首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 194 毫秒
1.
作者运用简化的η坐标 POM模式数值研究了地形对东海黑潮锋面弯曲的产生与成长的影响。平底时 ,小扰动迅速发展导致锋面出现大弯曲。考虑到地形因素和黑潮流核远离陆架的情况 ,因其锋区正处在陡的陆坡之上 ,斜压不稳定被减小 ,其锋面不会出现如观测所示的弯曲。结果表明 ,在该实验条件下 ,地形对锋面起到稳定作用  相似文献   

2.
地形斜坡对东海黑潮陆架坡折锋稳定性影响研究   总被引:1,自引:1,他引:0  
张艳华  王凯  齐继峰 《海洋科学》2017,41(7):120-128
为了研究地形斜坡对东海黑潮陆架坡折锋稳定性的影响,利用简化的线性原始方程,在一定背景流的情况下,主要从增长率、相速度、空间结构和能量方面分析海底地形斜坡变化对坡折锋稳定性的影响。模式结果表明,平底地形时,扰动的强度大且扰动区域广,但有地形斜坡时,扰动区域变窄,强度变弱,地形对坡折锋起稳定性作用。通过能量分析得出东海黑潮陆架坡折锋是正压和斜压的混合不稳定,其中斜压不稳定占主导地位。实验分析得出,地形对东海黑潮陆架坡折锋起稳定作用,斜坡增大,斜压不稳定和正压不稳定均减弱,斜压不稳定减弱更明显。  相似文献   

3.
综述东海和琉球群岛以东海域若干气旋型和反气旋型涡旋的研究.对东海陆架、200m以浅海域,主要讨论了东海西南部反气旋涡、济州岛西南气旋式涡和长江口东北气旋式冷涡.东海两侧和陆坡附近出现了各种不同尺度的涡旋,其动力原因之一是与东海黑潮弯曲现象有很大关系,其次也与地形、琉球群岛存在等有关.东海黑潮有两种类型弯曲:黑潮锋弯曲和黑潮路径弯曲.黑潮第一种弯曲出现了锋面涡旋,评述了锋面涡旋的存在时间尺度与空间尺度和结构等;也指出了黑潮第二种弯曲,即路径弯曲时在其两侧出现了中尺度气旋式和反气旋涡,讨论了它们的变化的特性.特别讨论了冲绳北段黑潮弯曲路径和中尺度涡的相互作用,着重指出,当气旋式涡在冲绳海槽北段成长,并充分地发展,其周期约在1~3个月时,它的空间尺度成长到约为200km(此尺度相当于冲绳海槽的纬向尺度)时,黑潮路径从北段转移到南段.也分析了东海黑潮流量和其附近中尺度涡的相互作用.最后指出在琉球群岛以东、以南海域,经常出现各种不同的中尺度反气旋式和气旋式涡,讨论了它们在时间与空间尺度上变化的特征.  相似文献   

4.
黑潮延伸体上游中尺度涡场的年代际振荡及其相关机制   总被引:1,自引:1,他引:0  
黑潮延伸体上游区域的中尺度涡场的涡动能和涡特征尺度存在显著地年代际振荡,和黑潮延伸体路径的年代际变化有很好的相关性。当黑潮延伸体路径比较稳定时,其上游区域涡动能比较高,涡特征尺度比较大,反之相反。通过对黑潮延伸体上游区域的中尺度涡场进行集合分析发现:当黑潮延伸体处于稳定状态时,上游涡场几乎是各向均匀地,有轻微的径向伸长;而当黑潮延伸体处于不稳定状态时,上游的中尺度涡场有显著地纬向伸长。对与中尺度涡场的产生相关的线性斜压不稳定和正压不稳定进行了计算分析,结果显示,线性斜压不稳定不是控制中尺度涡场年代际变化的机制,而正压不稳定对中尺度涡场的年代际变化有积极的贡献。不稳定产生的中尺度涡之间存在非线性涡-涡相互作用。  相似文献   

5.
春季东海黑潮锋面涡旋的观测与分析   总被引:6,自引:4,他引:6  
本文根据1992年春季东海黑潮锋面涡的专题调查资料,分析了黑潮锋面涡的基本形态以及它在陆架-黑潮水相互交换中的作用。其主要结果是:(1)在30°N以南黑潮锋面涡呈折叠波状,其倒卷暖水舌的厚度约50m,冷中心呈带状;(2)在锋面涡的卷挟下,陆架混合水被卷入黑潮中;(3)锋面涡经过的水域生物生产力明显增高。文中还比较了1988、1989和1992年三次春季观测到的屋久岛西侧海域的锋面涡旋形态,认为这里的锋面涡约以30cm/s;速度随黑潮东移,锋面涡舌已发展成暖丝结构。当暖丝西行抵陆架边缘后,它可能直接北上归入对马暖流,也可能在九州西侧海区演变成暖环。  相似文献   

