首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A broad zone of dominantly subaerial silicic volcanism associated with regional extensional faulting developed in southern South America during the Middle Jurassic, contemporaneously with the initiation of plutonism along the present Pacific continental margin. Stratigraphic variations observed in cross sections through the silicic Jurassic volcanics along the Pacific margin of southernmost South America indicate that this region of the rift zone developed as volcanism continued during faulting, subsidence and marine innundation. A deep, fault-bounded submarine trough formed near the Pacific margin of the southern part of the volcano-tectonic rift zone during the Late Jurassic. Tholeiitic magma intruded within the trough formed the mafic portion of the floor of this down-faulted basin. During the Early Cretaceous this basin separated an active calc-alkaline volcanic arc, founded on a sliver of continental crust, from the then volcanically quiescent South American continent. Geochemical data suggest that the Jurassic silicic volcanics along the Pacific margin of the volcano-tectonic rift zone were derived by crustal anatexis. Mafic lavas and sills which occur within the silicic volcanics have geochemical affinities with both the tholeiitic basalts forming the ophiolitic lenses which are the remnants of the mafic part of the back-arc basin floor, and also the calc-alkaline rocks of the adjacent Patagonian batholith and their flanking lavas which represent the eroded late Mesozoic calc-alkaline volcanic arc. The source of these tholeiitic and calc-alkaline igneous rocks was partially melted upper mantle material. The igneous and tectonic processes responsible for the development of the volcano-tectonic rift zone and the subsequent back-arc basin are attributed to diapirism in the upper mantle beneath southern South America. The tectonic setting and sequence of igneous and tectonic events suggest that diapirism may have been initiated in response to subduction.  相似文献   

2.
An interpretation of the seismic stratigraphy and sedimentation history of the East Mariana Basin has been made using recently collected seismic reflection and refraction data. This Mesozoic(?) age basin, between the Marshall Islands and the Mariana Trench, is subdivided into three regions. The central region with about 1000 m of sediment probably records Jurassic to Late Cretaceous sedimentation of a pelagic biogenic and clay-rich section overlain by a thick section of mainly Cenozoic carbonates shed from nearby volcanic platforms. A western region is characterized by a thinner sediment cover and a shallower acoustic basement with a similar sedimentation history except that the upper section is thinner as a consequence of fewer nearby volcanic highs. Extensive Late Cretaceous mid-plate volcanics apparently masks the lower section and forms acoustic basement. The shallower eastern region (east of 157.5°E) contains WNW-trending ridges which may be either fracture zones or high-amplitude abyssal hills. The sedimentation appears controlled by the same factors as in the other regions but the area was bypassed by most Cenozoic basin-filling turbidites because of its elevation.The isostatistically corrected basement depths between the three regions suggest that the crust in the east may be substantially younger than in the rest of the East Mariana Basin, perhaps Cretaceous in age. This requires the existence of a tectonic boundary within the basin.  相似文献   

3.
The Chiang Khong segment of the Chiang Khong–Lampang–Tak Volcanic Belt is composed of three broadly meridional sub‐belts of mafic to felsic volcanic, volcaniclastic, and associated intrusive rocks. Associated sedimentary rocks are largely non‐marine red beds and conglomerates. Three representative Chiang Khong lavas have Late Triassic (223–220 Ma) laser ablation inductively coupled mass‐spectroscopy U–Pb zircon ages. Felsic‐dominated sequences in the Chiang Khong Western and Central Sub‐belts are high‐K calc–alkaline rocks that range from basaltic to dominant felsic lavas with rare mafic dykes. The Western Sub‐belt lavas have slightly lower high field strength element contents at all fractionation levels than equivalent rocks from the Central Sub‐belt. In contrast, the Eastern Sub‐belt is dominated by mafic lavas and dykes with compositions transitional between E‐mid‐oceanic ridge basalt and back‐arc basin basalts. The Eastern Sub‐belt rocks have higher FeO* and TiO2 and less light rare earth element enrichment than basalts in the high‐K sequences. Basaltic and doleritic dykes in the Western and Central sub‐belts match the composition of the Eastern Sub‐belt lavas and dykes. A recent geochemical study of the Chiang Khong rocks concluded that they were erupted in a continental margin volcanic arc setting. However, based on the dominance of felsic lavas and the mainly non‐marine associated sediments, we propose an alternative origin, in a post‐collisional extensional setting. A major late Middle to early Late Triassic collisional orogenic event is well documented in northern Thailand and Yunnan. We believe that the paucity of radiometric dates for arc‐like lavas in the Chiang Khong–Lampang–Tak Volcanic Belt that precede this orogenic event, coupled with the geochemistry of the Chiang Khong rocks, and strong compositional analogies with other post‐collisional magmatic suites, are features that are more typical of volcanic belts formed in a rapidly evolving post‐collisional, basin‐and range‐type extensional setting.  相似文献   

