首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Collision between the Indian and the Eurasian plates since the early Cenozoic produces one of the world’s most remarkable continental escarpments between the Tibetan Plateau and the adjacent Sichuan Basin. Yet Tertiary sediments are rare in the Sichuan Basin; the oldest preserved Late Cenozoic deposits called Dayi conglomerates directly overlie the Cretaceous or Jurassic red beds. Using cosmogenic 10Be and 26Al burial dating, we obtain deposition ages of ~2.0 Ma and catchment erosion rates of ~400 mm/ka for the Dayi conglomerates. Zircon U–Pb age distributions suggest derivation of these conglomerates from the Songpan-Ganzi flysch, the Pengguan complex and Late Permian and Triassic granite plutons in the headwater regions of the Min Jiang (Jiang, a Chinese term, means river). The formation of the poorly-sorted, sub-angular to sub-rounded and tens-centimeter-sized deposits in the western margin of the Sichuan Basin, after long distance transportation, is best explained by glacial activity ~2.0 Ma ago in east Tibet.  相似文献   

2.
A variety of Fe, Mn and trace-metal-enriched Mesozoic pelagic sediments are associated with the tectonically emplaced Antalya Complex in southwestern Turkey. Palaeotectonic settings represented within the complex comprise a continental platform, passing laterally through a Mesozoic passive margin into a zone of marginal oceanic crust, formed during the early stages of continental separation. The origins of the metalliferous sediments are elucidated using mineralogical, major, trace element and REE data, and comparisons with oceanic and ophiolite-related sediments.Late Triassic deposition during the initial continental separation was mostly terrigenous, including detrital carbonate derived from adjacent reef complexes. During the Jurassic and Early Cretaceous the passive margin underwent accumulation of fine-grained terrigenous matter and biogenic silica in deep water below the carbonate compensation depth. Argillaceous mudstones deposited during a regional hiatus at the end of the Upper Triassic show unusual Fe and trace metal enrichment, together with a marked positive Ce anomaly, indicative of slow hydrogenous accumulation.The marginal oceanic crustal zone also shows dominantly terrigenous and siliceous biogenic deposition but with the addition of an important hydrothermal component represented by Fe-Mn deposits. These occur within and immediately above the Upper Triassic lavas of the oceanic crust and as intercalations in the overlying Lower Cretaceous radiolarian chert sequence. Most of these sediments show strong Fe-Mn fractionation; several show a negative Ce anomaly implying rapid incorporation of the REEs from seawater.The Upper Triassic Fe-Mn deposits associated with the lavas are relatively trace-element-depleted and record rapid localised precipitation from relatively high-temperature hydrothermal solutions. By contrast, the more manganiferous and trace-element-enriched metalliferous horizons in the Jurassic to Lower Cretaceous chert sequences represent more dilute low-temperature hydrothermal discharge. Regional comparisons suggest that dominantly manganiferous deposits free of sulphides are characteristic of the early formed Mesozoic ocean crust compared with well established spreading axes like the Troodos Massif, Cyprus.  相似文献   

3.
前人研究表明喜马拉雅造山带西部出露的拉昂错蛇绿混杂岩为新特提斯洋壳岩石圈的一部分,代表了新特提斯洋的关闭及其随后大洋岩石圈物质的仰冲.鉴于拉昂错蛇绿岩的构造演化历史尚不明确,前期对于拉昂错蛇绿岩带构造归属的研究主要基于岩石学研究和地表地质调查等,缺少精细的深部地壳结构进行运动学指示,因此证明拉昂错蛇绿混杂岩体的构造归属并非易事.本次研究中,我们对前期获得的一条南北向延伸穿过雅鲁藏布江缝合带和喜马拉雅造山带西部拉昂错蛇绿岩体的112 km长的深反射地震剖面进行了构造解释.高分辨率的深反射地震剖面清晰地显示了喜马拉雅山脉西部造山带内发育良好的地壳双冲构造几何结构,该地壳尺度双冲构造将印度俯冲地壳物质从底部运移到上部.同时,地震剖面还显示拉昂错蛇绿岩体和雅鲁藏布江蛇绿岩体在上地壳深处呈倾向相反但底部相通的结构构造.结合前人的岩石学/地球化学/地表地质研究成果,我们认为拉昂错蛇绿岩体为雅鲁藏布江缝合带蛇绿岩体的一部分.印度俯冲前缘的双冲构造折返将深部物质带到地表过程的同时,还将部分雅鲁藏布江蛇绿混杂岩携带至南侧距主缝合带位置大约20 km的拉昂错蛇绿岩区域.  相似文献   