6.
东海黑潮锋面涡旋在陆架水与黑潮水交换中的作用   总被引:7,自引:2,他引:7  
根据NOAA卫星红外影像和水文、化学、生物的观测资料,分析了黑潮锋面涡旋中的黑潮水向陆架一侧倒卷,陆架混合水被卷入黑潮,以及深层富营养盐水被泵吸到上层海洋的基本形态。分析表明黑潮锋面涡旋在陆架水与黑潮水的交换中起十分重要的作用。本文对3个锋面涡中的水交换量进行计算得到:卷入到黑潮中的陆架混合水平均为0.44×105m3/s,而进入陆架的倒卷黑潮暖水仅为0.04×106m3/s.对于整个东海陆架边缘,锋面涡作用可使1.8×106m3/s的陆架混合水卷入黑潮。在锋面涡存在情况下,被泵吸到真光层并向陆架方向输运的NO3-N,其单宽输运量为974μmol/(m·s),而无锋面涡存在时仅为79μmol/(m·s).锋面涡造成的陆架方向的NO3-N输运量为1.7×105t/a.  相似文献   

7.
本文利用现场观测资料和卫星遥感数据, 并结合ROMS(regional ocean modeling system)数值模拟对南海北部粤东陆架的锋面特征及其影响因素进行探讨。观测结果显示, 夏季南海北部陆架存在活跃的上升流温度锋面, 其水平尺度约为50km, 强度达到0.06℃∙km-1, 大于同时期卫星遥感观测结果, 垂向影响深度超过20m, 且具有一阶理查森数(Richardson number, Ri)的典型动力学特征。进一步的ROMS 模式诊断分析结果显示, 锋面处水平梯度增强, 且动力学上表现出一阶Ri数, 为锋面不稳定的发生提供了有利条件。高分辨率模拟结果显示, 在夏季西南风的驱动下, 沿锋面地转流方向的风应力引起的跨陆架Ekman输运将锋面处冷水向暖水运移, 导致水平浮力梯度和锋面强度增强并形成负Ertel位涡(Ertel potential vorticity, EPV)。因此, 夏季风场强迫引起的Ekman浮力通量(Ekman buoyancy flux, EBF)可能是南海北部锋面不稳定现象的主要贡献者, 对局地动力环境有重要影响。  相似文献   

8.
利用高分辨率(1/18°)的POM(Princeton Ocean Model)模式数值模拟结果,结合观测数据分析了苏北浅滩外侧潮汐锋的季节分布特征和变化规律。研究结果表明,苏北浅滩外侧潮汐锋的季节变化特征显著,春末开始出现,夏季底层温度锋强度最大且锋区位置较稳定,锋区宽度约40 km,平均强度约0.35℃/km,秋、冬季随上层海洋湍流垂向混合的加强,潮汐锋逐渐减弱至消失不见。对比实测数据和模拟结果发现,沿34°N断面,夏季潮汐锋区附近等温线明显抬升,存在由陡峭地形和分层流体的内埃克曼效应共同作用形成的上升流现象。次表层海水出现低温冷水区,位于122.2°E附近。跨锋区断面的温度和流场分布特征同浅水区强烈的潮混合过程密切相关,斜压在锋面处产生了较强的南向流动。本研究结果促进了对苏北浅滩外侧陆架潮汐锋结构特征的认识,为研究黄海西部生态环境的动力过程影响提供参考。  相似文献   

9.
本文利用了23年的卫星高度计数据和WOA13气候态月平均温盐资料,考察了北太平洋副热带逆流(STCC)区涡旋动能谱及其涡旋尺度季节变化的动力过程。为了揭示其动力机制,本文采用了斜压2.5层模式并结合动能串级的理论进行分析。结果表明,在STCC区由于海洋层结及地转流的垂向剪切发生了季节性变化,从而产生的斜压不稳定是导致涡旋动能谱季节变化的原因。涡旋动能最大的时间发生在5—6月份,滞后于斜压最不稳定发生的时间(3月份)约2—3个月左右,这是由于斜压不稳定产生的扰动需要一定时间才能发展成振幅足够大的涡旋。斜压不稳定提供的能量使得涡旋相互作用加强,产生了动能逆向串级,动能谱向更大尺度转移。涡旋能量尺度在3月份仅为280km,而在9月份达到最高值335km左右。另一方面,我们发现STCC区动能谱斜率及动能谱通量也有季节变化,在涡旋动能最大的5—6月份,当尺度小于罗斯贝变形尺度时,谱斜率达到1k–3,而动能谱通量达到最大值。对STCC区涡动能谱及涡旋尺度季节变化的研究,对深入认识中尺度涡旋的产生及其演变机制有着重要的意义。  相似文献   

