首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An annual budget for dissolved silica (DSi) and biogenic silica (BSi) was constructed for the Scheldt estuary and for the entire riverine and estuarine Scheldt tidal system (Belgium/The Netherlands) using previously published silica concentrations and fluxes for the period 2003–2005. The annual estuarine DSi mass-balance was established, based on seasonal fluxes estimated using measured DSi concentrations and (fully transient) model simulations of conservative transport. The annual BSi mass-balance was deduced from measured BSi contents in the suspended particulate matter and annual mud fluxes taken from the literature. The Scheldt estuary acted as a net sink not only for the BSi carried by the tidal river as well as that produced by diatoms in the estuary, but also for large amounts of BSi imported from the coastal zone. This results in the retention of dissolved and biogenic silica higher than that of DSi alone, which is in contrast with the classical consideration that rivers act as a source of BSi for the coastal zone. DSi and silica (DSi + BSi) retentions amounted to, respectively, 28 and 64 % in the estuary, and 33 and 66 % in the entire tidal system. This study highlights thus the predominant role of the estuary in the entire Scheldt tidal system when dealing with silica dynamics, as well as the importance of including BSi when investigating estuarine silica retention.  相似文献   

2.
Water samples were collected from the Changjiang River (Yangtze River) in May 2005, after the impoundment of the Three Gorges Reservoir (TGR), to examine the influence of the TGR and large lakes on material delivery to the estuary of the Changjiang River. The concentrations of suspended particle material (SPM), dissolved silica (DSi) and biogenic silica (BSi) in the main stream were analyzed. The concentrations of DSi and BSi in the main channel of the Changjiang varied between 73 and 100 and 1.1–15 μmol/l, with a distance weighted average of 81 and 8.0 μmol/l, respectively. A calculation shows that live diatom comprises only an average value of 5.2 % of the BSi in the Changjiang River, and most of BSi may come from drainage basin. The concentrations of BSi and the ratios of BSi/SPM were relatively low in the Changjiang River compared to other rivers throughout the world, but the BSi carried in suspension by the Changjiang River was an important component of the rivers silicon load (i.e. ~13 %). SPM, DSi and BSi concentrations as observed in the Changjiang River tend to decrease from the upper sections of the river to the Three Gorges Dam (TGD), reflecting sedimentation associated with BSi trapping and DSi retention in the TGR in the normal-water period. SPM and BSi retention are more strongly influenced by the TGD compared to DSi. About 98 % of SPM, 72 % of BSi and 16 % of DSi were retained within the TGR in May 2005. The fluxes variations of DSi, BSi and SPM suggested that the large lakes and dams had a coupled effect on the transportation of DSi, BSi and SPM in the normal-water period. Such a change in silicon (DSi and BSi) balances of the Changjiang River will affect the ecological environment of the Changjiang estuary and its adjacent sea to some extent.  相似文献   

3.
We conducted a study of the biogeochemical cycle of silicon in a rice field in Camargue (France) in order to evaluate the role of biogenic silicon particles (BSi) in the cycle. Opal-A biogenic particles (phytoliths, diatoms…), which dissolve more rapidly than other forms of silicate usually present in soils, are postulated to represent the easiest bioavailable Si for rice. We found 0.03–0.06 wt.% of BSi in soils (mainly phytoliths). This value is lower than other values from the literature. Each year, the exportation of BSi from rice cultivation is 270 ± 80 kg Si ha− 1. We show that BSi input by irrigation is mostly composed of diatoms and we estimate it at 100 kg Si ha− 1 year− 1. This value is more than a third of the annual Si need for rice. The budget of the dissolved silicon (DSi) fluxes gives the following results: the atmospheric and irrigation inputs represents 1% and roughly 10%, respectively, of the annual need for rice; the drainage and infiltration outputs represent 17 ± 14 and 12 ± 9 kg Si ha− 1 year− 1, respectively; the balance of our budget shows that at least 170 kg Si ha− 1 year− 1 are exported from the soil. If we consider the soil BSi as the only source of dissolved silicon, this stock could be exhausted in 5 years.  相似文献   

