首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
寿山石的矿物学研究   总被引:14,自引:2,他引:12  
寿山石是我国最负盛名的图章石。其矿物成分,最早人们认为是叶蜡石,近年来认为主要是迪开石、珍珠石。作者在寿山村的野外工作基础上,应用X射线衍射、红外光谱、化学全分析和电子顺磁共振等方法,重点对产于寿山溪周围的寿山石进行了矿物岩石学方面的研究。X射线衍射和红外光谱证实,寿山溪南侧和北侧的寿山石均是以迪开石等高岭石族矿物为主,而西侧的旗山则是以叶蜡石为主。研究表明,寿山石的外观特征与迪开石的有序度密度有  相似文献   

2.
Visible near infrared and shortwave infrared (VNIR-SWIR, 350 to 2500 nm) reflectance spectra obtained from an analytical spectral device (ASD) have been used to define alteration zones adjacent to porphyry copper deposits (PCDs), in the central part of Kerman magmatic arc, SE Iran. The spectral analysis identified sericite, illite, halloysite, montmorillonite, dickite, kaolinite, pyrophyllite, biotite, chlorite, epidote, calcite, jarosite, and iron oxyhydroxides (e.g. hematite, goethite) of hydrothermal and supergene origin. Identified alteration zones are classified into six principal types namely phyllic, phyllic/propylitic, propylitic, potassic, argillic and advanced argillic. The iron oxide minerals in the oxidized zone were also identified using spectral analysis. Results of spectral analyses of samples are consistent with mineralogical data obtained from X-ray diffraction (XRD) and petrographic studies. Spectroscopic studies by ASD demonstrate that this tool is very useful for semi-quantitative and cost effective identification of different types of alteration mineral assemblages. Furthermore, it can provide a valuable tool for evaluating aerial distribution of alteration minerals while coupled with remote sensing data analysis.  相似文献   

3.
This study presents the first unequivocal identification of natural radiation-induced defects in illites. Middle Proterozoic illites related to unconformity-type uranium deposits of Canada and Australia were studied using electron paramagnetic resonance (EPR) spectroscopy at X- and Q-band frequencies. The saturation behaviour of EPR spectra as a function of power demonstrates that native defects of illites are different from those known in other clays as kaolinite, dickite or smectite. Q-band spectra indicate the presence of several––at least two––native defects. The EPR signal is dominated by an axially distorted spectrum with apparent principal components as follows: g  = 2.032 and g  = 1.993. The corresponding defect is named as Ai center. The study of oriented specimen confirms the strong anisotropy, and shows that the main defect has its g component perpendicular to the (ab) plane of illite. These defects in illite correspond to electron holes located on oxygen atoms of the structure and likely associated to Si, according to the lack of hyperfine structure. The Ai center in illite has similar EPR parameters to the A center in kaolinite and dickite. The isochronal annealing data suggest that illite can be used as a dosimeter in the geosphere. However, the determination of half-life and activation energy of the Ai center requires additional work.  相似文献   

4.
The Hercynian mercury mineralization of Las Cuevas is hosted by a highly folded and sheared sequence of basalts, intrusive breccias, slates, psamitic rocks and quartzites. The mineral paragenesis is simple and consists of cinnabar, native mercury and pyrite. Hydrothermal alteration can be divided into `proximal' and `distal' with respect to the mineralized bodies. The proximal alteration (≤1.3 m wide) consists of quartz-pyrophyllite-kaolinite, quartz-pyrophyllite-(kaolinite)-(illite), and quartz-illite-(pyrophyllite)-(kaolinite). The distal alteration (∼100 m wide) consists of (quartz)-illite-chlorite-(pyrophyllite), or rectorite-(chlorite). These assemblages overprint an earlier, regional alteration consisting of quartz-chlorite-albite-carbonates (±ankerite, ±siderite, ±magnesite, ±calcite). The mercury deposit of Las Cuevas can be regarded as an unusual combination of mercury deposition and advanced argillic alteration within a relatively deep environment (≥1.8 km). Received: 3 February 1998 / Accepted: 8 June 1998  相似文献   