10.
本文根据“中日黑潮合作调查”在东海的调查资料,探讨了硝酸盐的分布特征,以及水文条件对其分布的影响,并比较了不同年份夏季硝酸盐的分布差异及其原因。分析表明,表层海水中硝酸盐分布明显受长江冲淡水影响,陆架区测值高于外海,冬季测值高于夏季; 50m ,100m 层上陆架、黑潮锋区存在着硝酸盐锋面,黑潮主干的摆动可能是影响锋面位置的主要因素  相似文献   

11.
To investigate the fluctuation of the Kuroshio front, moored current meters were deployed near the shelf break and on the continental slope in the East China Sea, northwest of Okinawa Island, during a period from 25 June to 22 July 1984. Two mooring arrays were deployed on the slope of about 800 m water depth (under the Kuroshio), about 30 km apart along the path of the Kuroshio. Another two arrays were set near the shelf break of about 300 m water depth. The fluctuation of current on the slope is found to have a predominant period of 11–14 days and a were length of 300–350 km, propagating toward the downstream direction of the Kuroshio with a phase velocity of about 30 cm sec?1. When the Kuroshio front approaches the shelf break and the crest of the meander covers the mooring site, the current direction moves toward the downstream direction of the Kuroshio and the water temperature increases. On the other hand, when the trough of the meander covers the mooring site, the current direction changes off-shoreward across the Kuroshio or in the upstream direction of the Kuroshio, and the water temperature decreases. Three-dimensional distributions of water temperature and salinity around the mooring site were observed with a CTD twice at 5.5 days intervals, which indicate the meanders of the front is about 180° out of phase. This coincides with a period of 11–14 days obtained with the moored current meters. Wave lengths of the dominant meander of the front in the satellite thermal images were about 350 km and 100–200 km, which also coincides with results obtained with the moored current meters.  相似文献   

12.
Southwestward volume transport (referred to 1,500 db) out of the Gulf of Alaska seaward of the continental shelf in May 1972 was 12.5 Sv, and nearly 3/4 of this flow occurred within 50 km of the shelf edge. Mean geostrophic velocities of about 50 cm s–1 occurred in a band 20 km wide, which extended 500 km along the shelf edge; a maximum velocity of 98 cm s–1 (nearly 2 knots) was obtained. Bottom flow along the inshore part of the shelf as determined by seabed drifters was generally onshore at 0.5 cm s–1. Evidence is presented of a large cyclonic gyre on the shelf encompassing the Portlock and Albatross Banks, perturbations in surface flow along the shelf edge, and relations between coastal tidal heights and fluctuations in geopotential topography at the shelf edge.  相似文献   

13.
In the summer seasons of 2004–2007, the intensive runoff (cascading) of the Antarctic shelf water (ASW) down the shelf and continental slope was revealed thanks to the recording of numerous thermohaline profiles across the shelf and continental slope of the Commonwealth Sea and Prydz Bay. The quickly executed profiles (4–10 h) with submesoscale resolution (near the shelf’s edge, the scale was even eddy-determinative, i.e., within 1.9–5.6 km), in combination with the fine-structure sounding and fine vertical resolution of the near-bottom boundary layer, provided a qualitatively new level of understanding the natural data. The detailed analysis of the temperature, salinity, and density patterns revealed the regularities and peculiarities of the ASW shelf and slope cascading. The intensive ASW cascading near the shelf break and lower part of the slope can be forced (appearing as discrete frontal meanders) or free (appearing as discrete plumes) and often has a wave-eddy character. The field observational data confirmed the obtained representative estimates of the elements of the ASW slope cascading. The basic area of the ASW formation is near the Amery Shelf Ice, from where the ASW spreads to the northwest, goes around the Fram Bank, and flows down the continental slope. The evaluative contribution of the ASW slope cascading to the ventilation of the deep and slope water of the Southern Ocean (near the shelf break 70 km long where the ASW cascading was observed) is Q K = 0.04–0.24 Sv, which agrees well with the analogous estimates obtained in other regions of the Antarctic.  相似文献   