4.
渤海湾盆地区燕山期构造特征与原型盆地   总被引:11,自引:7,他引:11  
结合近几年来渤海湾盆地区深层地震勘探与解释的成果,重点论述了渤海湾盆地区燕山期构造特征与盆地原型,提出燕山期构造变形样式总体在纵向上可分为三个构造层,分别称为上部、中部和下部;横向上总体可分为三个构造带,西部为向西逆冲的薄皮逆冲带,中部为冲断—走滑带,东部为厚皮褶皱—冲断带,主体由两期挤压方向皆为NW—SE向的褶皱—逆冲变形形成;并将其演化分为三个阶段:燕山早期、燕山中期和燕山晚期。但是,渤海湾盆地区燕山期的构造变形特征和原型盆地有所变化,其空间上的差异是基底构造格局及其空间差异叠合的结果。综合其它研究结果还表明,渤海湾盆地区燕山期构造是在西太平洋大陆边缘弧的挤压构造背景下,陆内壳下拆沉和壳内挤出逃逸构造的综合动力作用下形成的。  相似文献   

5.
Based on the drilling data,the geological characteristics of the coast in South China,and the interpretation of the long seismic profiles covering the Pearl River Mouth Basin and southeastern Hainan Basin,the basin basement in the northern South China Sea is divided into four structural layers,namely,Pre-Sinian crystalline basement,Sinian-lower Paleozoic,upper Paleozoic,and Mesozoic structural layers.This paper discusses the distribution range and law and reveals the tectonic attribute of each structural layer.The Pre-Sinian crystalline basement is distributed in the northern South China Sea,which is linked to the Pre-Sinian crystalline basement of the Cathaysian Block and together they constitute a larger-scale continental block—the Cathaysian-northern South China Sea continental block.The Sinian-lower Paleozoic structural layer is distributed in the northern South China Sea,which is the natural extension of the Caledonian fold belt in South China to the sea area.The sediments are derived from southern East China Sea-Taiwan,Zhongsha-Xisha islands and Yunkai ancient uplifts,and some small basement uplifts.The Caledonian fold belt in the northern South China Sea is linked with that in South China and they constitute the wider fold belt.The upper Paleozoic structural layer is unevenly distributed in the northern South China.In the basement of Beibu Gulf Basin and southwestern Taiwan Basin,the structural layer is composed of the stable epicontinental sea deposit.The distribution areas in the Pearl River Mouth Basin and the southeastern Hainan Basin belong to ancient uplifts in the late Paleozoic,lacking the upper Paleozoic structural layers.The stratigraphic distribution and sedimentary environment in Middle-Late Jurassic to Cretaceous are characteristic of differentiation in the east and the west.The marine,paralic deposit is well developed in the basin basement of southwestern Taiwan but the volcanic activity is not obvious.The marine and paralic facies deposit is distributed in the eastern Pearl River Mouth Basin basement and the volcanic activity is stronger.The continental facies volcano-sediment in the Early Cretaceous is distributed in the basement of the western Pearl River Mouth Basin and Southeastern Hainan Basin.The Upper Cretaceous red continental facies clastic rocks are distributed in the Beibu Gulf Basin and Yinggehai Basin.The NE direction granitic volcanic-intrusive complex,volcano-sedimentary basin,fold and fault in Mesozoic basement have the similar temporal and spatial distribution,geological feature,and tectonic attribute with the coastal land in South China,and they belong to the same magma-deposition-tectonic system,which demonstrates that the late Mesozoic structural layer was formed in the background of active continental margin.Based on the analysis of basement structure and the study on tectonic attribute,the paleogeographic map of the basin basement in different periods in the northern South China Sea is compiled.  相似文献   