5.
Clay minerals associated with intra-volcanic bole horizons of varied colours and thicknesses contain montmorillonite, halloysite and kaolinite, show distinct microstructures and microaggregates. In kaolinite, Fe3+ ions substitute for Al3+ at octahedral sites. Most of these clays are dioctahedral type, show balance between net layer and interlayer charges. The interstratified illite — smectite (I/S) mixed layers containing variable proportions of montmorillonite. Illite contains sheet-like, well oriented microaggregates. The parallel stacks of chlorite sheets show chlorite/smectite (C/S) mixed layers. Progressive enrichment of Fe and depletion of Al ions with the advancement of kaolinization process is observed. High order of structural and compositional maturity observed in these bole clays, indicate long hiatus between the two volcanic episodes.  相似文献   

6.
Summary Investigations of natural and synthetic quartz specimens by cathodoluminescence (CL) microscopy and spectroscopy, electron paramagnetic resonance (EPR) and trace-element analysis showed that various luminescence colours and emission bands can be ascribed to different intrinsic and extrinsic defects. The perceived visible luminescence colours in quartz depend on the relative intensities of the dominant emission bands between 380 and 700 nm. Some of the CL emissions of quartz from the UV to the yellow spectral region (175 nm, 290 nm, 340 nm, 420 nm, 450 nm, 580 nm) can be related to intrinsic lattice defects. Extrinsic defects such as the alkali (or hydrogen)-compensated [AlO4/M+] centre have been suggested as being responsible for the transient emission band at 380–390 nm and the short-lived blue-green CL centered around 500 nm. CL emissions between 620 and 650 nm in the red spectral region are attributed to the nonbridging oxygen hole centre (NBOHC) with several precursors. The weak but highly variable CL colours and emission spectra of quartz can be related to genetic conditions of quartz formation. Hence, both luminescence microscopy and spectroscopy can be used widely in various applications in geosciences and techniques. One of the most important fields of application of quartz CL is the ability to reveal internal structures, growth zoning and lattice defects in quartz crystals not discernible by means of other analytical techniques. Other fields of investigations are the modal analysis of rocks, the provenance evaluation of clastic sediments, diagenetic studies, the reconstruction of alteration processes and fluid flow, the detection of radiation damage or investigations of ultra-pure quartz and silica glass in technical applications. Zusammenfassung Ursachen, spektrale Charakteristika und praktische Anwendungen der Kathodolumineszenz (KL) von Quarz – eine Revision Untersuchungen von natürlichen und synthetischen Quarzproben mittels Kathodolumineszenz (KL) Mikroskopie und -spektroskopie, Elektron Paramagnetischer Resonanz (EPR) und Spurenelementanalysen zeigen verschiedene Lumineszenzfarben und Emissionsbanden, die unterschiedlichen intrinsischen und extrinsischen Defekten zugeordnet werden k?nnen. Die sichtbaren Lumineszenzfarben von Quarz werden durch unterschiedliche Intensit?tsverh?ltnisse der dominierenden Emissionsbanden zwischen 380 und 700 nm verursacht. Einige der KL Emissionen vom UV bis zum gelben Spektralbereich (175 nm, 290 nm, 340 nm, 420 nm, 450 nm, 580 nm) stehen im Zusammenhang mit intrinsischen Defekten. Die kurzlebigen Lumineszenzemissionen bei 380–390 nm sowie 500 nm werden mit kompensierten [AlO4/M+]-Zentren in Verbindung gebracht. Die KL-Emissionen im roten Spektralbereich bei 620 bis 650 nm haben ihre Ursache im “nonbridging oxygen hole centre” (NBOHC) mit verschiedenen Vorl?uferzentren. Die unterschiedlichen KL-Farben und Emissionsspektren von Quarz k?nnen oft bestimmten genetischen Bildungsbedingungen zugeordnet werden und erm?glichen deshalb vielf?ltige Anwendungen in den Geowissenschaften und in der Technik. Eine der gravierendsten Einsatzm?glichkeiten ist die Sichtbarmachung von Internstrukturen, Wachstumszonierungen und Defekten im Quarz, die mit anderen Analysenmethoden nicht oder nur schwer nachweisbar sind. Weitere wesentliche Untersuchungsschwerpunkte sind die Modalanalyse von Gesteinen, die Eduktanalyse klastischer Sedimente, Diageneseuntersuchungen, die Rekonstruktion von Alterationsprozessen und Fluidmigrationen, der Nachweis von Strahlungssch?den oder die Untersuchung von ultrareinem Quarz und Silikaglas für technische Anwendungen. Received March 29, 2000 Accepted October 27, 2000  相似文献   

