首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
For our ancestors, oil seeps were both a fascination and a resource but as the planet's reserves of high quality low density oil becomes increasingly depleted, so there is now a renewed interest in heavier,biodegraded oils such as those encountered in terrestrial seeps. One such seep is Pitch Lake in the Caribbean island of Trinidad, which is the largest natural deposit of asphalt in the world. At the northern end of the Caribbean, oil emerges along a tectonic contact on the island on Cuba. The sources of the oils from these seeps are relatively recent and both are subject to intense weathering due to the tropical conditions. When analysed by gas chromatography(GC) both oils appear as unresolved complex mixtures(UCM) and show a very high degree of biodegradation thus presenting an analytical challenge. In this case study, these two Caribbean seep oils were analysed by comprehensive two dimensional GC with time of flight mass spectrometry(GC×GC-TOFMS) to expose many thousands of the individual compounds that comprise the UCM. The high chromatographic resolution of the GC×GC-TOFMS produced good quality mass spectra allowing many compounds including molecular fossil ‘biomarkers' to be identified. Compound classes included diamondoid hydrocarbons, demethylated hopanes and secohopanes, mono-and tri-aromatic steroids. D-ring aromatised structures of the 8,14-seco-hopanes,including demethylated forms were present in both oils but further demethylation, probably at position C-25 during biodegradation, was only observed in the Pitch Lake oil. Many polycyclic aromatic hydrocarbons(PAHs) were absent although the fungal-derived pentacyclic PAH perylene was present in both oils. The presence of the angiosperm biomarker lupane in the Pitch Lake oil constrained the age to the Late Cretaceous. The higher degree of biodegradation observed in the Cuban oil was likely due to relatively slow anaerobic processes whereas oil within Pitch Lake was probably subject to additional more rapid aerobic metabolism within the lake.  相似文献   

2.
<正>The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution.For this reason,the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area.Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks,i.e.,heavy oils are distributed in the TZ47-15 well-block in the North Slope while normal and light oils in the No.Ⅰfault belt and the TZ16 well-block,which means that the oil properties are controlled by structural patterns.Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks,suggesting a good genetic relationship. However,the compound specific isotope of n-alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian-Lower Ordovician source rocks.Most Silurian oils have a record of secondary alterations like earlier biodegradation,including the occurrence of "UCM" humps in the total ion current(TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils,and regular changes in the abundances of light and heavy components from the structural low to the structural high.The fact that the Silurian oils are enriched in chain alkanes,e.g.,n-alkanes and 25-norhopane,suggests that they were mixed oils of the earlier degraded oils with the later normal oils.It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions.The migration and accumulation models of these oils in the TZ47-15 well-blocks,the No.Ⅰfault belt and the TZ16 well-block are different from but related to each other.The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area.  相似文献   

3.
The present paper deals with the biomarker characteristics of crude oils and source rocks from different environments(fresh,fresh-brackish and salt waters)of nonmarine depositional basins of different ages in China.Their characters are summarized as follows:1)Souce rocks and crude oils derived from fresh-water lacustrine facies have an odd/even predominance of n-alkanes and high pristine/phytane ratios.Oils from the fresh-water lacustrine facies differ from typical marine oils in the relative contents of total steranes and terpanes,the concentrations of hopanes and organic sul-phur compounds and the values of methylphenanthrene indices and C,H,S stable isotopes.2)The source rocks and crude oils derived from saline lacustrine facies possess an even/odd predominance of n-alkanes and high phytane/pristine ratios.There are also some differences between saline lacustrine oils and freshwater lacustrine oils in the concentrations of steranes,tricyclic terpanes and organic sulphur compounds,as well as in the values of methylphenanthrene indices and C,H,S stable isotopes.3)Oils derived from fresh-brackish water lake facies differ from oils from fresh-water lacustrine or samline lacustrine environments in respect of some biomarkers.According to the various distributions of these biomarkers,a number of geochemical parameters can be applied synthetically to differentiating and identifying the nature of original depositional environments of crude oils and source rocks and that of organisms-primary source materials present in those environments.  相似文献   

