit (FOH) and Frequency Of Miss (FOM). The model performance satisfactorily reproduced the pattern and volume of the observed stream flow hydrograph of Benue River. Overall, our results show that SREs and rainfall forecasts from weather models have great potential to serve as model inputs for real-time flood forecasting in data scarce areas. For these data to receive application in African transboundary basins, we suggest (i) removing their systematic error to further improve flood forecast skill; (ii) improving rainfall forecasts; and (iii) improving data sharing between riparian countries.  相似文献   

4.
Considering the requirement of multiple pre-harvest crop forecasts, the concept of Forecasting Agricultural output using Space, Agrometeorology and Land based observations (FASAL) has been formulated. Development of procedure and demonstration of this technique for four in-season forecasts for kharif rice has been carried out as a pilot study in Orissa State since 1998. As the availability of cloud-free optical remote sensing data during kharif season is very poor for Orissa state, multi-date RADARSAT SCANSAR data were used for acreage estimation of kharif rice. Meteorological models have been developed for early assessment of acreage and prediction of yield at mid and late crop growth season. Four in-season forecasts were made during four kharif seasons (1998-2001); the first forecast of zone level rice acreage at the beginning of kharif crop season using meteorological models, second forecast of district level acreage at mid growth season using two-date RADARSAT SCANSAR data and yield using meteorological models, third forecast at late growth season of district level acreage using three-date RADARSAT SCANSAR data and yield using meteorological models and revised forecast incorporating field observations at maturity. The results of multiple forecasts have shown rice acreage estimation and yield prediction with deviation up to 14 and 11 per cent respectively. This study has demonstrated the potential of FASAL concept to provide inseason multiple forecasts using data of remote sensing, meteorology and land based observations.  相似文献   

5.
In Morocco, no operational system actually exists for the early prediction of the grain yields of wheat (Triticum aestivum L.). This study proposes empirical ordinary least squares regression models to forecast the yields at provincial and national levels. The predictions were based on dekadal (10-daily) NDVI/AVHRR, dekadal rainfall sums and average monthly air temperatures. The Global Land Cover raster map (GLC2000) was used to select only the NDVI pixels that are related to agricultural land. Provincial wheat yields were assessed with errors varying from 80 to 762 kg ha−1, depending on the province. At national level, wheat yield was predicted at the third dekad of April with 73 kg ha−1 error, using NDVI and rainfall. However, earlier forecasts are possible, starting from the second dekad of March with 84 kg ha−1 error, at least 1 month before harvest. At the provincial and national levels, most of the yield variation was accounted for by NDVI. The proposed models can be used in an operational context to early forecast wheat yields in Morocco.  相似文献   

6.
在实时GPS精密单点定位中,能否快速有效地得到高精度的卫星钟差预报值是影响实时单点定位速度和精度的一个重要因素,由于GPS原子钟的高频率、高敏感和极易受到外界及其本身因素影响的性质使得卫星钟差预报至今都没能得到很好地解决,本文在目前的卫星钟差预报基础上,分别探讨了利用灰色模型理论、线性模型和二次多项式模型等方法,以IGS超快星历中2004年12月7日卫星钟差观测资料预报8日的卫星钟差为例进行卫星钟差预报研究,初步得出如下结论:在利用IGS超快星历的前一天的卫星钟差观测值预报后一天的钟差时,线性模型相对方便有效;而灰色模型只要选取合适的模型指数系数,能得到较高精度;但二次多项式模型预报精度较差。利用线性模型能达到或优于IGS超快星历预报钟差的预报精度。  相似文献   