7.
游仲华 《沉积学报》1985,3(3):115-124
笔者对采自太平洋中部170°E至178°W,6°到17°S,即新赫布里底群岛至乌佛阿岛,斐济群岛到埃利斯群岛间海区(见图1)的10个站位,20个海底沉积物样品,进行了分析和研究。 该区的地质构造受西太平洋岛孤活动带的控制,海底地形复杂,水深变化大。火山活动频繁,区内散布许多白垩纪至老第三纪形成的火山岛和水下火山体。第四纪以来,火山活动依然十分频繁[1]。根据海底地形,水深和沉积物的差异,将该区分为三个小区。(1)斐济群岛和霍恩群岛以北海区,水深一般小于2500米,但深度变化大,地形复杂,水下火山体和珊瑚礁星罗棋布,沉积物以钙质生物沉积为主。( 2)北斐济海盆,水深多为3000-400。米,海盆边缘散布着许多水下火山体,沉积物以钙质生物沉积一火山碎屑沉积为主。(3)美拉尼西亚海盆南部,水深5000米左右,海域开阔,水下火山体较少,沉积物以多源性红粘土沉积为主。  相似文献   

8.
The cathodoluminescence (CL) of a variety of alkali feldspars from South Greenland has been examined in an attempt to understand the causes of the CL and its petrological significance. Analytical methods have included CL spectroscopy, secondary ion mass spectrometry (SIMS) and electron paramagnetic resonance (EPR) to correlate the presence of certain CL emissions to the presence of certain trace element and point defects. Where possible, blue and red luminescent fractions of the same rock samples have been separated and analysed separately. Blue CL appears to relate to the presence of electron holes on bridging oxygens, particularly on the Al-O-Al bridge, as determined from EPR studies. No correlation with other proposed activators for blue CL such as Eu2+, Ga3+ or Ti4+ was observed. Some blue luminescent feldspars also have an emission in the infra-red (IR), invisible during normal visible CL petrography. The red and IR CL emissions correspond to features in EPR spectra attributed to Fe3+ and support previous suggestions that Fe3+ is related to this emission. However, our studies indicate that the visible red CL relates specifically to Fe3+ on the T1 site, whereas the equivalent CL from disordered feldspars lies in the IR. The difference between red and IR CL emissions therefore relates to the state of Fe3+ order across the tetrahedral sites. These data allow more meaningful interpretations of CL as a petrographic tool in alkali feldspar-bearing rocks. Received: 5 March 1998 / Accepted: 23 November 1998  相似文献   

9.
Hydrothermal alteration mapping with spaceborne hyperspectral data was simulated in the Comstock mining district, Nevada in order to evaluate the mineral mapping capabilities of the proposed Australian Resource Information and Environment Satellite (ARIES‐1). As a result, a suite of hydrothermal alteration minerals, including kaolinite, dickite, illite, chlorite, alunite and carbonate was identified from the simulated data in the 0.4–2.5 μm wavelength region and their areal abundance variations mapped accordingly. The recognised alteration zoning shows a major change in alteration assemblages across the Comstock and Silver City Faults, and a gradual variation from north to south along the faults. In the bleached Miocene volcanic rocks, dickite, kaolinite, illite and alunite were recognised. Coexistence of dickite of relatively high temperature, high‐crystallinity kaolinite of medium temperature and low‐crystallinity kaolinite of low temperature suggests supergene processes overprinting earlier hypogene alteration. The bleached rocks probably represent hydrothermal alteration in the fluid up‐flow zones in the central and shallower parts of the hydrothermal system. Illite in the bleached zones is characterised by relatively short AI–OH band wavelengths (2190–2200 nm), indicating no or very low Fe and/or Mg contents. Fault‐controlled propylitic alteration is mapped in the central part of the district mainly in the footwall of the Comstock Fault. The associated illite is characterised mainly by medium AI–OH band wavelengths (2200–2208 nm). This propylitic alteration may be contemporaneous with Au–Ag mineralisation. Additional and more extensive propylitic zones, containing illite with long AI–OH band wavelengths (2204–2216 nm), were mapped in the southern part of the district. These zones resulted from either a pre‐mineralisation propylitic alteration, or the peripheral hydrothermal alteration in the fluid down‐flow zones of the Miocene hydrothermal system.  相似文献   