6.
Western Anatolia, largely affected by extensional tectonics, witnessed widespread volcanic activity since the Early Miocene. The volcanic vents of the region are represented by epicontinental calderas, stratovolcanoes and monogenetic vents which are associated with small-scale intrusions as sills and dykes. The volcanic activity began with an explosive character producing a large ignimbritic plateau all over the region, indicating the initiation of the crustal extension event. These rhyolitic magmas are nearly contemporaneous with granitic intrusions in western Anatolia. The ignimbrites, emplaced approximately contemporaneous with alluvial fan and braided river deposits, flowed over the basement rocks prior to extensional basin formation. The lacustrine deposits overlie the ignimbrites. The potassic and ultrapotassic lavas with lamprophyric affinities were emplaced during the Late Miocene–Pliocene. The volcanic activities have continued with alkali basalts during the Quaternary.  相似文献   

7.
Crustal structure and origin of the northeast Japan arc   总被引:1,自引:0,他引:1  
Abstract Northeast Japan is a typical island arc region and its topographic arrangement reflects the geophysical characteristics of the island arc system. However, the structural style of the arc is very complicated and varied due to the repeated superposing of faults and folds on to earlier structures.
Geotectonic events that involved creation of the fundamental framework of the island arc crust occurred in east Asia in the Late Jurassic to Early Cretaceous and were probably induced by accretion and collision tectonics. The fragmentation and subsequent displacement of the crust took place during the Early Neogene in response to the terrane collision and the change in oceanic plate motion, leading to the opening of the Japan Sea. Huge amounts of volcano-sedimentary rocks buried the tilted fault blocks of pre-Tertiary basement with the development of the island arc.  相似文献   

8.
Lithostratigraphic correlation of a 6–10‐km‐thick Aptian–Maastrichtian terrigenous sequence of the East Asian continental margin and Sakhalin and Hokkaido Islands has revealed the existence of a single marine basin. This basin was populated by mixed Tethyan–Boreal fauna and sloped eastward until the Middle Cenomanian. Intense volcanic and tectonic processes caused the uplift of the continental margin in the mid‐Albian to Cenomanian and eastward migration of the shoreline. Paleobotanical studies have discovered a number of climatic changes. Relatively warm conditions existed in the Aptian, changing to cooler conditions in the Early Albian. The maximum warming occurred from the Late Albian to Cenomanian when large‐leaved flowering plants dominated the population. In the Late Cretaceous, the East Asian volcanic belt created a mountain edifice up to 3000 m high, which controlled longitudinal climatic and floral zonation. This control was more efficient than the latitudinal control. A wide development of flowering Platanaceae flora in the Turonian points to a relative cooling. The floral assemblage shows a temperate climate from the Early Coniacian onwards, with an optimum in the Campanian that is consistent with global transgression. As a result of the warm climate, the early Maastrichtian is characterized by highly diverse biota. Furthermore, in the middle Maastrichtian floral and faunal diversity decreased and the seasonal prevalence increased. Cooling occurred in the latest Maastrichtian. Five periods of coal accumulation are recognized throughout the Late Cenomanian to Late Maastrichtian. Shelf, deltaic, and slope turbidite facies of the continental margin contain organic carbon ranging from 0.3% to 2.2%, which together with direct evidence for oil and gas, are believed to be prolific for hydrocarbon exploration.  相似文献   

9.
Mesozoic basin evolution and tectonic mechanism in Yanshan, China   总被引:5,自引:0,他引:5  
The Mesozoic basins in Yanshan, China underwent several important tectonic transformations, including changes from a pre-Late Triassic marginal cratonic basin to a Late Triassic-Late Jurassic flexural basin and then to a late Late Jurassic-Early Cretaceous rift basin. In response to two violent intraplate deformation at Late Triassic and Late Jurassic, coarse fluvial depositional systems in Xingshikou and Tuchengzi Formations were deposited in front of thrust belts. Controlled by transform and extension faulting, fan deltas and lacustrine systems were deposited in Early Cretaceous basins. The composition of clastic debris in Late Triassic and Late Jurassic flexural basins respectively represents unroofing processes from Proterozoic to Archean and from early deposited, overlying pyroclastic rocks to basement rocks in provenance areas. Restored protobasins were gradually migrated toward nearly NEE to EW-trending from Early Jurassic to early Late Jurassic. The Early Cretaceous basins with a NNE-trending crossed over early-formed basins. The Early-Late Jurassic and Early Cretaceous basins were respectively controlled by different tectonic mechanisms.  相似文献   