14.
The shelfbreak wintertime thermal front in the Northeastern Gulf of Mexico often exhibits meandering, eddy formation and warm-water intrusion. A high level of frontal variability plays an essential role in exchange processes across the shelf. This study examines the impacts of local frontal instability and bottom topography on turbulent heat exchange across the front using the results of two numerical models. Analysis of a series of numerical experiments reveals that the flow is baroclinically unstable. Predicted frontal instability contributes significantly to cross-frontal exchange and accounts for about 35% of the total eddy heat flux. Onshore eddy heat flux has the highest intensity at the frontal position. In addition, eddy activity and heat flux are sensitive to variation of bottom topography. For topographic features and frontal characteristics that are typical of the area, bottom steepness enhances the flux and is nearly proportional to the cross-frontal heat exchange. The study attempts to explain physical mechanisms that drive frontal circulation in the area and to quantify heat transport across the shelf. Estimated heat fluxes can provide important information for climate and ecosystem modeling of the Mississippi Bight.  相似文献   

15.
The occurrence of the small meander of the Kuroshio, generated south of Kyushu and propagating eastward, was examined using sea level data collected during 1961–1995 along the south coast of Japan. Intra-annual variation of the sea level was expanded by the frequency domain empirical orthogonal function (FDEOF) modes, and it was found that the second and third modes are useful for monitoring the generation and propagation of the small meander. The third FDEOF for periods of 10–100 days has a phase reversal between Hosojima and Tosa-shimizu with significant amplitude west of Kushimoto, and the amplitude of its time coefficient is large during the non-large-meander (NLM) period and has a significant peak when the small meander exists southeast of Kyushu. The second FDEOF for periods of 20–80 days has a phase reversal between Kushimoto and Uragami, and the amplitude of its time coefficient is large when the small meander propagates to the south of Shikoku. The third FDEOF mode allowed us to conclude that the small meander occurred 42 times from July 1961 to May 1995, most of them (38) occurring during the NLM periods. The second FDEOF mode permits the conclusion that half of the 38 small meanders reached south of Shikoku. Of these, five small meanders influenced transitions of the Kuroshio path from the nearshore NLM path; one caused the offshore NLM path and four brought about the large meander. About one-tenth of the total number of small meanders are related to the formation of the large meander.  相似文献   

16.
Data on ocean temperature, currents, salinity and nutrients were obtained in an area off Algoa Bay on the south-east coast of South Africa during a ship's cruise in early November 1986. Satellite imagery provided information on the position of the Agulhas Current during the cruise period, while wind data were available from weather stations on the eastern and western sides of Algoa Bay. It is surmised that wind-forcing plays a major role in water circulation in the Bay and over the inshore continental shelf remote from the influence of the open ocean. The predominantly barotropic current flow, of the order of 0,5 m·s?1, was downwind and influenced by topographic features and coastline shape. The Agulhas Current influences the ocean structures by long-term (large episodic meanders) and short-term (upwelling forced by the Current, core upwelling in frontal eddies and warm frontal plumes at the surface) fluctuations. Temperature structures showed well mixed water in Algoa Bay and a strong thermocline over the continental shelf, and were typical of a western boundary current in the Agulhas Current itself. The presence of a thermocline at 30–50 m over the shelf prevented upward mixing of nutrients. The Current exerted a dominant effect on shelf waters north of Algoa Bay.  相似文献   

17.
The evolution of energy, energy flux and modal structure of the internal tides(ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep continental slope to the shallow continental shelf. The energy of both diurnal and semidiurnal ITs clearly shows a~14-day spring-neap cycle, but their phases lag that of barotropic tides, indicating that ITs are not generated on the continental slope. Observations of internal tidal energy flux suggest that they may be generated at the Luzon Strait and propagate west-northwest to the continental slope in the northwestern SCS. Because the continental slope is critical-supercritical with respect to diurnal ITs, about 4.6 kJ/m~2 of the incident energy and 8.7 kW/m of energy flux of diurnal ITs are reduced from the continental slope to the continental shelf. In contrast, the semidiurnal internal tides enter the shelf because of the sub-critical topography with respect to semidiurnal ITs.From the continental slope to the shelf, the vertical structure of diurnal ITs shows significant variation, with dominant Mode 1 on the deep slope and dominant higher modes on the shelf. On the contrary, the vertical structure of the semidiurnal ITs is stable, with dominant Mode 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号