10.
Using a neodymium glass laser and time-synchronized pulse detection, second harmonic signals were observed from a number of clay mineral powders. The second harmonic generation (SHG) experiments provide the first physical evidence (other than diffraction patterns) for the polar nature of the kaolinite layer and its stacking sequences. Well-crystallized nacrite and dickite specimens gave signals comparable to those of quartz, but the SHG intensities from the smaller kaolinite and halloysite crystallites were noticeably weaker. Based on results from eight specimens, there appears to be a direct correlation between SHG intensity and particle size, similar to that reported previously for quartz.  相似文献   

11.
中国含油气盆地粘土矿物的某些矿物学特征   总被引:6,自引:0,他引:6  
赵杏媛  张有瑜 《现代地质》1994,8(3):264-272,T002
本文总结归纳了20多个含油气盆地粘土矿物的类型,讨论了8种较常见的、6种较少见的和3种极少见的粘土矿物的X射线衍射特征及其成分、形态和分布等方面的矿物学特征.  相似文献   

12.
In the Pötürge (Malatya, Turkey) area pyrophyllite occurrences are common in the shear zones, mostly in the form of lenses along faults. Mineralogical investigations (XRD, FTIR and SEM) revealed that pyrophyllite, kaolinite (dickite) and quartz are present in the form of major phases and muscovite (sericite), kyanite, chlorite, and alunite are only present in the form of minor phases. This study revealed that the existence of the kyanite phase points out to high pressure and temperature conditions which the rocks were underwent. On the other hand, the minerals such as pyrophyllite, kaolinite, and alunite are products of a low degree metamorphism (retrograde). The mineral paragenesis in the pyrophyllite deposits suggests that the formation of minerals took place in two ways: (1) the transformation of kyanite into pyrophyllite and quartz through retrograde metamorphism by a high degree temperature, (2) then pyrophyllite and probably muscovite were transformed into kaolinite and alunite through reactions with relatively low temperature hydrothermal fluids. The geochemical data indicate that during the retrograde metamorphism the elements K, Rb, Sr, Ba, S, and Fe were mobile, the elements Si, Al, P moderately mobile to immobile and the HPS elements (Zr, Ti, and Nb) were immobile. It was shown that the formation of pyrophyllite, kaolinite and alunite was associated with depletion in alkalis, Mg, Fe and enrichment of elements including Sr, Ba, and S. Mineralogical and geochemical data suggest that parent rocks (pre-metamorphism) of the Pötürge pyrophyllite were probably kaolinite, Al-rich clays or bauxites.  相似文献   

13.
Summary ?Feldspar specimens covering the whole Or–Ab–An ternary have been investigated by cathodoluminescence (CL), photoluminescence (PL), radioluminescence (RL) and radiophosphorescence (RP) spectrometry. A red luminescence emission, which is commonly explained by Fe3+ lattice defects, is a characteristic feature of all the spectra. Different shifts of the peak-wavelength between ∼680–750 nm (1.82–1.65 eV) were observed with varying feldspar composition. Despite the dependence of the peak position on the Ca/Na ratio, initially described for CL in the 1970s, there is also a shift induced by changing NaK composition. The observed effects can be explained by known relations that the peak position of the red luminescence emission in feldspars can be affected both by the structural state of the feldspar and the site occupancy of the trivalent iron. In the case of alkali feldspars another factor may influence the peak-shift. The incorporation of the larger potassium ion causes non-linear variations of the cell dimensions and therefore Fe–O bond distance. The behaviour of the red peak-shift dependent on the feldspar composition is not equal for all types of luminescence investigated. This is most likely caused by the different luminescence excitation mechanism. Received December 3, 2001; revised version accepted March 25, 2002  相似文献   