4.
Different types of crude oils have different light hydrocarbon compositional and geochemical characteristics. Based on the light hydrocarbon data from two kinds of oils, i.e., coal-generated oils and marine oils in China, light hydrocarbons in marine oils in the Tazhong area are generally relatively enriched in n-heptane, and coal-generated oils from the Turpan Basin are enriched in methylcyclohexane. The K1 values, reported by Mango (1987), range from 0.97 to 1.19 in marine oils, basically consistent with what was reported by Mango on light hydrocarbons in terms of the majority of the crude oil data. But the K1 values of coal-generated oils are particularly high (1.35-1.66) and far greater than those of marine oils; heptane values in marine oils, ranging from 32.3% to 45.4%, and isoheptane values, ranging from 1.9 to 3.7, are respectively higher than those of coal-generated oils, indicating that the oils are in the high-maturity stage. In addition, expulsion temperatures of coal-generated oils from the Turpan Basin are obviously lower than those of marine oils from the Tazhong area.  相似文献   

5.
Based on quantitative GC-MS analysis of 40 crude oil samples collected from the south area of western Qaidam Basin,one of the largest saline lacustrine basins in China,the geochemical characteristics of aromatic hydrocarbons in oils were studied systematically in this paper.Among those constitutes,naphthalene(43% 59%),phenanthrene(12% 21%) and taromatic-sterane series(6% 28%) were the main ones of aromatic hydrocarbons.The ratio of aromatic hydrocarbon maturity parameter vs.saturated hydrocarbon maturity parameter C 29 20S/(20S+20R) shows that some aromatic hydrocarbon maturity parameters are not suitable for low-mature oils,including MPI,MNR,DNR,etc.Meanwhile,maturity parameters for dibenzothiophene and taromatic-sterane series are more appropriate for low maturity saline lacustrine crude oils.Based on the ratio of 4,6-DMDBT/1,4-DMDBT,the R c values are within the range of 0.59% 0.72%.However,the abundance of dibenzothiophene(DBT) is low,and the dibenzofuran(DBF) content is even lower,suggesting that the crude oils were formed in a saline lacustrine anaerobic environment.The high abundance of C 26 triaromatic steroid also indicates that the source material is brackish water-saline water with strong reducibility.  相似文献   

6.
In this study,12 crude oil samples were collected and analyzed from the Ordovician reservoir in the Halahatang Depression,Tarim Basin,China.Although the density of oil samples varies considerably,based on saturated hydrocarbon gas chromatographic(GC),saturated and aromatic hydrocarbon gas chromatographic-mass spectrometric(GC/MS) and stable carbon isotopic composition analyses,all the samples are interpreted to represent a single oil population with similar characteristics in a source bed or a source kitchen,organic facies and even in oil charge history.The co-existence of a full suite of n-alkanes and acyclic isoprenoids with UCM and 25-norhopanes in the crude oil samples indicates mixing of biodegraded oil with fresher non-biodegraded oil in the Ordovician reservoir.Moreover,according to the conversion diagram of double filling ratios for subsurface mixed crude oils,biodegraded/non-biodegraded oil ratios were determined as in the range from 58/42 to 4/96.Based on oil density and oil mix ratio,the oils can be divided into two groups:Group 1,with specific density>0.88(g/cm3) and oil mix ratio>1,occurring in the north of the Upper Ordovician Lianglitage and Sangtamu Formation pinchout lines,and Group 2,with specific density<0.88(g/cm3) and oil mix ratio<1,occurring in the south of the pinchout lines.Obviously,Group 2 oils with low densities and being dominated by non-biodegraded oils are better than Group 1 oils with respect to quality.It is suggested that more attention should be paid to the area in the south of the Upper Ordovician Lianglitage and Sangtamu Formation pinchout lines for further exploration.  相似文献   