4.
Abstract In this paper, a summary of the tectonic history of the Mirdita ophiolitic nappe, northern Albania, is proposed by geological and structural data. The Mirdita ophiolitic nappe includes a subophiolite mélange, the Rubik complex, overlain by two ophiolite units, referred to as the Western and Eastern units. Its history started in the Early Triassic with a rifting stage followed by a Middle to Late Triassic oceanic opening between the Adria and Eurasia continental margins. Subsequently, in Early Jurassic time, the oceanic basin was affected by convergence with the development of a subduction zone. The existence of this subduction zone is provided by the occurrence of the supra‐subduction‐zone‐related magmatic sequences found in both the Western and Eastern units of the Mirdita ophiolitic nappe. During the Middle Jurassic, continuous convergence resulted in the obduction of the oceanic lithosphere, in two different stages – the intraoceanic and marginal stages. The intraoceanic stage is characterized by the westward thrusting of a young and still hot section of oceanic lithosphere leading to the development of a metamorphic sole. In the Late Jurassic, the marginal stage developed by the emplacement of the ophiolitic nappe onto the continental margin. During this second stage, the emplacement of the ophiolites resulted in the development of the Rubik complex. In the Early Cretaceous, the final emplacement of the ophiolites was followed by the unconformable sedimentation of the Barremian–Senonian platform carbonate. From the Late Cretaceous to the Middle Miocene, the Mirdita ophiolitic nappe was translated westward during the progressive migration of the deformation front toward the Adria Plate. In the Middle to Late Miocene, a thinning of the whole nappe pile was achieved by extensional tectonics, while the compression was still active in the westernmost areas of the Adria Plate. On the whole, the Miocene deformations resulted in the uplift and exposition of the Mirdita ophiolites as observed today.  相似文献   

5.
Terrane analysis and accretion in North-East Asia   总被引:2,自引:0,他引:2  
Abstract A terrane map of North-East Asia at 1:5 000 000 scale has been compiled. The map shows terranes of different types and ages accreted to the North-Asian craton in the Mesozoic–Cenozoic, sub-and superterranes, together with post-amalgamation and post-accretion assemblages. The great Kolyma-Omolon superterrane adjoins the north-east craton margin. It is composed of large angular terranes of continental affinity: craton fragments and fragments of the passive continental margin of Siberia, and island arc, oceanic and turbidite terranes that are unconformably overlain by shallow marine Middle-Upper Jurassic deposits. The superterrane resulted from a long subduction of the Paleo-Pacific oceanic crust beneath the Alazeya arc. Its south-west boundary is defined by the Late Jurassic Uyandina-Yasachnaya marginal volcanic arc which was brought about by subduction of the oceanic crust that separated the superterrane from Siberia. According to paleomagnetic evidence the width of the basin is estimated to be 1500–2000 km. Accretion of the superterrane to Siberia is dated to the late Late Jurassic-Neocomian. The north-east superterrane boundary is defined by the Lyakhov-South Anyui suture which extends across southern Chukotka up to Alaska. Collision of the superterrane with the Chukotka shelf terrane is dated to the middle of the Cretaceous. The Okhotsk-Chukotka belt, composed of Albian-Late Cretaceous undeformed continental volcan-ites, defines the Cretaceous margin of North Asia. Terranes eastward of the belt are mainly of oceanic affinity: island arc upon oceanic crust, accretion wedge and turbidite terranes, as well as cratonic terranes and fragments of magmatic arcs on the continental crust and metamorphic terranes of unclear origin and age. The time of their accretion is constrained by post-accretionary volcanic belts that extend parallel to the Okhotsk-Chukotka belt but are displaced to the east: the Maastrichtian-Miocene Kamchatka-Koryak belt and the Eocene-Quaternary Central Kamchatka belt which mark active margins of the continent of corresponding ages.  相似文献   