10.
Ladakh (India) provides a complete geological section through the northwestern part of the Himalayas from Kashmir to Tibet. Within this section the magmatic, metamorphic and geotectonic evolution of the northern Himalayan orogeny has been studied using petrographic, geochemical and isotope analytical techniques.The beginning of the Himalayan cycle was marked by large basaltic extrusions (Panjal Trap) of Permian to Lower Triassic age at the “northern” margin of the Gondwana continent (Indian Shield). These continental type tholeiitic basalts were followed by a more alkaline volcanism within the Triassic to Jurassic Lamayuru unit of the Gondwana continental margin.Lower Jurassic to Cretaceous oceanic crust and sediments (ophiolitic mélange s.s.) accompany the Triassic to Cretaceous flysch deposits within the Indus-Tsangpo suture zone, the major structural divide between the Indian Shield (High Himalaya) and the Tibetan Platform. So far, no relic of Paleozoic oceanic crust has been found.Subduction of the Tethyan oceanic crust during Upper Jurassic and Cretaceous time produced an island arc represented by tholeiitic and calc-alkaline volcanic rock series (Dras volcanics) and related intrusives accompanied by volcaniclastic flysch deposits towards the Tibetan continental margin.Subsequent to the subduction of oceanic crust, large volumes of calc-alkaline plutons (Trans-Himalayan or Kangdese plutons) intruded the Tibetan continental margin over a distance of 2000 km and partly the Dras island arc in the Ladakh region.The collision of the Indian Shield and Tibetan Platform started during the middle to upper Eocene and caused large-scale, still active intracrustal thrusting as well as the piling up of the Himalayan nappes. The tectonically highest of these nappes is built up of oceanic crust and huge slices of peridotitic oceanic mantle (Spongtang klippe).In the High Himalayas the tectonic activity was accompanied and outlasted by a Barrovian-type metamorphism that affected Triassic sediments of the Kashmir-Nun-Kun synclinorium up to kyanite/staurolite grade and the deeper-seated units up to sillimanite grade. Cooling ages of micas are around 20 m.y. (muscovite) and 13 m.y. (biotite). Towards the Indus-Tsangpo suture zone metamorphism decreases with no obvious discontinuity through greenschist, prehnite-pumpellyite to zeolite grade. Remnants of possibly an Eo-Himalayan blueschist metamorphism have been found within thrust zones accompanying ophiolitic mélange in the suture zone.  相似文献   

11.
塔里木盆地阿图什—八盘水磨反冲构造系统研究   总被引:21,自引:3,他引:21       下载免费PDF全文
通过大量野外地质调查和深部物探(地震剖面、MT和重力)综合构造解释,在位于东起八盘水磨,西对乌鲁克恰特以西的南天山前陆冲断带中,确定了阿图什-八盘水磨反冲构造系统及其三角带构造;该反冲系统由小阿图什-八盘水磨和乌尔-喀拉套山反冲构造系统及小阿图什-乌鲁克恰特被变形的反冲构造系统组成;即在以往认为南天山向塔里木盆地大规模中推覆的地区,塔里木盆地美国层第四纪以来沿多组滑脱面向天山新生代造山带反冲推覆。塔里木盆地反冲构造系统发育的区域基底埋深往往大于10km,对应麦盖提基底构造下凹区,而相邻柯坪塔格薄皮推覆构造系统发育的区域基底埋深一般小于10km,对应巴楚基底构造上隆区;逆冲和反冲构造转换带基底埋深约10km,平衡剖面恢复表明弧形逆冲和反冲构造顶部分别为逆冲和反冲位移量最大位置。  相似文献   

12.
Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu‐Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back‐arc basin basalts (referred to herein as Hokkaido BABB). Pb‐, Nd‐ and Sr‐isotopic compositions of the Hokkaido BABB and arc‐type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II‐like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc‐type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II‐like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back‐arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back‐arc basins. The Monbetsu‐Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).  相似文献   