7.
This paper investigates the impact of rapid small-scale water vapor fluctuations on GPS height determination. Water vapor measurements from a Raman lidar are used for documenting the water vapor heterogeneities and correcting GPS signal propagation delays in clear sky conditions. We use data from four short observing sessions (6 h) during the VAPIC experiment (15 May–15 June 2004). The retrieval of wet delays from our Raman lidar is shown to agree well with radiosonde retrievals (bias and standard deviation (SD) were smaller than 1 and 2.8 mm, respectively) and microwave radiometers (from two different instruments, bias was 6.0/−6.6 mm and SD 1.3/3.8 mm). A standard GPS data analysis is shown to fail in accurately reproducing fast zenith wet delay (ZWD) variations. The ZWD estimates could be improved when mean post-fit phase residuals were removed. Several methodologies for integrating zenith lidar observations into the GPS data processing are also presented. The final method consists in using lidar wet delays for correcting a priori the GPS phase observations and estimating a scale factor for the lidar wet delays jointly with the GPS station position. The estimation of this scale factor allows correcting for a mis-calibration in the lidar data and provides in the same way an estimate of the Raman lidar instrument constant. The agreement of this constant with an independent determination using radiosonde data is at the level of 1–4%. The lidar wet delays were derived by ray-tracing from zenith pointing measurements: further improvement in GPS positioning is expected from slant path lidar measurements that would properly account for water vapor anisotropy.  相似文献   

8.
基于GPS-PWV的不同云系降水个例的综合分析   总被引:1,自引:0,他引:1  
利用成都地基GPS观测网的观测数据,结合自动气象站资料计算出GPS遥感的大气可降水量(GPS-PWV)。按照降水性质,选取对流云降水和层状云降水个例,分析不同类型降水过程中GPS-PWV的变化特征。结果表明,对流云降水和层状云降水一般均发生在GPS-PWV的高值阶段。  相似文献   

9.
A global weather analysis-forecast system is used to produce six hourly analysis of meteorological fields at roughly 150 km × 150 km resolution at the National Center for Medium Range Weather Forecast (NCMRWF). In this paper, we have studied the Total Precipitable Water Content (TPWC) and Cloud Liquid Water Path (CLWP) derived from the Indian Remote Sensing (IRS-P4) Satellite over the Indian Ocean region in relation to operational numerical weather prediction (NWP) model analysis and short-range forecasts. An objective analysis was carried out by introducing the observations of CLWP, TPWC and their values (six hour forecasts) from the T80 model as the first guess, for a 20 days period of August 1999 using the standard Cressman’s technique. The reanalysis could capture the signature of TPWC and CLWP data from IRS-P4 satellite. In general the observed values of TPWC and CLWP from IRS-P4 have a positive bias compared to NCMRWF analysis over the region where the satellite passed. The CLWP values have been compared with Special Sensor Microwave/Imager (SSM/I) products from the Defense Meteorological Satellite Program (DMSP) satellites. Results indicate that the model derived CLWP values were within acceptable limits, whereas the observations from the Multi-channel Scanning Microwave Radiometer (MSMR) showed slightly larger values.  相似文献   

10.
Since the proof-of-concept GPS/Meteorology (GPS/MET) experiment successfully demonstrated active limb sounding of the Earth’s neutral atmosphere and ionosphere via GPS radio occultation (RO) from low Earth orbit, the developments of electron density (n e) retrieval techniques and powerful processing systems have made a significant progress in recent years. In this study, the researches of n e profiling from space-based GPS RO observations are briefly reviewed. Applying to the Formosat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) data, we also present a compensatory Abel inversion technique including the effects of large-scale horizontal gradients and/or inhomogeneous ionospheric n e obtained from an improved near real-time phenomenological model of the TaiWan Ionospheric Model. The results were evaluated by the ionosonde foF2 and foE data and showed improvements of rms foF2 difference from 29.2 to 16.5% in relative percentage and rms foE difference from 54.2 to 32.7% over the standard Abel inversion.  相似文献   