4.
In soils, silicon released by mineral weathering can be retrieved from soil solution through clay formation, Si adsorption onto secondary oxides and plant uptake, thereby impacting the Si-isotopic signature and Ge/Si ratio of dissolved Si (DSi) exported to rivers. Here we use these proxies to study the contribution of biogenic Si (BSi) in a soil-plant system involving basaltic ash soils differing in weathering degree under intensive banana cropping. δ30Si and Ge/Si ratios were determined in bulk soils (<2 mm), sand (50-2000 μm), silt (2-50 μm), amorphous Si (ASi, 2-50 μm) and clay (<2 μm) fractions: δ30Si by MC-ICP-MS Nu Plasma in medium resolution, operating in dry plasma with Mg doping (δ30Si vs. NBS28 ± 0.12‰ ± 2σSD), Ge/Si computed after determination of Ge and Si concentrations by HR-ICP-MS and ICP-AES, respectively. Components of the ASi fraction were quantified by microscopic counting (phytoliths, diatoms, ashes). Compared to fresh ash (δ30Si = −0.38‰; Ge/Si = 2.21 μmol mol−1), soil clay fractions (<2 μm) were enriched in light Si isotopes and Ge: with increasing weathering degree, δ30Si decreased from −1.19 to −2.37‰ and Ge/Si increased from 4.10 to 5.25 μmol mol−1. Sand and silt fractions displayed δ30Si values close to fresh ash (−0.33‰) or higher due to saharian dust quartz deposition, whose contribution was evaluated by isotopic mass balance calculation. Si-isotopic signatures of bulk soils (<2 mm) were strongly governed by the relative proportions of primary and secondary minerals: the bulk soil Si-isotopic budget could be closed indicating that all the phases involved were identified. Microscopic counting highlighted a surface accumulation of banana phytoliths and a stable phytolith pool from previous forested vegetation. δ30Si and Ge/Si values of clay fractions in poorly developed volcanic soils, isotopically heavier and Ge-depleted in surface horizons, support the occurrence of a DSi source from banana phytolith dissolution, available for Si sequestration in clay-sized secondary minerals (clay minerals formation and Si adsorption onto Fe-oxide). In the soil-plant system, δ30Si and Ge/Si are thus highly relevant to trace weathering and input of DSi from phytoliths in secondary minerals, although not quantifying the net input of BSi to DSi.  相似文献   

5.
As an essential nutrient for diatoms, silica plays a key role in the estuarine and coastal food web. High concentrations of dissolved silica (DSi) were found in the seepage water of tidal freshwater marshes, which were therefore assumed to contribute to the silica supply to estuarine waters in times of silica limitation. A comprehensive budget calculation for European salt marshes is presented in this study. Earlier, salt marshes were considered to have even higher silica recycling rates than tidal freshwater marshes. Between 2009 and 2011, concentrations, pools and fluxes of silica in two salt marshes at the German Wadden Sea coast were determined (in soil, pore water, aboveground vegetation, freshly deposited sediments and seepage water). Subsequently, a budget was calculated. Special emphasis was placed on the influence of grazing management on silica cycling. Our results show that the two salt marshes were sinks for silica. The average import of biogenic silica (BSi) with freshly deposited sediments (1,334 kmol km?2 year?1) largely exceeded the DSi and BSi exports with seepage water (80 kmol km?2 year?1). Grazing management can affect silica cycling of salt marshes by influencing hydrology and vegetation structure. Abandoned sites had larger DSi export rates than grazed sites. One third of all BSi imports occurred in only one major flooding, underlining the relevance of rare events in the silica budget of tidal marshes. This aspect has been widely neglected in earlier studies, what might have led to an underestimation of silica import rates to tidal marshes hitherto.  相似文献   

6.
Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon (Si), carbon (C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica (BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si, C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.  相似文献   

7.
So far, no phytolith extraction protocols have been tested for accuracy and repeatability. Here we aim to display a phytolith extraction method combining the strengths of two widely used protocols, supplemented with silica microspheres as exogenous markers for quantifying phytolith concentrations. Phytolith concentrations were estimated for samples from two sedimentary sequences in which numerical age–depth models make it possible to calculate phytolith influxes (phytolith numbers per cm2per yr). Analysis of replicates confirmed the statistical robustness, the repeatability and the very few biases of our extraction technique for small phytoliths, since the relationship between grass silica short cells and microspheres was kept stable. Furthermore, we demonstrated that silica microspheres are robust exogenous markers for estimating phytolith concentrations. The minimum number of items (i.e., phytoliths plus silica microspheres) that must be counted to estimate phytolith concentrations and thus influxes depends on the ratio of phytoliths to microspheres (R) and is minimized when R = 1. Nevertheless, we recommend using ratios R ≤ 1 in order to avoid having the counting process become excessively time-consuming, because microspheres are easier to identify and count than phytoliths.  相似文献   

