首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerical flow models can be a useful tool for dimensioning water wells and to investigate the hydraulics in their near‐field. Fully laminar flow can be assumed for all models calculated up to the screen. Therefore models can be used to predict—at least qualitatively, neglecting turbulent losses inside the well—the spatial distribution of inflow into the well and the overall hydraulic performance of different combinations of aquifer parameters and technical installations. Models for both horizontal (plan view) and vertical flow (cross section) to wells were calculated for a variety of setups. For the latter, this included variations of hydraulic conductivity of the screen, pump position, and aquifer heterogeneity. Models of suction flow control devices showed that they indeed can homogenize inflow, albeit at the cost of elevated entrance losses.  相似文献   

2.
Jin Xu  Xudong Wang 《Ground water》2016,54(5):719-726
A finite layer approach for the general problem of three‐dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three‐layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems.  相似文献   

3.
大地震引起了左家庄和宝坻(相距~50km)两井中截然不同的同震水位响应.我们用水位的气压和潮汐响应来分析解释此现象.结果表明,宝坻井的观测含水层中存在页岩,且此井受裂隙影响很大,储水效应较差.页岩的复杂裂隙或者各向异性可能会导致此井观测含水层处于半封闭状态,从而导致垂直向排水的发生.通过多方计算分析后,我们将这两口井划分为两种模型—1.水平流动模型;2.水平流动+垂直流动的混合流动模型.由于裂隙影响,宝坻井的观测含水层介质与外界的水力沟通性在震前就较强(震前渗透率就比较大),所以宝坻井观测含水层与外界的孔隙压差异较小,导致同震渗透率上升较小甚至没有变化,这些因素是导致该井同震水位变化幅度总是非常微小的原因.  相似文献   

4.
We have carried out numerical simulations of three-dimensional nonisothermal flow around an in situ heat-based flow sensor to investigate how formation heterogeneities can affect the interpretation of ground water flow velocities from this instrument. The flow sensor operates by constant heating of a 0.75-m-long, 5-cm-diameter cylindrical probe, which contains 30 thermistors in contact with the formation. The temperature evolution at each thermistor can be inverted to obtain an estimate of the ground water flow velocity vector using the standard interpretive method, which assumes that the formation is homogeneous. Analysis of data from heat-based flow sensors installed in a sand aquifer at the Former Fort Ord Army Base near Monterey, California, suggested an unexpected component of downward flow. The magnitudes of the vertical velocities were expected to be much less than those of the horizontal velocities at this site because the sensors were installed just above a clay aquitard. Numerical simulations were conducted to examine how differences in thermal conductivities may lead to spurious indications of vertical flow velocities. We found that a decrease in the thermal conductivity near the bottom of the sensor can perturb the temperature profiles along the instrument in such a manner that analyses assuming homogeneous thermal conductivity could indicate a vertical flow component even though flow is actually horizontal. This work demonstrates how modeling can be used to simulate instrument response to formation heterogeneity and shows that caution must be used in interpreting data from such devices.  相似文献   

5.
A new in‐situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes horizontal wells filled with reactive media to passively treat contaminated groundwater in‐situ. The approach involves the use of large‐diameter directionally drilled horizontal wells filled with granular reactive media generally installed parallel to the direction of groundwater flow. The design leverages natural “flow‐focusing” behavior induced by the high in‐well hydraulic conductivity of the reactive media relative to the aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Clean groundwater then exits the horizontal well along its downgradient sections. Many different types of solid granular reactive media are already available (e.g., zero valent iron, activated carbon, ion exchange resins, zeolite, apatite, chitin); therefore, this concept could be used to address a wide range of contaminants. Three‐dimensional flow and transport simulations were completed to assess the general hydraulic performance, capture zones, residence times, effects of aquifer heterogeneity, and treatment effectiveness of the concept. The results demonstrate that capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and that reductions in downgradient concentrations and contaminant mass flux are nearly immediate. For a representative example, the predicted treatment zone width for the HRX Well is approximately 27 to 44 feet, and contaminant concentrations immediately downgradient of the HRX Well decreased an order of magnitude within 10 days. A series of laboratory‐scale physical tests (i.e., tank tests) were completed that further demonstrate the concept and confirm model prediction performance. For example, the breakthrough time, peak concentration and total mass recovery of methylene blue (reactive tracer) was about 2, 35, and 20 times (respectively) less than chloride (conservative tracer) at the outlet of the tank‐scale HRX Well.  相似文献   