11.
偶发E层(sporadic E, Es)是主要发生在90~120 km高度的电子密度显著增强的电离层薄层,Es层的存在会导致掩星观测中全球导航卫星系统信号强度和相位的强烈波动。利用2019-01—2021-12风云三号C(Fengyun-3C,FY3C)和风云三号D(Fengyun-3D,FY3D)卫星GPS(global positioning system)掩星观测的50 Hz信噪比数据提取Es层信息,进而对两颗卫星数据分别反演得到的60°S~60°N中低纬地区Es层发生率的时空分布及季节变化进行比较。结果发现,虽然两颗卫星掩星资料得到的Es层发生率分布形态基本一致,均反映了Es层的发生率与地磁场和中性大气背景风场的相关性,但在大部分季节和地区,由FY3D得到的Es层发生率低于由FY3C得到的结果,北半球夏季中纬地区尤为明显,而FY3C反演结果与基于电离层与气候星座观测系统掩星数据的反演结果更为接近。导致差异的可能原因包括两颗卫星信噪比廓线的上边界高度分布和地方时覆盖上的差异、两颗卫星掩星接收机噪声水平的差异等。上述结果表明,后续融合两颗卫星的掩星数据进行Es层相关研究时,可能需要顾及两颗卫星接收机的不同噪声水平,在Es层发生的判定策略上进行针对性调整。  相似文献   

12.
To obtain higher accurate position estimates, the stochastic model is estimated by using residual of observations, hence, the stochastic model describes the noise and bias in measurements more realistically. By using GPS data and broadcast ephemeris, the numerical results indicating the accurate position estimates at sub-meter level are obtainable.  相似文献   

13.
A comprehensive global navigation satellite system (GNSS) based radio occultation (RO) data set is available for meteorology and climate applications since the start of GNSS RO measurements aboard the CHAllenging Mini-satellite Payload (CHAMP) satellite in February 2001. Global coverage, all-weather capability, long-term stability and accuracy not only makes this innovative use of GNSS signals a valuable supplement to the data set assimilated into numerical weather prediction (NWP) systems but also an excellent candidate for global climate monitoring. We present a 3D variational data assimilation (3D-Var) scheme developed to derive consistent global analysis fields of temperature, specific humidity, and surface pressure from GNSS RO data. The system is based on the assimilation of RO data within 6 h time windows into European Centre for Medium-Range Weather Forecasts (ECMWF) short-term (24 h, 30 h) forecasts, to derive climatologic monthly mean fields. July 2003 was used as a test-bed for assessing the system’s performance. The results show good agreement with climatologies derived from RO data only and recent NWP impact studies. These findings are encouraging for future developments to apply the approach for longer term climatologic analyses, validation of other data sets, and atmospheric variability studies.  相似文献   

14.
Total electron content (TEC) predictions made with the GPS-based la plata ionospheric model (LPIM) and the International Reference Ionosphere (IRI95) model were compared to estimates from the dual-frequency altimeter onboard the TOPEX/Poseidon (T/P) satellite. LPIM and IRI95 were evaluated for the location and time of available T/P data, from January 1997 to December 1998. To investigate temporal and spatial variations of the TEC bias between T/P and each model, the region covered by T/P observations was divided into ten latitude bands. For both models and for all latitudes, the bias was mainly positive (i.e. T/P values were larger); the LPIM bias was lower and less variable than the IRI95 bias. To perform a detailed analysis of temporal and spatial variability of the T/P-LPIM TEC bias, the Earth’s surface was divided into spherical triangles with 9°-sides, and a temporally varying regression model was fitted to every triangle. The highest TEC bias was found over the equatorial anomalies, which is attributed to errors in LPIM. A significant TEC bias was found at 40°N latitude, which is attributed to errors in the T/P Sea State Bias (SSB) correction. To separate systematic errors in the T/P TEC from those caused by LPIM, altimeter range biases estimated by other authors were analysed in connection with the TEC bias. This suggested that LPIM underestimates the TEC, particularly during the Southern Hemisphere summer, while T/P C-band SSB calibration is worse during the Southern Hemisphere winter.  相似文献   

15.
Short-term polar motion forecasts from earth system modeling data   总被引:1,自引:1,他引:0  
Polar motion predictions for up to 10 days into the future are obtained from predicted states of the atmosphere, ocean and continental hydrosphere in a hind-cast experiment covering 2003–2008. High-frequency mass variations within the geophysical fluids are the main cause of wide-band stochastic signals not considered in the presently used statistical prediction approach of IERS bulletin A for polar motion. Taking EAM functions based on forecasted model states, derived from ECMWF medium-range forecasts and corresponding LSDM and OMCT simulations, into account the prediction errors are reduced by 26%. The effective forecast length of the model combination is found to be 7 days, primarily limited by the accuracy of the forecasted atmospheric wind fields. Highest improvements are found for forecast days 4–5 with prediction skill scores of the polar motion excitation functions improved by a factor up to 5. Whereas bulletin A forecasts can explain the observed variance within the first 10 days only by up to 40%, half of the model forecasts reach relative explained variances between 40 and 80%.  相似文献   