8.
生物硅的测定及其生物地球化学意义   总被引:19,自引:1,他引:19  
生物硅(BSi)指用化学方法测定的沉积物中的无定形硅含量。生物硅的含量与水体中初级生产息息相关。硅藻、放射虫、海绵骨针和硅鞭毛虫产生的生物硅是地球化学和古海洋学研究的重要参数。重点讨论了目前生物硅测定方法中的化学提取法,评述了提取过程中存在的一些问题,并对BSi测定的生物地球化学意义进行了讨论。  相似文献   

9.
The terrestrial biogenic Si (BSi) pool in the soil-plant system is ubiquitous and substantial, likely impacting the land-ocean transfer of dissolved Si (DSi). Here, we consider the mechanisms controlling DSi in forest soil in a temperate granitic ecosystem that would differ from previous works mostly focused on tropical environments. This study aims at tracing the source of DSi in forest floor leachates and in soil solutions under various tree species at homogeneous soil and climate conditions, using stable Si isotopes and Ge/Si ratios. Relative to granitic bedrock, clays minerals were enriched in 28Si and had high Ge/Si ratios, while BSi from phytoliths was also enriched in 28Si, but had a low Ge/Si ratio. Such a contrast is useful to infer the relative contribution of silicate weathering and BSi dissolution in the shallow soil on the release of DSi in forest floor leachate solutions. The δ30Si values in forest floor leachates (−1.38‰ to −2.05‰) are the lightest ever found in natural waters, and Ge/Si ratios are higher in forest floor leachates relative to soil solution. These results suggest dissolution of 28Si and Ge-enriched secondary clay minerals incorporated by bioturbation in organic-rich horizons in combination with an isotopic fractionation releasing preferentially light Si isotopes during this dissolution process. Ge/Si ratios in soil solutions are governed by incongruent weathering of primary minerals and neoformation of secondary clays minerals. Tree species influence Si-isotopic compositions and Ge/Si ratios in forest floor leachates through differing incorporation of minerals in organic horizons by bioturbation and, to a lesser extent, through differing Si recycling.  相似文献   

10.
We quantified the effects of nutrient loading following precipitation events (≥ 1.25 cm) in 2 tidal creeks varying in size and anthropogenic input during the winter and summer seasons of 1996. Several water quality parameters were repeatedly measured in the water column every 3 h for several days after each event (4–5 per season). Total nitrogen (TN) and total phosphorus (TP) behaved nonconservatively with salinity and appeared as pulsed additions, occasionally doubling within 1 to 2 tidal cycles following significant rain events. Average values for TN, TP, and chlorophylla were 10–15 μM, <4 μM, and <7 μg l−1, respectively for winter events and 30–35 μM, >4 μM, and ≥ 7 μg l−1, respectively for summer events. However, response times were variable, depending on the magnitude and duration of the event as well as temperature. Chlorophylla biomass often increased after nutrient additions, especially in the summer when increased nutrient loading took place. Dissolved silica (DSi) behaved conservatively with salinity; low values were observed at high tide and vice versa. Average DSi ranges for winter and summer events were 5–45 μM and 10–85 μM, respectively. DSi range values increased proportionally with the amount of freshwater loaded into the system. Recovery times for salinity were usually greater than the recovery times for nutrients. Dissolved oxygen displayed a diel pattern, increasing after daytime productivity and decreasing during nighttime. In conclusion, each rainfall event was unique and responses were variable depending upon rainfall history, seasonality, and the duration and intensity of the rainfall event. Several other variables, such as water viscosity, percolation rates, and evapotranspiration rates which were not quantified in this study, could have also explained parameter responses.  相似文献   