6.
This paper presents a review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia. The record of magmatism is used to evaluate the spatial-temporal extent and influence of multiple tectonic regimes during the Mesozoic, as well as the onset and history of Paleo-Pacific slab subduction beneath Eurasian continent. Mesozoic-Paleogene magmatism at the continental margin of Northeast Asia can be subdivided into nine stages that took place in the Early-Middle Triassic, Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, Late Cretaceous, and Paleogene, respectively. The Triassic magmatism is mainly composed of adakitic rocks, bimodal rocks, alkaline igneous rocks, and A-type granites and rhyolites that formed in syn-collisional to post-collisional extensional settings related to the final closure of the Paleo-Asian Ocean. However, Triassic calc-alkaline igneous rocks in the Erguna-Xing’an massifs were associated with the southward subduction of the Mongol-Okhotsk oceanic slab. A passive continental margin setting existed in Northeast Asia during the Triassic. Early Jurassic calc-alkaline igneous rocks have a geochemical affinity to arc-like magmatism, whereas coeval intracontinental magmatism is composed of bimodal igneous rocks and A-type granites. Spatial variations in the potassium contents of Early Jurassic igneous rocks from the continental margin to intracontinental region, together with the presence of an Early Jurassic accretionary complex, reveal that the onset of the Paleo- Pacific slab subduction beneath Eurasian continent occurred in the Early Jurassic. Middle Jurassic to early Early Cretaceous magmatism did not take place at the continental margin of Northeast Asia. This observation, combined with the occurrence of low-altitude biological assemblages and the age population of detrital zircons in an Early Cretaceous accretionary complex, indicates that a strike-slip tectonic regime existed between the continental margin and Paleo-Pacific slab during the Middle Jurassic to early Early Cretaceous. The widespread occurrence of late Early Cretaceous calc-alkaline igneous rocks, I-type granites, and adakitic rocks suggests low-angle subduction of the Paleo-Pacific slab beneath Eurasian continent at this time. The eastward narrowing of the distribution of igneous rocks from the Late Cretaceous to Paleogene, and the change from an intracontinental to continental margin setting, suggest the eastward movement of Eurasian continent and rollback of the Paleo- Pacific slab at this time.  相似文献   

7.
Masayuki  Ehiro  Satoru  Kojima  Tadashi  Sato  Talat  Ahmad  Tomoyuki  Ohtani 《Island Arc》2007,16(1):124-132
Abstract   Callovian (late Middle Jurassic) ammonoids Macrocephalites and Jeanneticeras were recovered from the Shyok suture zone, northeast of Chang La Pass, Ladakh, northwest India. They are the first reliable Jurassic fossils and the oldest chronologic data from the Shyok suture zone. The ammonoid-bearing Jurassic strata, newly defined as the Tsoltak Formation, consist largely of terrigenous mudstone with thin sandstone beds and were probably a part of the continental basement to the Cretaceous Ladakh Arc.  相似文献   

8.
Placing precise constraints on the timing of the India-Asia continental collision is essential to understand the successive geological and geomorphological evolution of the orogenic belt as well as the uplift mechanism of the Tibetan Plateau and their effects on climate,environment and life.Based on the extensive study of the sedimentary record on both sides of the Yarlung-Zangbo suture zone in Tibet,we review here the present state of knowledge on the timing of collision onset,discuss its possible diachroneity along strike,and reconstruct the early structural and topographic evolution of the Himalayan collided range.We define continent-continent collision as the moment when the oceanic crust is completely consumed at one point where the two continental margins come into contact.We use two methods to constrain the timing of collision onset:(1) dating the provenance change from Indian to Asian recorded by deep-water turbidites near the suture zone,and(2) dating the age of unconformities on both sides of the suture zone.The first method allowed us to constrain precisely collision onset as middle Palaeocene(59±l Ma).Marine sedimentation persisted in the collisional zone for another 20-25 Ma locally in southern Tibet,and molassic-type deposition in the Indian foreland basin did not begin until another 10-15 Ma later.Available sedimentary evidence failed to firmly document any significant diachroneity of collision onset from the central Himalaya to the western Himalaya and Pakistan so far.Based on the Cenozoic stratigraphic record of the Tibetan Himalaya,four distinct stages can be identified in the early evolution of the Himalayan orogen:(1) middle Palaeocene-early Eocene earliest Eohimalayan stage(from 59 to 52 Ma):collision onset and filling of the deep-water trough along the suture zone while carbonate platform sedimentation persisted on the inner Indian margin;(2) early-middle Eocene early Eohimalayan stage(from 52 to 41 or 35 Ma):filling of intervening seaways and cessation of marine sedimentation;(3) late Eocene-Oligocene late Eohimalayan stage(from 41 to 25 Ma):huge gap in the sedimentary record both in the collision zone and in the Indian foreland;and(4) late Oligocene-early Miocene early Neohimalayan stage(from 26 to 17 Ma):rapid Himalayan growth and onset of molasse-type sedimentation in the Indian foreland basin.  相似文献   