6.
Field investigations were carried out to determine the occurrence of tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL), the source zone architecture and the aquitard integrity at a 30‐ to 50‐year old DNAPL release site. The DNAPL source zone is located in the clay till unit overlying a limestone aquifer. The DNAPL source zone architecture was investigated through a multiple‐lines‐of‐evidence approach using various characterization tools; the most favorable combination of tools for the DNAPL characterization was geophysical investigations, membrane interface probe, core subsampling with quantification of chlorinated solvents, hydrophobic dye test with Sudan IV, and Flexible Liner Underground Technologies (FLUTe) NAPL liners with activated carbon felt (FACT). While the occurrence of DNAPL was best determined by quantification of chlorinated solvents in soil samples supported by the hydrophobic dye tests (Sudan IV and NAPL FLUTe), the conceptual understanding of source zone architecture was greatly assisted by the indirect continuous characterization tools. Although mobile or high residual DNAPL (S t > 1%) only occurred in 11% of the source zone samples (intact cores), they comprised 86% of the total PCE mass. The dataset, and associated data analysis, supported vertical migration of DNAPL through fractures in the upper part of the clay till, horizontal migration along high permeability features around the redox boundary in the clay till, and to some extent vertical migration through the fractures in the reduced part of the clay till aquitard to the underlying limestone aquifer. The aquitard integrity to DNAPL migration was found to be compromised at a thickness of reduced clay till of less than 2 m.  相似文献   

7.
8.
Methyl tert -butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert -butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.  相似文献   

9.
The horizontal reactive media treatment well (HRX Well®) uses directionally drilled horizontal wells filled with a treatment media to induce flow-focusing behavior created by the well-to-aquifer permeability contrast to passively capture proportionally large volumes of groundwater. Groundwater is treated in situ as it flows through the HRX Well and downgradient portions of the aquifer are cleaned via elution as these zones are flushed with clean water discharging from the HRX Well. The HRX Well concept is particularly well suited for sites where long-term mass discharge control is a primary performance objective. This concept is appropriate for recalcitrant and difficult-to-treat constituents, including chlorinated solvents, per- and polyfluoroalkyl substances (PFAS), 1,4-dioxane, and metals. A full-scale HRX Well was installed and operated to treat trichloroethene (TCE) with zero valent iron (ZVI). The model-predicted enhanced flow through the HRX Well (compared to the flow in and equivalent cross-sectional area orthogonal to flow in the natural formation before HRX Well installation) and treatment zone width was consistent with flows and widths estimated independently by point velocity probe (PVP) testing, HRX Well tracer testing, and observed treatment in downgradient monitoring wells. The actual average capture zone width was estimated to be between 45 and 69 feet. Total TCE mass discharge reduction was maintained through the duration of the performance monitoring period and exceeded 99.99% (%). Decreases in TCE concentrations were observed at all four downgradient monitoring wells within the treatment zone (ranging from 50 to 74% at day 436), and the first arrival of treated water was consistent with model predictions. The field demonstration confirmed the HRX Well technology is best suited for long-term mass discharge control, can be installed under active infrastructure, requires limited ongoing operation and maintenance, and has low life cycle energy and water requirements.  相似文献   