11.
We used enclosures to quantify wetland-water column nutrient exchanges in a dwarf red mangrove, (Rhizophora mangle L.) system near Taylor River, an important hydraulic linkage between the southern Everglades and eastern Florida Bay, Florida, USA. Circular enclosures were constructed around small (2.5–4 m diam) mangrove islands (n=3) and sampled quarterly from August 1996 to May 1998 to quantify net exchanges of carbon, nitrogen, and phosphorus. The dwarf mangrove wetland was a net nitrifying environment with consistent uptake of ammonium (6.6–31.4 μmol m−2 h−1) and release of nitrite +nitrate (7.1–139.5 μmol m−2 h−1) to the water column. Significant flux of soluble reactive phosphorus was rarely detected in this nutrient-poor, P-limited environment. We did observe recurrent uptake of total phosphorus and nitrogen (2.1–8.3 and 98–502 μmol m−2 h−1, respectively), as well as dissolved organic carbon (1.8–6.9 μmol m−2 h−1) from the water column. Total organic carbon flux shifted unexplainably from uptake, during Year 1, to export, during Year 2. The use of unvegetated (control) enclosures during the second year allowed us to distinguish the influence of mangrove vegetation from soil-water column processes on these fluxes. Nutrient fluxes in control chambers typically paralleled the direction (uptake or release) of mangrove enclosure fluxes, but not the magnitude. In several instances, nutrient fluxes were more than twofold greater in the absence of mangroves, suggesting an influence of the vegetation on wetland-water column processes. Our findings characterize wetland nutrient exchanges, in a mangrove forest type that has received such little attention in the past, and serve as baseline data for a system undergoing hydrologic restoration.  相似文献   

12.
To assess the reliability of arboreal phytoliths for differentiating vegetation types in temperate forest regions, we systematically analysed arboreal leaf phytoliths from 72 arboreal plants and 49 modern soils from three forest types in northeast China. The arboreal leaf phytolith production and morphotypes were highly variable between species. The arboreal leaf phytolith assemblages could clearly distinguish between broadleaf and coniferous species, but they were much less successful in differentiating broadleaved trees into subtaxa. Coniferous leaf morphotypes were successfully used to differentiate coniferous trees into families and subtaxa, especially in the Pinaceae. Two diagnostic broadleaved and six coniferous phytolith morphotypes were recognized within the modern soil beneath forest ecosystems. These arboreal phytoliths comprised up to 10–15% of the total soil phytoliths, and were dominated by coniferous types. Arboreal phytolith concentrations and phytolith assemblages in the soils fluctuated substantially amongst the three forest types. Soil arboreal phytolith assemblages were successfully used to differentiate samples from Larix mixed forest, broadleaf forest and Pinus koraiensis mixed forest. In addition, the arboreal index quantitatively distinguished the three forest types, with B/BE values <0.4 for Larix mixed forest samples, values from 0.4 to 0.6 for broadleaf forest samples, and values from 0.6 to 0.9 for P. koraiensis mixed forest. Thus, our surface soil arboreal phytolith assemblages and arboreal index are a useful reference for differentiating forest ecotypes, and they also provide reliable analogues for arboreal phytoliths from palaeoecological contexts in temperate forest regions.  相似文献   

13.
Tidal freshwater sections of the Cooper River Estuary (South Carolina) include extensive wetlands, which were formerly impounded for rice culture during the 1,700s and 1,800s. Most of these former rice fields are now open to tidal exchange and have developed into productive wetlands that vary in bottom topography, tidal hydrography and vegetation dominants. The purpose of this project was to quantify nitrogen (N) transport via tidal exchange between the main estuarine channel and representative wetland types and to relate exchange patterns to the succession of vegetation dominants. We examined N concentration and mass exchange at the main tidal inlets for the three representative wetland types (submerged aquatic vegetation [SAV], floating leaf vegetation, and intertidal emergent marsh) over 18-21 tidal cycles (July 1998–August 2000). Nitrate + nitrite concentrations were significantly lower during ebb flow at all study sites, suggesting potential patterns of uptake by all wetland types. The magnitude of nitrate decline during ebb flow was negatively correlated with oxygen concentration, reflecting the potential importance of denitrification and nitrate reduction within hypoxic wetland waters and sediments. The net tidal exchange of nitrate + nitrite was particularly consistent for the intertidal emergent marsh, where flow-weighted ebb concentrations were usually 18–40% lower than during flood tides. Seasonal patterns for the emergent marsh indicated higher rates of nitrate + nitrite uptake during the spring and summer (> 400 μmol N m-2 tide-1) with an annual mean uptake of 248 ± 162 μmol m–2 tide–1. The emergent marsh also removed ammonium through most of the year (207 ± 109 μmol m–2 tide–1), and exported dissolved organic nitrogen (DON) in the fall (1,690 ± 793 μmol m–2 tide–1), suggesting an approximate annual balance between the dissolved inorganic N uptake and DON export. The other wetland types (SAV and floating leaf vegetation) were less consistent in magnitude and direction of N exchange. Since the emergent marsh site had the highest bottom elevation and the highest relative cover of intertidal habitat, these results suggest that the nature of N exchange between the estuarine waters and bordering wetlands is affected by wetland morphometry, tidal hydrography, and corresponding vegetation dominants. With the recent diversion of river discharge, water levels in the upper Cooper estuary have dropped more than 10 cm, leading to a succession of wetland communities from subtidal habitats toward more intertidal habitats. Results of this study suggest that current trends of wetland succession in the upper Cooper River may result in higher rates of system-wide inorganic N removal and DON inputs by the growing distributions of intertidal emergent marshes.  相似文献   