16.
A local mechanism for strong ionospheric effects on radio occultation (RO) global positioning satellite system (GPS) signals is described. Peculiar zones centered at the critical points (the tangent points) in the ionosphere, where the gradient of the electron density is perpendicular to the RO ray trajectory, strongly influence the amplitude and phase of RO signals. It follows from the analytical model of local ionospheric effects that the positions of the critical points depend on the RO geometry and the structure of the ionospheric disturbances. Centers of strong ionospheric influence on RO signals can exist, for example, in the sporadic E-layers, which are inclined by 3–6° relative to the local horizontal direction. Also, intense F2 layer irregularities can contribute to the RO signal variations. A classification of the ionospheric influence on the GPS RO signals is introduced using the amplitude data, which indicates different mechanisms (local, diffraction, etc.) for radio waves propagation. The existence of regular mechanisms (e.g., local mechanism) indicates a potential for separating the regular and random parts in the ionospheric influence on the RO signals.  相似文献   

17.
现阶段北斗卫星导航系统(BeiDou navigation satellite system,BDS)的同步地球轨道(geostationary orbits,GEO)卫星、中倾斜地球同步轨道(inclined geo-synchronous orbits,IGSO)卫星和中圆地球轨道(medium earth orbit,MEO)卫星均存在伪距偏差,该伪距偏差的存在对精密定位的研究及其应用产生了较大的影响。根据北斗IGSO和MEO卫星的伪距偏差与高度角和频率相关的误差特性,本文分析了测站数目及分布,以及观测时长对建模的影响,选择18个测站2015年全年的数据作为MEO卫星的建模数据,其中可以连续观测到全弧段IGSO卫星的4个测站用于IGSO卫星的建模,采用加权分段线性拟合联合抗差估计的方法建立了北斗卫星伪距偏差改正模型。模型改正后,北斗IGSO和MEO卫星的伪距偏差得到明显的削弱,相比于传统的伪距偏差改正模型,精密单点定位(precise point positioning,PPP)的定位精度和收敛时间均得到提升。  相似文献   

18.
用BP网络预测GPS最佳外业观测时间   总被引:1,自引:1,他引:0  
蒋建东  高成发 《测绘科学》2005,30(6):90-91,94
本文在简述影响GPS外业观测时间的因素和BP网络误差反向传播算法后,着重讲述了如何建立预测GPS外业观测时间的BP网络模型。实际数据表明该网络在实践中具有一定的可行性,能提高工作效率。  相似文献   

19.
时序模型是一种有效的变形预报方法,但在很多变形预报时序模型应用中,存在建模过程不严密、缺乏统计检验和模型验证等问题。针对这些问题,本文首次在变形预报中采用LM检验来判断序列的相关性,ADF检验判断序列的平稳性,自相关图和偏自相关图初步确定模型类型和阶数以及AIC准则来确定最终模型,确保建模的每一过程都有严格的统计意义。文中利用实测沉降数据,建立了预报模型,并利用模型进行预报;最后将预报结果与实测数据比较,验证了预报模型的有效性,证明本文建模方法科学合理,能用于实际变形预报。  相似文献   

20.
GPS测量中经常出现开机后卫星数不够或PDOP几何精度因子超限等问题,接收GPS导航电文中星历预报文件,提前预测测区卫星分布情况卫星出入地平时刻、卫星进退观测允许高度角时刻及可见卫星的高度角辅方位角等,对于合理选择观测时间,提高作业效率具有很重要的作用。本文介绍了如何应用StarReport星历预报软件获取和解算GPS星历文件的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号