13.
This paper presents a review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia. The record of magmatism is used to evaluate the spatial-temporal extent and influence of multiple tectonic regimes during the Mesozoic, as well as the onset and history of Paleo-Pacific slab subduction beneath Eurasian continent. Mesozoic-Paleogene magmatism at the continental margin of Northeast Asia can be subdivided into nine stages that took place in the Early-Middle Triassic, Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, Late Cretaceous, and Paleogene, respectively. The Triassic magmatism is mainly composed of adakitic rocks, bimodal rocks, alkaline igneous rocks, and A-type granites and rhyolites that formed in syn-collisional to post-collisional extensional settings related to the final closure of the Paleo-Asian Ocean. However, Triassic calc-alkaline igneous rocks in the Erguna-Xing’an massifs were associated with the southward subduction of the Mongol-Okhotsk oceanic slab. A passive continental margin setting existed in Northeast Asia during the Triassic. Early Jurassic calc-alkaline igneous rocks have a geochemical affinity to arc-like magmatism, whereas coeval intracontinental magmatism is composed of bimodal igneous rocks and A-type granites. Spatial variations in the potassium contents of Early Jurassic igneous rocks from the continental margin to intracontinental region, together with the presence of an Early Jurassic accretionary complex, reveal that the onset of the Paleo- Pacific slab subduction beneath Eurasian continent occurred in the Early Jurassic. Middle Jurassic to early Early Cretaceous magmatism did not take place at the continental margin of Northeast Asia. This observation, combined with the occurrence of low-altitude biological assemblages and the age population of detrital zircons in an Early Cretaceous accretionary complex, indicates that a strike-slip tectonic regime existed between the continental margin and Paleo-Pacific slab during the Middle Jurassic to early Early Cretaceous. The widespread occurrence of late Early Cretaceous calc-alkaline igneous rocks, I-type granites, and adakitic rocks suggests low-angle subduction of the Paleo-Pacific slab beneath Eurasian continent at this time. The eastward narrowing of the distribution of igneous rocks from the Late Cretaceous to Paleogene, and the change from an intracontinental to continental margin setting, suggest the eastward movement of Eurasian continent and rollback of the Paleo- Pacific slab at this time.  相似文献   

14.
Terrane analysis and accretion in North-East Asia   总被引:2,自引:0,他引:2  
Abstract A terrane map of North-East Asia at 1:5 000 000 scale has been compiled. The map shows terranes of different types and ages accreted to the North-Asian craton in the Mesozoic–Cenozoic, sub-and superterranes, together with post-amalgamation and post-accretion assemblages. The great Kolyma-Omolon superterrane adjoins the north-east craton margin. It is composed of large angular terranes of continental affinity: craton fragments and fragments of the passive continental margin of Siberia, and island arc, oceanic and turbidite terranes that are unconformably overlain by shallow marine Middle-Upper Jurassic deposits. The superterrane resulted from a long subduction of the Paleo-Pacific oceanic crust beneath the Alazeya arc. Its south-west boundary is defined by the Late Jurassic Uyandina-Yasachnaya marginal volcanic arc which was brought about by subduction of the oceanic crust that separated the superterrane from Siberia. According to paleomagnetic evidence the width of the basin is estimated to be 1500–2000 km. Accretion of the superterrane to Siberia is dated to the late Late Jurassic-Neocomian. The north-east superterrane boundary is defined by the Lyakhov-South Anyui suture which extends across southern Chukotka up to Alaska. Collision of the superterrane with the Chukotka shelf terrane is dated to the middle of the Cretaceous. The Okhotsk-Chukotka belt, composed of Albian-Late Cretaceous undeformed continental volcan-ites, defines the Cretaceous margin of North Asia. Terranes eastward of the belt are mainly of oceanic affinity: island arc upon oceanic crust, accretion wedge and turbidite terranes, as well as cratonic terranes and fragments of magmatic arcs on the continental crust and metamorphic terranes of unclear origin and age. The time of their accretion is constrained by post-accretionary volcanic belts that extend parallel to the Okhotsk-Chukotka belt but are displaced to the east: the Maastrichtian-Miocene Kamchatka-Koryak belt and the Eocene-Quaternary Central Kamchatka belt which mark active margins of the continent of corresponding ages.  相似文献   