14.
Organic matter is a fundamental factor in the biogeochemical cycle of carbon; it influences the chemical, physical, and biological properties of the soil. The aim of this paper is to determine the organic fractions in the three predominant morphologies of aggregates found in Typical Argiudolls of the Buenos Aires southeastern area and to link them to different soil uses, as possible indicators of soil quality. The study was carried out in the basin de Los Padres Pound (General Pueyrredón, Buenos Aires). We analyzed the first 5 cm of mollic epipedons of plots with different soil uses: (a) cultivated plots, (b) pine and eucalyptus forests, (c) pastures, and (d) a natural plot in the de Los Padres Pound Reserve as a reference. The percentage of soil organic carbon (SOC), light organic carbon (LOC), fulvic acids (FA), humic acids (HA), and humins (H) in elongated, quadrangular and spherical aggregates were determined. The results show slight variations in SOC (7.2–8.6%) in the spherical aggregates of all the plots and a greater variability in elongated and quadrangular aggregates (5.6–10% and 6.9–13.6%, respectively). HA are minimal in the agroecosystems with extreme values of 0.02% in the spherical aggregates of cultivated plots, and maximal in the elongated and quadrangular aggregates of natural plots (0.3–0.5%). Fulvic acids display a similar behavior, while H decrease slightly with the morphologies and the different practices. The substantial decrease of humic substances in cultivated plots translates into a lower biologic activity; this, in turn, influences the aggregation, thus lowering the structural stability of these plots, which have been under agro-horticultural management for more than 50 years.  相似文献   

15.
Quantification of silicon recycling by plants is hampered by the lack of physico-chemical data on reactivity of natural phytoliths and plant litter. In this study, we used an experimental approach for determining the silica release rates of phytoliths from tropical and temperate plants (bamboos, horsetails). Results are compared with litter degradation of horsetails and pine needles. Silica release rates suggest that the reactivity of phytolith surface does not depend on topology and geometry of local structures, and does not support the existence of preferential dissolution sites on surface. Litter degradation results suggest that the silica release rate is independent of cellulose hydrolysis that implies the presence of phytoliths in an “inorganic” pool not complexed with organic matter.  相似文献   

16.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

17.
The extent of authigenic alteration of biogenic and reactive silica in Pearl River estuarine sediments has been estimated using wet-chemical digestion methods. Results show relatively constant distributions of biogenic and reactive Si horizontally and vertically. Based on three core measurements, the biogenic and total reactive Si average 77.91 and 264.77 μmol Si g−1, respectively. Their extents of authigenic alteration are correspondingly estimated as ~55.6 and ~70.6%. The average biogenic Si accumulation rate is calculated as 1.91 × 109 mol Si year−1, which translates into storage of ~7.15% of the annual riverine dissolved silica input. By contrast, the total reactive Si accumulation rate is as high as 6.49 × 109 mol Si year−1, improving annual riverine silicic acid storage to ~24.19%. Detailed investigation is required for a good understanding of early diagenetic process of biogenic and reactive silica in this subtropical area.  相似文献   