7.
<正>The oil source of the Tarim Basin has been controversial over a long time.This study characterizes the crude oil and investigates the oil sources in the Lunnan region,Tarim Basin by adopting compound specific isotopes of n-alkanes and biomarkers approaches.Although the crude oil has a good correlation with the Middle-Upper Ordovician(O_(2+3)) source rocks and a poor correlation with the Cambrian-Lower Ordovician((?)-O_1) based on biomarkers,theδ~(13)C data of n-alkanes of the Lunnan oils show an intermediate value between(?)-O_1 and O_(2+3) genetic affinity oils,which suggests that the Lunnan oils are actually of an extensively mixed source.A quantification of oil mixing was performed and the results show that the contribution of the Cambrian-Lower Ordovician source rocks ranges from 11%to 70%(averaging 36%),slightly less than that of the Tazhong uplift.It is suggested that the inconsistency between the biomarkers andδ~(13)C in determining the oil sources in the Lunnan Region results from multiple petroleum charge episodes with different chemical components in one or more episode(s) and different sources.The widespread marine mixed-source oil in the basin indicates that significant petroleum potential in deep horizons is possible.To unravel hydrocarbons accumulation mechanisms for the Lunnan oils is crucial to further petroleum exploration and exploitation in the region.  相似文献   

8.
By PVT fractionation experiments to model phase-controlled and gaw-washing fractionations during the formation of petroleum reservoirs,the authors measured the physical and chemical properties of products formed in different fractionation staes and made a correlative analysis of the influence of depressurization and gas washing on oil/gas molecular composition and the rule of fractionation.The analytical results showed that gas washing is an important factor affecting the physical properties of crude oils.and also can be regarded as a good genetic interpretation of marine wax-high oils in the Tarim region,Xinjiang,China.Phase-controlled and gaw-washing fractionations can lead to the formation of condensates and their differences in chemical composition from crude oils are a direct reflection of evaporating fractionation.Phasecontrolled and gaw-washing fractionations have a great influence on the composition of molecular compounds and relevant parameters.So phase-controlled and gas-washing fractionations during the formation of petroleum reservoirs are not only favorable to identifying different processes of formation of petroleum reservoirs,but also to the scientific application of routine geochemical parameters.  相似文献   

9.
The Qinjiatun and Qikeshu oilfields are new Mesozoic petroleum exploration targets in Lishu Fault Depression of Songliao Basin, northeastern China. Currently, researches on geochemistry of crude oils from Qinjiatun and Qikeshu oilfields have not been performed and the genesis of oils is still uncertain. Based on bulk analyses, the crude oils in the Qinjiatun and Qikeshu oilfields of Lishu Fault Depression from the Lower Cretaceous can be classified as three types. TypeⅠoils, from Quantou and Denglouku formations of Qikeshu oilfield, are characterized by high C24tetracyclic terpane/C26tricyclic terpanes ratios, low gammacerance/C30hopane ratios, tricyclic terpanes/hopanes ratios, C29Ts/C29norhopane ratios and 17α(H)-diahopane/17α(H)-hopane ratios, indicating a brackish lacustrine facies. TypeⅡoils, from Shahezi Formation of Qikeshu oilfield show low C24tetracyclic terpane/C26tricyclic terpanes, high gammacerance/C30hopane ratios, tricyclic terpanes/hopanes ratios, C29Ts/C29 norhopane and C30diahopane/C30hopane ratios, thus suggesting that they originated from source rocks deposited in a weak reducing brackish lacustrine environment, or clay-rich sediments. Type oilsⅢ, from some wells of Qikeshu oilfield have geochemical characteristics intermediate between those two types and may be mixture of typeⅠand Ⅱoils.  相似文献   