15.
Accompanying with the shortening,thickening and uplifting of the lithosphere,a series of Cenozoic potassic volcanic rock zones are developed in the northern Qinghai-Tibet Plateau.From south to north,the volcanic rocks can be divided into three volcanicrock belts:Qiangtang-Nangqian volcanic belt,Middle Kunlun-Hoh Xil volcanic belt and Western Kunlun-Eastern Kunlun volcanic belt[1].Spatiotemporal evolu-tion of the volcanism and the origins of magmas con-strains on the pulsing uplifting and …  相似文献   

16.
Sumatra has been a ‘volcanic arc’, above an NE-dipping subduction zone, since at least the Late Permian. The principal volcanic episodes in Sumatra N of the Equator have been in the Late Permian, Late Mesozoic, Palaeogene, Miocene and Quaternary.Late Permian volcanic rocks, of limited extent, are altered porphyritic basic lavas interstratified with limestones and phyllites.Late Mesozoic volcanic rocks, widely distributed along and W of the major transcurrent.Sumatra Fault System (SFS), which axially bisects Sumatra, include ophiolite-related spilites, andesites and basalts. PossiblePalaeogene volcanic rocks include an altered basalt pile with associated dyke-swarm in the extreme NW, intruded by an Early Miocene (19 my) dioritic stock; and variable pyroxene rich basic lavas and agglomerates ranging from alkali basaltic to absarokitic in the extreme SW.Miocene volcanic rocks, widely distributed (especially W of the SFS), and cropping out extensively along the W coast, include calc-alkaline to high-K calc-alkaline basalts, andesites and dacites.Quaternary volcanoes (3 active, 14 dormant or extinct) are irregularly distributed both along and across the arc; thus they lie fore-arc of the SFS near the Equator but well back-arc farther north. The largest concentration of centres, around Lake Toba, includes the >2000 km3 Pleistocene rhyolitic Toba Tuffs. Quaternary volcanics are mainly calc-alkaline andesites, dacites and rhyolites with few basalts; they seem less variable, but on the whole more acid, than the Tertiary. The Quaternary volcanism is anomalous in relation to both southern Sumatra and adjacent Java/Bali: in southern Sumatra, volcanoes are regularly spaced along and successively less active away from the SFS, but neither rule holds in northern Sumatra. Depths to the subduction zone below major calc-alkaline volcanoes in Java/Bali are 160–210 km, but little over 100 km in northern Sumatra, which also lacks the regular K2O-depth correlations seen in Java. These anomalies may arise because Sumatra — being underlain by continental crust — is more akin to destructive continental margins than typical island-arcs such as E Java or Bali, and because the Sumatran subduction zone has a peculiar structure due to the oblique approach of the subducting plate. A further anomaly — an E-W belt of small centres along the back-arc coast — may relate to an incipient S-dipping subduction zone N of Sumatra and not the main NE-dipping zone to its W. Correlation of the Tertiary volcanism with the present tectonic regime is hazardous, but the extensive W coastal volcanism (which includes rather alkaline lavas) is particularly anomalous in relation to the shallow depth (<100 km) of the present subduction zone. The various outcrops may owe their present locations to extensive fault movements (especially along the SFS), to the peculiar structure of the fore-arc (suggested by equally anomalous Sn- and W-bearing granitic batholiths also along the W coast), or they may not be subduction-related at all.  相似文献   

17.
The Precambrian and lower Paleozoic units of the Japanese basement such as the Hida Oki and South Kitakami terranes have geological affinities with the eastern Asia continent and particularly strong correlation with units of the South China block. There are also indications from units such as the Hitachi metamorphics of the Abukuma terrane and blocks in the Maizuru terrane that some material may have been derived from the North China block. In addition to magmatism, the Japanese region has seen substantial growth due to tectonic accretion. The accreted units dominantly consist of mudstone and sandstone derived from the continental margin with lesser amounts of basaltic rocks associated with siliceous deep ocean sediments and local limestone. Two main phases of accretionary activity and related metamorphism are recorded in the Jurassic Mino–Tanba–Ashio, Chichibu, and North Kitakami terranes and in the Cretaceous to Neogene Shimanto and Sanbagawa terranes. Other accreted material includes ophiolitic sequences, e.g. the Yakuno ophiolite of the Maizuru terrane, the Oeyama ophiolite of the Sangun terrane, and the Hayachine–Miyamori ophiolite of the South Kitakami terrane, and limestone‐capped ocean plateaus such as the Akiyoshi terrane. The ophiolitic units are likely derived from arc and back‐arc basin settings. There has been no continental collision in Japan, meaning the oceanic subduction record is more complete than in convergent orogens seen in intracontinental settings making this a good place to study the geological record of accretion. Hokkaido lacks most of the Paleozoic history recognized in Honshu, Shikoku, Kyushu, and the Ryukyu Islands to the south and its geology reflects the Cenozoic development of two convergent domains with volcanic arcs, their approach, and eventual collision. The Hidaka terrane reveals a cross section through a volcanic arc and the main accretionary complex of the convergent system is represented by the Sorachi–Yezo terrane.  相似文献   