9.
The Ladakh Mesozoic ophiolite belt (western Himalaya) contains a pile of volcanic thrust sheets (Dras unit) which differ significantly in structure and composition from the ophiolitic mélange zones. The Dras unit is composed of pillow lavas, doleritic sills, very irregular basaltic (?basaltic andesites) and dacitic flows intercalated with pyroclastics, volcanoclastic sediments and radiolarian cherts. According to fossil evidence, this volcanism must have been active between Upper Jurassic and Upper Cretaceous.The presence of relict primary minerals, such as magnesiochromite, clinopyroxene, hastingsitic hornblende and Ti-magnetite as well as distinctive bulk chemistries, suggests that the volcanics belong to island arc tholeiite and to calc-alkaline rock series, typical of present island arcs in the Caribbean and Pacific.Model calculations incorporating probed phenocryst phases indicate that in addition to olivine, clinopyroxene and plagioclase, amphibole and titanomagnetite are crucial fractionating phases in the development of the dacites from a primitive tholeiitic melt. The latter process must have taken place at about 1000°C and at moderate depth of 5–15 km within or underneath the island arc. Today, hornblende-bearing mafic cumulates appear in the vicinity of Kargil within and close to the Dras volcanics.In a Sr-evolution diagram, the Dras volcanics have yielded a “pseudo-isochron” with a low initial ratio of 0.7035 ± 0.0003, which is in the same range as the mean of modern island arc volcanics. However, a geologically unrealistic age of 263 m.y., is obtained from the slope of this isochron.The upper mantle is regarded as the source material for the island arc tholeiitic magmas. Enrichment in K, Ba, Sr and LREE supports the involvement of components derived from dehydration or incipient melting of subducted Tethyan oceanic crust in the mantle.  相似文献   

10.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   

11.
Jurassic accretion tectonics of Japan   总被引:40,自引:0,他引:40  
Yukio  Isozaki 《Island Arc》1997,6(1):25-51
Abstract The Jurassic accretionary complex and coeval granites in Japan represent remnants of the Jurassic arc-trench system developed between the Asian continent and Pacific Ocean. The Jurassic accretionary complex occurs as a large-scale nappe that is tectonically sandwiched between the overlying pre-Jurassic nappes and underlying post-Jurassic nappes. By virtue of new research styles (microfossil mapping and chronometric mapping) the following new views of the Jurassic accretionary complex in Japan, that suggest those for on-land exposed ancient accretionary complexes in general, have been obtained: (i) the accretion age of the Jurassic accretionary complex ranges over ~ 80 million years from the latest Triassic to earliest Cretaceous according to a reconstructed stratigraphy of component rocks (oceanic plate stratigraphy); (ii) the accretionary complex is subdivided into several nappe units, each characterized by unique oceanic plate stratigraphy; (iii) a tectonically downward-younging polarity is observed in the piled nappes; (iv) the Jurassic accretionary complex is composed of coherent-type and chaotic-type units, the former retaining the primary accretionary structures while the latter are characterized by collapsed and secondarily mixed materialslfabrics derived from the former; (v) the chaotic-type units predominate in volume over the coherent-type units; (vi) the accretionary complex suffered from a regional low-grade metamorphism (up to the lower greenschist facies) within ~10–20 million years after the accretion timing; and (vii) the lateral extent of the Jurassic accretionary complex in East Asia is intermittently traced from the Koryak mountains in Russia to North Palawan in the west Philippines for ~6000 km. Discussion focuses on (i) the low preservation ratio of the coherent-type units to the chaotic-type units with respect to frequent subduction erosion by seamount subduction; (ii) absence of the Franciscan-type melange, suggesting sedimentary mixing origin for the chaotic-type unit; (iii) a growth rate of the Jurassic accretionary complex compatible to modern analogues; and (iv) the total volume of the Jurassic accretionary complex in Japan with respect to the most likely terrigeiious elastics source along the 250 Ma continent-continent collision suture in central China (between the Sino-Korean and Yangtze blocks).  相似文献   