10.
The Tarim Basin is the only petroliferous basin enriched with marine oil and gas in China. It is presently also the deepest basin for petroleum exploration and development in the world. There are two main sets of marine Source Rocks (SRs) in the Tarim Basin, namely the high over-mature Cambrian–Lower Ordovician (∈–O1) and the moderately mature Middle–Upper Ordovician (O2–3). The characteristic biomarkers of SRs and oils indicate that the main origin of the marine petroleum is a mixed source of ∈–O1 and O2–3 SRs. With increasing burial, the hydrocarbon contribution of the ∈–O1 SRs gradually increases. Accompanied by the superposition of multi-stage hydrocarbon-generation of the SRs and various secondary alteration processes, the emergence and abnormal enrichment of terpenoids, thiophene and trimethylaryl isoprenoid in deep reservoirs indicate a complex genesis of various deep oils and gases. Through the analysis of the biofacies and sedimentary environments of the ∈–O1 and O2–3 SRs, it is shown that the lower Paleozoic high-quality SRs in the Tarim Basin were mainly deposited in a passive continental margin and the gentle slope of the platform, deep-water shelf and slope facies, which has exhibited a good response to the local tectonic-sedimentary environment. The slope of the paleo-uplift is the mutual area for the development of carbonate reservoirs and the deposition of marine SRs, which would be favorable for the accumulation of petroleum. Due to the characteristics of low ground temperature, the latest rapid and deep burial does not cause massive oil-cracking in the paleo-uplift and slope area. Therefore, it is speculated that the marine reservoirs in the slope of the Tabei Uplift are likely to be a favorable area for deep petroleum exploration, while the oil-cracking gas would be a potential reserve around the west margin of the Manjiaer Depression. Hydrocarbons were generated from various unit SRs, mainly migrating along the lateral unconformities or reservoirs and the vertical faults. They eventually brought up three major types of exploration fields: middle and lower Cambrian salt-related assemblages, dolomite inner reservoirs and Middle and Lower Ordovician oil-bearing karst, which would become the most favorable target of marine ultra-deep exploration in the Tarim Basin.  相似文献   

11.
Crude oils from different basins in China ,Australia and New Zealand were analyzed to character-ize aromatic hydrocarbons produced in different environments by means of GC/MS .The distributions of some common compounds such as naphthalene, phenanthrene, chrysene,pyrene, fluoranthene, fluorine,dibenzothiophene and dibenzofuran were found to be related to sedimentary environments.Especially the relative contents of fluorenes ,dibenzofurans and dibenzothiophenes can be used to di-vide the oils into three types(1) saline or marine carbonate environment;(2) fresh-brackish water lake;(3) swamp and coal-bearing sequence.A romatic biomarkers (e.g.retene, nor-abietene,derivatives of lupeol and β-amyrin)represent higher plant inpults with respect to the precursors of crude oils. High contents of sulphur-containing compounds like benzothiophene and dibenzothiophene series indicate a reducing sulphur-abundant diagenetic condition .The benzohopane series (C32-C35) was identified both in hypersaline and coal-bearing basins, and it is postulated to be the result of strong bacteria activity.In all the sam-ples, a complete series of alkyl benzenes was analyzed .The similarity of its carbon-number distrbu-tion with that of n-alkanes probably suggests their genetic relationship. The distribution of the methylphenanthrene series reflects the evolution degree of crude oils,MPI holding a positive correlation with C29-sterane 20S/(20S 20R).  相似文献   

12.
Well Zheng-1 is located in the combined area of the central uplift and the north Tianshan piedmont depression in the Junggar Basin. Two oil-bearing beds are recognized at 4788–4797 m of the Lower Cretaceous Tugulu Formation (K1tg) and 4808.5–4812.5 m of the Lower Jurassic Sangonghe Formation (J1s). The geochemical characteristics of family composition, carbon isotopic composition, saturated hydrocarbons, sterane and terpane biomarkers and carotane of two crude oils are described in this paper. The results show that the geochemical characteristics of the two crude oils are basically similar to each other, indicating they were all derived mainly from the high mature, brine, algae-rich lake facies sediments. Oil-source correlation revealed that crude oils of the two beds were derived mainly from the source rocks of Permian and mixed by the oil derived from the source rocks of Jurassic and Triassic. This is consistent with the geological background with several sets of source rocks in the area studied.  相似文献   