18.
In this study, magnetite–maghemite nanoparticles were used to treat arsenic-contaminated water. X-ray photoelectron spectroscopy (XPS) studies showed the presence of arsenic on the surface of magnetite–maghemite nanoparticles. Theoretical multiplet analysis of the magnetite–maghemite mixture (Fe3O4-γFe2O3) reported 30.8% of maghemite and 69.2% of magnetite. The results show that redox reaction occurred on magnetite–maghemite mixture surface when arsenic was introduced. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on contact time and initial concentration of arsenic. Equilibrium was achieved in 3 h in the case of 2 mg/L of As(V) and As(III) concentrations at pH 6.5. The results further suggest that arsenic adsorption involved the formation of weak arsenic-iron oxide complexes at the magnetite–maghemite surface. In groundwater, arsenic adsorption capacity of magnetite–maghemite nanoparticles at room temperature, calculated from the Langmuir isotherm, was 80 μmol/g and Gibbs free energy (∆G0, kJ/mol) for arsenic removal was −35 kJ/mol, indicating the spontaneous nature of adsorption on magnetite–maghemite nanoparticles.  相似文献   

19.
To provide a basis for tracing changes in vegetation and tree cover density, we studied the phytoliths of 129 common temperate plant species, and extracted the phytoliths from 75 surface soil samples from sites in grassland, forest−grassland ecotone and forest habitats in northeast China. From the analysis of shapes and morphological parameters of the plant samples, we developed a reference data set of herbaceous and woody phytoliths, and subsequently identified 21 herbaceous and 13 woody phytolith types in the surface soil samples. To test the reliability of soil phytolith analysis for distinguishing forest, grassland and the forest−grassland ecotone, we used principal components analysis (PCA) and discriminant analysis (DA) to summarize the soil phytolith assemblage characteristics of the different ecosystems. The results show that the grassland and forest samples are characterized by abundant herbaceous and woody phytoliths, respectively; and that forest−grassland ecotone habitats are characterized by low abundances of blocky polyhedral, multifaceted epidermal and sclereid phytoliths. In general, the surface soil phytolith assemblages can reliably differentiate samples from forest, grassland and the forest−grassland ecotone, with up to 92% of the samples classified correctly. We also tested the reliability of phytolith indices (W/G (1), W/G (2), W/G (3)) for discriminating different vegetation types in our study area, and found that W/G (2) was the most reliable index and corresponded well with the species inventory data. The W/G values for grassland ranged from 0 to 0.3, from 0.3 to 0.6 for the forest−grassland ecotone, and exceeded 0.6 for forest. We conclude that our study provides reliable analogues for phytolith assemblages from palaeoecological contexts, which can be used to reconstruct shifts in forest−grassland ecotones and vegetation succession in temperate areas.  相似文献   

20.
A kyanite mine in central Virginia produces a silicate-rich waste stream which accumulates at a rate of 450,000–600,000 tons per year. An estimated 27 million tons of this waste stream has accumulated over the past 60 years. Grain size distribution varies between 1.000 and 0.053 mm, and is commonly bimodal with modes typically being 0.425 and 0.250 mm and uniformity coefficients vary from 2.000 to 2.333. Hydraulic conductivity values vary from 0.017 to 0.047 cm/s. Mineralogy of the waste stream consists of quartz, muscovite, kyanite and hematite. Muscovite grains have distinct chemical compositions with significant Na2O content (1.12–2.66 wt%), TiO2 content (0.63–1.68 wt% TiO2) and Fe content, expressed as Fe2O3 (up to 1.37 wt%). Major element compositions of samples were dominated by SiO2 (87.894–90.997 wt%), Al2O3 (6.759–7.741 wt%), Fe2O3 (1.136–1.283 wt%), and K2O (0.369–0.606 wt%) with other components being <1.000 wt%. Elements of environmental concern (V, Cr, Ni, Cu, Zn, As, Ag, Sn, Sb, Ba, Hg, Tl, and Pb) were detected; however, the concentrations of all elements except Ni were below that of the kyanite quartzites in the region from which the waste is derived. Both major and trace element compositions indicate minimal variation in composition. The waste stream has potential for recycling. Muscovite is suitable for recycling as a paint pigment or other industrial applications. Muscovite and hematite are commonly intergrown and are interpreted to be material where much of the elements of environmental concern are concentrated. Reprocessing of the waste stream to separate muscovite from other components may enable the waste stream to be used as constructed wetland media for Virginia and nearby states. Recycling of this mine waste may have a positive impact on the local economy of Buckingham County and aid in mitigation of wetland loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号