12.
Abstract The Jurassic Tamba accretionary complex is divided into two tectono‐stratigraphic suites (Type I and II nappe groups), which are further divided into six complexes (nappes) each of which is characterized by a rock sequence of Late Paleozoic greenstone/limestone, Permian to Jurassic chert and Jurassic terrigenous clastic rocks. The mode of occurrence of the greenstone is divided into two types. The major basal type occurs as a large coherent slab associated with Permian chert and limestone, constituting the basal part of each complex, and the minor mixed type occurs as fragmented allochthonous greenstone blocks and lenses mixed with chert, limestone and sandstone in the Jurassic mudstone matrix. Most of the basal greenstones have uniform geochemical characteristics, which indicate enriched‐mid‐oceanic ridge basalt (MORB) affinity. Their geochemical compositions are akin to the reported Permo‐Carboniferous and Triassic oceanic plateau basalts. Mixed greenstones are divided into two petrochemical types: (i) tholeiitic basalt with normal‐MORB affinity, which is predominant in the uppermost complex of the Type II suite (upper nappe group); and (ii) tholeiitic and alkalic basalts of oceanic island or seamount origin, which are common in all complexes of the Tamba Belt. Geochemical characteristics of the greenstones thus vary in accordance with their occurrences and the structural units to which they belong. This relationship reflects the difference in topographic relief and crustal thickness of the accreted oceanic edifices – the remnants of thick oceanic plateau crust tended to accrete to the continental margin as a large basal greenstone body, whereas thin normal oceanic crust with small seamounts or oceanic islands accreted as mixed greenstones because of their mechanical weakness. The Type II suite (upper nappe group) contains the basal and mixed greenstones, whereas the Type I suite (lower nappe group) includes only mixed greenstones. This distinction may reflect the temporal change of subducting edifices from a thick oceanic plateau to a thin normal oceanic crust, and suggests that the accretion of a large oceanic plateau may be responsible for building accretionary complexes with thick basal greenstones slabs.  相似文献   

13.
Tethyan ophiolites and Pangea break-up   总被引:6,自引:0,他引:6  
Abstract The break‐up of Pangea began during the Triassic and was preceded by a generalized Permo‐Triassic formation of continental rifts along the future margins between Africa and Europe, between Africa and North America, and between North and South America. During the Middle–Late Triassic, an ocean basin cutting the eastern equatorial portion of the Pangea opened as a prograding branch of the Paleotethys or as a new ocean (the Eastern Tethys); westwards, continental rift basins developed. The Western Tethys and Central Atlantic began to open only during the Middle Jurassic. The timing of the break‐up can be hypothesized from data from the oceanic remnants of the peri‐Mediterranean and peri‐Caribbean regions (the Mesozoic ophiolites) and from the Atlantic ocean crust. In the Eastern Tethys, Middle–Late Triassic mid‐oceanic ridge basalt (MORB) ophiolites, Middle–Upper Jurassic MORB, island arc tholeiite (IAT) supra‐subduction ophiolites and Middle–Upper Jurassic metamorphic soles occur, suggesting that the ocean drifting was active from the Triassic to the Middle Jurassic. The compressive phases, as early as during the Middle Jurassic, were when the drifting was still active and caused the ocean closure at the Jurassic–Cretaceous boundary and, successively, the formation of the orogenic belts. The present scattering of the ophiolites is a consequence of the orogenesis: once the tectonic disturbances are removed, the Eastern Tethys ophiolites constitute a single alignment. In the Western Tethys only Middle–Upper Jurassic MORB ophiolites are present – this was the drifting time. The closure began during the Late Cretaceous and was completed during the Eocene. Along the area linking the Western Tethys to the Central Atlantic, the break‐up was realized through left lateral wrench movements. In the Central Atlantic – the link between the Western Tethys and the Caribbean Tethys – the drifting began at the same time and is still continuing. The Caribbean Tethys opened probably during the Late Jurassic–Early Cretaceous. The general picture rising from the previous data suggest a Pangea break‐up rejuvenating from east to west, from the Middle–Late Triassic to the Late Jurassic–Early Cretaceous.  相似文献   