13.
The hydrocarbon potential of the Hangjinqi area in the northern Ordos Basin is not well known, compared to the other areas of the basin, despite its substantial petroleum system.Restoration of a depth-converted seismic profile across the Hangjinqi Fault Zone(HFZ) in the eastern Hangjinqi area shows one compression that created anticlinal structures in the Late Triassic, and two extensions in ~Middle Jurassic and Late Early Cretaceous, which were interrupted by inversions in the Late Jurassic–Early Early Cretaceous and Late Cretaceous, respectively.Hydrocarbon generation at the well locations in the Central Ordos Basin(COB) began in the Late Triassic.Basin modeling of Well Zhao-4 suggests that hydrocarbon generation from the Late Carboniferous–Early Permian coal measures of the northern Shanbei Slope peaked in the Early Cretaceous, predating the inversion in the Late Cretaceous.Most source rocks in the Shanbei Slope passed the main gas-migration phase except for the Hangjinqi area source rocks(Well Jin-48).Hydrocarbons generated from the COB are likely to have migrated northward toward the anticlinal structures and traps along the HFZ because the basin-fill strata are dipping south.Faulting that continued during the extensional phase(Late Early Cretaceous) of the Hangjinqi area probably acted as conduits for the migration of hydrocarbons.Thus, the anticlinal structures and associated traps to the north of the HFZ might have trapped hydrocarbons that were charged from the Late Carboniferous–Early Permian coal measures in the COB since the Middle Jurassic.  相似文献   

14.
The regional lithospheric chemical heterogeneity in-ers that the East Qinling and its adjacent cratonic re-ions,as suggested by some authors,belong to twoeotectonic units,the North China subdomain includinghe North China Craton and its southern continentalhargin(the North Qinling Belt),and the Yangtzeanubdomain comprising the Yangtze Craton and itsorthern continental margin(the South Qinling Belt).In the North Qinling Belt the metamorphosedolcanic rocks and graywackes of the Early Paleozoicanfeng Group south of the Early Proterozoic QinlingGroup show geochemical characteristics resemblinghose of the are volcanies and are graywackes,espectively.The Early Paleozoic granites intruding in hehe Qinling Group also show similar geochemical fea-tures and similar compositional polarities to theare-type granites.The Erlangping Group north ofthe Qinling Group is a volcanic-sedimentary sequenceproduced in an Early Paleozoic back-are basin basedon geochemical evidence.It is therefore believed thatthe North Qinling B  相似文献   

15.
Based on a detailed survey of the distribution and organic geochemical characteristics of potential source rocks in the South Slope of the Niuzhuang Sag, Bohai Bay Basin, eastern China, a new approach to assess the amount of hydrocarbons generated and expelled has been developed. The approach is applicable to evaluate hydrocarbons with different genetic mechanisms. The results show that the models for hydrocarbon generation and expulsion vary with potential source rocks, depending on thermal maturity, types of organic matter and paleoenvironment. Hydrocarbons are mostly generated and expelled from source rocks within the normal oil window. It was calculated that the special interval (algal-rich shales of the ES4 member formed in brackish environments) in  相似文献   

16.
Based on the systematic analyses of fifteen typical crude oils and ten typical potential source rocks col-lected from the Qaidam,Tarim and Turpan basins,Northwest China,the geochemical characteristics of the oils and source rocks were investigated and oil-source rock correlations undertaken.The oils and source rocks deposited in saline lacustrine environment from the western Qaidam Basin were characterized by n-alkanes with even car-bon-number preference in the C20-C28 range,low pristane/phytane(Pr/Ph) ratios(less than 0.5),and high abundances of C27 steranes,gammacerane and C35 hopanes.The oils and source rocks deposited in marine environment from the Tarim Basin were characterized by n-alkanes with even carbon-number preference in the C14-C18 range,relatively low Pr/Ph ratios(near to 1),high abundance of C28 steranes,and relatively high gammacerane.In contrast,the oils and source rocks deposited in terrigenous bog environment from the Turpan Basin were characterized by relatively high Pr/Ph ratios(oil samples greater than 6) high abundance of C29 steranes,and relatively low gammacerane and C31-35 hopanes.The higher amounts of C37 and C38 n-alkanes of source rocks from the western Qaidam Basin and the Tarim Basin suggest an origin of these alkanes from functionalized C37 and C38 n-alkadienes and alkenones in prymnesiophytes living in lacustrine and marine environments.Oil-source rock correlations suggest oils in the west-ern Qaidam Basin were derived from the Oligocene Lower Ganchaigou Formation(E3),oils in the Tabei and Tazhong uplifts from the Tarim Basin have a genetic relationship with the Middle-Upper Ordovician source beds.Oils in the Turpan Basin generally fall into two genetic types.Most oils in the Taibei depression from the Turpan Basin were derived from the Lower-Middle Jurassic coal measures,but the fewer oils in this region are a mixed source derived from the Lower-Middle Jurassic coal measure and the Upper Permian source rocks.  相似文献   