14.
The Pueblo Viejo deposit (production to 1996: 166 t Au, 760 t Ag) is located in the Dominican Republic on the Caribbean island of Hispaniola and ranks as one of the largest high-sulfidation/acid-sulfate epithermal deposits (reserves in 2007: 635 t Au, 3,648 t Ag). One of the advanced argillic ore bodies is cut by an inter-mineral andesite porphyry dike, which is altered to a retrograde chlorite–illite assemblage but overprinted by late-stage quartz–pyrite–sphalerite veins and associated low-grade Au, Ag, Zn, Cd, Hg, In, As, Se, and Te mineralization. The precise TIMS U–Pb age (109.6 ± 0.6 Ma) of the youngest zircon population in this dike confirms that the deposit is part of the Early Cretaceous Los Ranchos intra-oceanic island arc. Intrusion-related gold–sulfide mineralization took place during late andesite–dacite volcanism within a thick pile (>200 m) of carbonaceous sand- and siltstones deposited in a restricted marine basin. The high-level deposit was shielded from erosion after burial under a late Albian (109–100 Ma) ophiolite complex (8 km thick), which was in turn covered by the volcano-sedimentary successions (>4 km) of a Late Cretaceous–Early Tertiary calc-akaline magmatic arc. Estimates of stratigraphic thickness and published alunite, illite, and feldspar K-Ar ages and closure temperatures (alunite 270 ± 20°C, illite 260 ± 30°C, K-feldspar 150°C) indicate a burial depth of about 12 km at 80 Ma. During peak burial metamorphism (300°C and 300 MPa), the alteration assemblage kaolinite + quartz in the deposit dehydrated to pyrophyllite. Temperature–time relations imply that the Los Ranchos terrane then cooled at a rate of 3–4°C/Ma during slow uplift and erosion.  相似文献   

15.
腾冲地热区出露有众多热泉泉群,地热活动频繁,岩石发生强烈蚀变,形成的主要蚀变矿物包括高岭石、绢云母、蒙脱石、I/M间层矿物、石英和蛋白石。主要蚀变矿物的种类和含量受蚀变母岩性质的控制,花岗质砂砾岩和花岗岩形成高岭石,玄武岩形成伊利石和蒙托石,安山岩中发育硅化作用。泥化作用增强的趋势是安山岩→花岗岩→玄武岩→花岗质砂砾岩。由于花岗质砂砾岩在热区内广泛分布,通过蚀变作用形成了有经济价值的高岭土矿床。  相似文献   

16.
Illite, illite-montmorillonite (I-M) mixed layer, kaolinite and chlorite are the principal clay minerals identified in the carbonate and terrigenous carboniferous rocks in the South Wales coalfield. Mineralogic changes and illite crystallinity are the main modifications in the studied rocks. Progressive illitization of I-M mixed layers (decrease in their expandabilities) towards the western part of the coalfield (i.e. in the direction of increase in coal-rank and grade of metamorphism), and the development of vermicular kaolinite, dickite, allevardite and pyrophyllite in the anthracite area are the main mineralogic changes. Illite crystallinity was determined by Weaver's sharpness ratio (S.R.) and isosharpness ratio maps of illite in the carbonate and terrigenous rocks are produced showing a gradual increase in illite crystallinity towards the west. Illites in the terrigenous rocks tend to be aluminous (evidenced by the increase in their intensity ratios, ‘I.R.’) with increase in coal-rank and grade of metamorphism towards the west. These changes are controlled to some extent by lithology. Correlation of illite S.R. with either its I.R. or expandability of I-M mixed layer, has outlined two diagenetic zones in the coalfield: zone I, the Diagenetic zone, in the eastern and southern regions; and zone II, the Metadi-agenetic zone, covering the central and northern parts of the central region. The Anchimetamorphic zone (zone III), which corresponds to the anthracite area in the northwestern region, was differentiated by correlating the illite S.R. with coal-rank. The occurrence of the above mentioned diagenetic zones and modifications of the clay minerals in the carboniferous rocks of the South Wales coalfield are mainly lateral without variation with increase in depth.  相似文献   