14.
In central Baja California (Vizcaino Peninsula, and Cedros and San Benito Islands) two distinct radiolarian bedded chert sequences of late Triassic and late Jurassic/lowermost Cretaceous age, can be differentiated on lithostratigraphic and geochemical criteria.These bedded chert sequences are part of the conformable sedimentary cover of more or less dismembered ophiolites, which are overthrusted by the San Andrès-Cedros volcanic arc system of middle late Jurassic age.Major and trace elements permit paleogeographic zonation of the late Jurassic/lowermost Cretaceous radiolarites lying conformably upon ophiolites considered as fragments of an oceanic basin floor which developed westward of the San Andrès volcanic arc. Progressive accretion of this oceanic basin floor, along the continental margin is supported by the fact that the more distal radiolarian chert sequences belong to the lowermost structural units of this area.  相似文献   

15.
Shigenori  Maruyama  J. G. Liou  Ruyuan  Zhang 《Island Arc》1994,3(2):112-121
Abstract In the Triassic suture between the Sino-Korean and Yangtze cratons, the Dabie metamorphic Complex in central China includes three tectonic units: the northern Dabie migmatitic terrane, the central ultrahigh-P coesite- and diamond-bearing eclogite belt, and the southern high-P blueschist-eclogite belt. This complex is bounded to the north by a north-dipping normal fault with a Paleozoic accretionary complex and to the south by a north-dipping reverse fault with Yangtze basement plus its foreland fold-and-thrust sequence. Great differences in metamorphic pressure suggests that these units reached different depths during metamorphism and their juxtaposition occurred by wedge extrusion of subducted old continental fragments. These units were subsequently subjected to (i) Barrovian type regional metamorphism and deformation at shallow depths; (ii) intrusion of Cretaceous granitic plutons; and (iii) doming and segmentation into several blocks by normal and strike-slip faults. A new speculative model of tectonic exhumation of UHP rocks is proposed.  相似文献   

16.
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc–Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1–39.7 Ma 40Ar/39Ar mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane.  相似文献   

17.
The reconstruction of the tectonic evolution of the oceanic crust, including the recognition of ancient oceanic plumes and the differentiation between multiple and single oceanic arcs, relies on the paleogeographic analysis of accreted oceanic fragments found in orogenic belts. Here we present paleomagnetic and gravity data from Cretaceous oceanic basaltic and gabbroic rocks, the continental metamorphic basement, and their associated cover from northwestern Colombia. Based on regional scale tectonic reconstructions and geochemical constraints, such rocks have been interpreted as remnants of an oceanic large igneous province formed in southern latitudes, which was accreted to the sialic continental margin during the Late Cretaceous. Gravity analyses suggest the existence of a coherent high density segment separated by major suture zones from a lower density material related to the continental crust and/or thick sedimentary sequences trapped during collision. A characteristic paleomagnetic direction in Early and Late Cretaceous oceanic volcano-plutonic rocks, revealing a southeastern declination (D) and a negative inclination (I), may be interpreted in two different ways: (1a primary magnetization (tilt-corrected direction D = 130.3°, I = -23.3°, k = 23.4, α95 = 26.4°), suggesting clockwise rotation around 130°, and magnetization acquired in southern latitudes (range of 4°S to 21°S); or (2) a remagnetization event during a reverse interval of the Earth’s magnetic field in the Cenozoic (in situ direction D = 128.7°, I = -6.2°, k = 23.1, α95 = 26.1°), suggesting a counter-clockwise rotation around 50°. The first scenario seems more plausible, as it is consistent with previous paleomagnetic studies at other localities; it is compatible with a southern paleogeography for this block, and when integrated with other regional geological and paleomagnetic studies, supports a southern Pacific origin of a major oceanic block, formed as a part of a broader Cretaceous plateau that may have extended south or southwest of Galapagos. After its initial accretion, this block was subsequently fragmented due to the oblique SW-NE approach to the continental margin during the Late Cretaceous.  相似文献   