17.
Organic matter was experimentally extracted by supercritical fluids(CO2 1% isopropanol)from petroleum source rocks of different thermo-maturities at different buried depths in the same stratigraphic unit in the Dongying Basin.The results show that supercritical fluid extraction(SFE)is more effective than Soxhlet extraction(SE),with higher amounts and greater varieties of hydrocarbons and soluble organic matter becoming extractive.The supercritical CO2 extraction is therefore considered more valuable in evaluation of petroleum source rocks and oil resources,particularly those of immature types.  相似文献   

18.
沉积岩和石油中烷烃尿素络合的纸层析法   总被引:2,自引:0,他引:2  
徐芬芳 《地球化学》1984,(2):186-188
Urea- adduct paper chromatography has been applied in organic geochemistry for separating branched/cyclic hydrocarbons from n-alkanes in sedimentary rocks and oils.The adduct reaction is made in urea adsorbed on the paper, and then developed by TLC(thin layer chromatography) technique. Experiments show that this method is of good efficiency. The whole procedure is simple and easily handled. This method is recommended for GC and GC-MS identification of organie components.  相似文献   

19.
The geochemical characteristics of crude oils from Zao-V oil measures in the Shen-jiapu oilfield are systematically described in terms of the fractional composition of crude oils, GC characteristics of saturated hydrocarbon fraction of crude oils and the characteristics of their bio-markers. The deposifional environment, type and evolution of the biological source are also discussed. All pieces of evidence such as low saturated hydrocarbon fraction, high resin and asphalt, high isoprenoid alkane, weak odd-carbon number predominance ( CPI ranging from 1.23 to 1,29, OEP ranging from 1.14 to 1.16) and low sterane and terpane maturity parameters show these crude oils are immature oils. Low Pr/Ph ratios (0.66 -0.88) and high gammacer-ante/C31 hopane ratios ( 0.59 - 0.86 ) indicate the source rocks were formed in a slightly saline to brackish reducing lake depositional environment. Gas chromatographic characteristics of the saturated hydrocarbon fraction and the predominance of C30 hopane in terpane series and C29 sterane in sterane series indicate the biological source of the crude oils is composed mainly of bacterial and algal organic matter, and some algae are perhaps the main contributor of organic matter to the source rocks.  相似文献   

20.
Forty-six crude oil samples were selected from the Ordovician in the northwestern part of the Tahe oilfield for detailed molecular geochemical and isotopic analysis, including group compositions, carbonhydrogen isotopes and gas chroma-tograms of saturated hydrocarbons, as well as the characteristics of terpane, sterane and other biomarkers, indicating that crude oils are of the same origin from different districts in the Tahe oilfield and were derived from the same source kitchen (or oil source formation), i.e., mainly stemming from marine hydrocarbons. Detailed studies of oil physical properties of 25-honpane revealed that such oils have heavy or thick oil qualities due to biodegradation. Comprehensive assessment in terms of five maturity parameters shows that the oils from the Ordovician with Ro values varying from 0.80% to 1.59% are widely distributed in the northwest of the Tahe oilfield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号