18.
1 INTRODUCnONThe comPonents of terrigenous sedimenop rocks indicate not only provenance information, but alsotoctOnic evolution of basin. The chdrical composition of the soure rOCks is probaby the major conttDon the chendstry of sedimentny rocks although this can be greaily modified by subsequent Processes(Rollinson l993). Thus, through exndning Petrological and chendcal comPosihons of tenigenoussedlinmp rocks, the comPonentS of the provenance or somee rOCks - which are conunnly a fun…  相似文献   

19.
Paleovolcanological and paleotectonic reconstructions developed for the continent-ocean transition zone in Northeast Asia demonstrate a high diversity of island arc volcanic settings. There are two main types of island arc volcanism recognized so far, (i) volcanic arcs of euliminary systems (VAES) and (ii) intrageosynclinal volcanic arcs, including areas of insular volcanism (IIV). The volcanic arcs of euliminary systems include the present-day Kuril-Kamchatka, Aleutian, and the Paleozoic- Early Cretaceous Taigonos volcanic arcs. The latter is considered to be a part of the Talovka-Taigonos euliminary system (TTES), an old double island arc system analogous to present-day systems, the Kuril-Kamchatka and Aleutian ones. Both the TTES and similar present-day euliminary systems are structural complexes that confine concentrically-zoned geosyncline areas on the side of the Pacific. The characteristic features of the VAES include a long history of evolution, stable (calc-alkaline) basalt-andesite composition of volcanic products, and transverse geochemical zonation. Geophysical evidence reveals the complicated processes of endogenous crustal accretion and destruction of continental crust within the VAES zones. The IIV follow the structural pattern of the corresponding geosynclinal system. Their evolution is relatively short, while the spatial position and the composition of their magmatic bodies may considerably vary at different stages of evolution of the geosynclinal systems. Most island arc zones are characterized by calc-alkaline volcanism, but potassium alkaline, alkali-ultrabasic, and ultrabasic rocks also occur in some structures. The settings of intrageosynclinal insular volcanism are diverse and include (a) volcanic overcompensation, (b) geoanticlinal uplift, and (c) volcanotectonic downwarping during the orogenic stage of geosynclines. The calc-alkaline volcanism of island environments in geoanticline zones is likely related to the endogenous accretion of continental crust within a geosyncline system. Intrageosynclinal island-arc volcanism is still very poorly understood. Investigation of this phenomenon is one of the urgent tasks of paleovolcanology.  相似文献   

20.
The Izumi Group in southwestern Japan is considered to represent deposits in a forearc basin along an active volcanic arc during the late Late Cretaceous. The group consists mainly of felsic volcanic and plutonic detritus, and overlies a Lower to Upper Cretaceous plutono‐metamorphic complex (the Ryoke complex). In order to reconstruct the depositional environments and constrain the age of deposition, sedimentary facies and U–Pb dating of zircon grains in tuff were studied for a drilled core obtained from the basal part of the Izumi Group. On the basis of the lithofacies associations, the core was subdivided into six units from base to top, as follows: mudstone‐dominated unit nonconformably deposited on the Ryoke granodiorite; tuffaceous mudstone‐dominated unit; tuff unit; tuffaceous sandstone–mudstone unit; sandstone–mudstone unit; and sandstone‐dominated unit. This succession suggests that the depositional system changed from non‐volcanic muddy slope or basin floor, to volcaniclastic sandy submarine fan. Based on a review of published radiometric age data of the surrounding region of the Ryoke complex and the Sanyo Belt which was an active volcanic front during deposition of the Izumi Group, the U–Pb age (82.7 ±0.5 Ma) of zircon grains in the tuff unit corresponds to those of felsic volcanic and pyroclastic rocks in the Sanyo Belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号