17.
Natural radiation-induced defects were identified in specimens of sudoite (Al–Mg di-trioctahedral chlorite) related to unconformity-type uranium deposits at the base of the Athabasca Group (Saskatchewan, Canada), using electron paramagnetic resonance (EPR) spectroscopy at X- and Q-band frequencies. X-band spectra indicate the presence of a main native defect, named the As-center, whose EPR signal is dominated by an axially distorted spectrum with apparent principal components as follows: g // = 2,051 and g  = 2,005, and a secondary defect with apparent component g = 2,025. The study of oriented specimens shows that the main defect has its g // component perpendicular to the (ab) plane of sudoite. The As-center corresponds to an electron hole located on oxygen atoms of the structure and is likely associated with Si, according to the lack of hyperfine structure. The As-center in sudoite has EPR parameters similar to the A-center in kaolinite and dickite, and the Ai-center in illite. The saturation behavior of EPR spectra as a function of power demonstrates that native defects of sudoite are different from those known in other clays, such as kaolinite, dickite or smectite, but are similar to those of illite. The isochronal annealing data suggest that the main defect in sudoite is stable to more than 300°C. The corresponding defects characterized in sudoite may have the potential for tracing past radionuclide migration around unconformity-type uranium deposits.  相似文献   

18.
安徽庐枞盆地酸性蚀变岩帽地质地球化学特征研究   总被引:5,自引:4,他引:1  
酸性蚀变岩帽是浅成低温热液系统演化的产物,形成于酸性高氧化性流体的化学条件下;在高硫化型浅成低温热液金矿床中广泛发育,是该类矿床的显著识别特征。通过对酸性蚀变岩帽的野外地质特征、矿物共生组合和地球化学特征研究,能较好阐明浅成低温成矿热液系统的特征、性质、发生和发展演化及成矿作用过程。庐枞矿集区是长江中下游成矿带重要的矿集区之一,盆地内广泛发育以明矾石为特征蚀变矿物的酸性蚀变岩帽,面积超过30km~2,指示盆地内高硫化浅成低温热液系统的存在。目前为止,前期工作主要针对明矾石矿床地质特征和明矾石资源储量进行,该酸性蚀变岩帽的地质地球化学特征研究尚未开展。本次工作通过对酸性蚀变岩帽系统的野外采样、全岩地球化学分析和短波红外光谱测试分析技术(PNIRS测试)分析,确定其主要赋存在砖桥组火山岩中,组成矿物为石英、明矾石、高岭石、地开石,此外有少量绢云母、伊利石、珍珠陶土、叶蜡石、褐铁矿,极少数的叶腊石和黄钾铁矾等,在钻孔深部存在浸染状和半自形粒状黄铁矿。由于受到地表风化剥蚀和不同热热中心的影响,水平方向从矾山明矾石矿床向外围发育石英+明矾石带、石英+高岭石/地开石+明矾石带、石英+高岭石/地开石带、硅化带以及最外围的泥质带即高岭石±绢云母±伊利石带。根据酸性蚀变岩帽的矿物组合和主量元素特征,可将其分为三类:硅质蚀变岩、明矾石蚀变岩和粘土蚀变岩。硅质蚀变岩中SiO_2含量发生明显的富集作用,其余主量元素(K_2O、Na_2O、Al_2O_3、Fe_2O_3、P_2O5)含量显著降低;明矾石蚀变岩和粘土蚀变岩具有相似的地球化学特征,SiO_2、Al_2O_3、Fe_2O_3、P_2O_5元素含量范围变大,K_2O和Na_2O含量降低,且Na_2O降低更加明显;而钛为不活泼元素,在岩石发生蚀变过程中TiO_2含量变化很小。矾山地区的酸性蚀变岩帽的产状、蚀变类型、地球化学特征受构造和地层的双重控制。  相似文献   

19.
The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.Editorial handling: B. Lehmann  相似文献   

20.
袁野  施光海 《地球学报》2012,33(2):176-184
在野外地质工作、镜下观察的基础上,采用电子探针、X射线粉晶衍射、氢氧稳定同位素测试等方法对江西上饶龙门高岭石-叶蜡石矿床矿石进行了分析。其主要组成矿物为高岭石族矿物、叶蜡石和石英,其次有少量的绢云母、黄铁矿和赤铁矿等。矿石中高岭石族矿物Hinckley指数为0.33~0.94,整体属于较无序高岭石,叶蜡石有2M型和1Tc型两种多型,以2M型为主。矿石的δ18O值为4.5‰~6.6‰,δD值为-71.7‰~-98.5‰。综合分析认为该矿床为晶屑玻屑凝灰岩受热液蚀变而成,其成矿热液主要来自大气降水,成矿温度为75℃~300℃,压力<1kb。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号