18.
Twelve analysed leucogranites of the High Himalaya in Bhutan (Chung La, Mönlakarchung) and Garhwal (Badrinath) are among the most18O-enriched granites known (11.5–12.4‰ δ18OSMOW with two exceptions) and separate minerals show good isotopic concordance. The data strongly support an origin of the granites by anatexis of continental basement such as the Indian crystalline basement sheet or slab, undercut by the Main Central Thrust, of which five samples were analysed. In contrast, the pre-collision Transhimalayan (Gangdese) batholiths to the north of the Indus-Tsangpo suture, as exemplified by the Ladakh intrusives, show an initially oceanic trend of δ18O vs. SiO2 that becomes gradually somewhat enriched with respect to Hachijo-Jima. While not completely outside the range of enrichment that seems possible by fractional crystallisation, this could tie in with the87Sr inhomogeneities reported by Honegger et al. [9], which may be due to assimilation of variably radiogenic Eurasian continental basement. For both the leucogranites and Ladakh intrusives the18O levels and the concordance between minerals rule out significant cumulative water/rock ratios in syn- or post-magmatic interaction with subsurface waters.  相似文献   

19.
Abstract The Palaeo-Tethyan suture separates regions characterized by two fundamentally different tectonic styles in the structure of the Tethysides. North of the suture in Iran, Turkmenistan, Afghanistan, Tadjikistan, Kirgizstan, Uzbekistan, Kazakhstan and large parts of the Russian Federation and China, orogenic development is characterized by very large subduction-accretion complexes developed since the late Proterozoic. Magmatic arc axes migrated radially outwards from the 'Old Vertex of Eurasia' and consolidated the accretionary prisms into a 'basement complex' dominated by a pelitic composition. In such orogens, called the 'Turkic-type' after the dominant ethnic population of Central Asia, ophiolites are unreliable indicators of sutures, because they are present throughout the 'basement' as in-faulted shreds and rarely as nappes. By contrast, south of the Palaeo-Tethyan suture, orogeny was commonly characterized by a Sumatra- or Andean-type continental margin arc (e.g. the Transhimalaya arc) that in places became an island arc by back-arc basin rifting (e.g. the Black Sea behind the Rhodope-Pontide fragment) and later collided with an Atlantic- (as in the Himalaya) or California-type (as in the Alps) continental margin to create Alpine- or Himalayan-type orogenic belts. Turkic-type orogenic belts result from the exaggeration of the Himalayan-type as a result of the subduction of very large oceanic areas that contain great amounts of sediment. They contribute to the enlargement and also possibly the growth of the continental crust which has a composition more silicic than basalt. The Palaeo-Tethyan suture is thus a line across which the rate of continental enlargement by subduction-accretion changed dramatically.  相似文献   

20.
Olivier  Monod  Michel  Faure  Juan-Carlos  Salinas 《Island Arc》1994,3(1):25-34
Abstract The pre-Oligocene structure of southwest Mexico, south of the trans-Mexico volcanic axis, is investigated from Taxco (Guerrero state, abbreviation: Gro) to the Pacific coast. Three volcano-sedimentary units are recognized; from east to west the calc-alkaline Teloloapan, tholeiitic Arcelia and calc-alkaline Zihuatanejo suites. Structural and stratigraphic data show that the Teloloapan volcanic arc, active during ?Late Jurassic and early Cretaceous, was built upon continental basement. The Teloloapan lavas are overlain by the Albian–Cenomanian Morelos platform carbonates and followed by the Upper Cretaceous Mexcala flysch. In contrast, the Arcelia pillow lavas are associated with sandstones and cherts of Albian-?Cenomanian age. The Zihuatanejo arc was also installed upon continental basement and its magmatic activity was in part coeval with Arcelia magmatism. Unlike the almost undeformed Zihuatanejo volcanic rocks, all the other volcanic units are involved in east-vergent thrusting and recumbent folding associated with ductile tectonics, as well as the Late Cretaceous Mexcala flysch overlying the Morelos platform carbonates. Contrasting with previous views, the present results do not support a major mid-Cretaceous thrusting event in the study area. The new geodynamic interpretation proposed here considers that the Arcelia rocks were formed in a marginal basin situated east of the Zihuatanejo arc. Closure of this basin in Paleocene times is responsible for the east vergent thrust tectonics in SW Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号