10.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

11.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

12.
Release of an estimated 150,000 gallons (568,000 L).of 1.2–dichloroethane (EDC) from a buried pipeline into a ditch and surrounding soil resulted in shallow subsurface contamination of a Gulf Coast site. Short-term remediation included removal of EDC DNAPI. (dense nonaqueous phase liquid) by dredging and vacuuming the ditch, and by dredging the river where the ditch discharged. EDC saturation in shallow impacted sediments located beneath the ditch was at or below residual saturation and these sediments were therefore left in place. The ditch was lined, backfilled, and capped. Long-term remediation includes EDC DNAPL recovery and hydraulic containment from the shallow zone with long-term monitoring of the shallow, intermediate, and deep (200 foot) aquifers. Ground water, DNAPL., and dissolved phase models were used to guide field investigations and the selection of an effective remedial action strategy. The DNAPL. modeling was conducted for a two-dimensional vertical cross section of the site, and included the three aquifers separated by two aquitards with microfractures. These aquitards were modeled using a dual porosity approach. Matrix and fracture properties of the aquitards used for DNAPL modeling were determined from small-scale laboratory properties. These properties were consistent with effective hydraulic conductivity determined from ground water flow modeling. A sensitivity analysis demonstrated that the vertical migration of EDC was attenuated by dissolution of EDC into the matrix of the upper aquitard. When the organic/water entry pressure of the aquitard matrix, or the solubility of EDC were decreased to unrealislically low values. EDC DNAPL. accumulated in the aquifer below the upper aquitard.
EDC DNALM, did not reach the regional (deepest) aquifer in any of the cases modeled. The limited extent of vertical EDC migration predicted is supported by ground water monitoring conducted over the four years since the spill.  相似文献   

13.
Volume reduction and lowering of capillary pressure within a large DNAPL pool are utilized as objectives in the design of a large-scale dual phase recovery system at a chemical manufacturing facility in the United States. By reducing DNAPL pool height through mass removal, capillary pressure is lowered, resulting in a reduced potential for future vertical and horizontal mobilization of the chlorinated solvent DNAPL pool. The DNAPL pool extends over an approximately 200 m by 275 m area in low permeability fill deposits overlying a clay aquitard. A three-dimensional multiphase flow model was employed to arrive at a final design incorporating nine horizontal drains (total length 664 m) and a pulsed pumping system. The numerical model was calibrated to the results of a 42-day field pilot-test involving the removal of approximately 25,000 L of DNAPL from a single, 55 m long horizontal drain. Numerical simulation revealed that gravity drainage, as opposed to hydraulic gradients in the water phase, is the dominant recovery mechanism at this site. This stems from the relatively high density and the viscosity of the DNAPL, and the relatively low permeability of the formation deposits. The use of pulsed pumping is shown to reduce the volume of contaminated ground water recovered from the 9-drain system, without significant reduction of the total volume of DNAPL recovered.  相似文献   

14.
Pumping test evaluation of stream depletion parameters   总被引:1,自引:0,他引:1  
Lough HK  Hunt B 《Ground water》2006,44(4):540-546
  相似文献   

15.
Free-phase DNAPL recovery operations are becoming increasingly prevalent at creosote-contaminated aquifer sites. This paper illustrates the potential of both classical and innovative recovery methods. The UTCHEM multiphase flow and transport numerical simulator was used to predict the migration of creosote DNAPL during a hypothetical spill event, during a long-term redistribution after the spill, and for a variety of subsequent free-phase DNAPL recovery operations. The physical parameters used for the DNAPL and the aquifer in the model are estimates for a specific creosote DNAPL site. Other simulations were also conducted using physical parameters that are typical of a trichloroethene (TCE) DNAPL. Dramatic differences in DNAPL migration were observed between these simulations.  相似文献   

16.
Purge and pump samples from screened wells reflect concentration averaging and contaminant redistribution by wellbore flow. These issues were assessed in a screened well at the Hanford Site by investigating the vertical profile of a technetium-99 plume in a conventional well under static and pumped conditions. Specific conductance and technetium-99 concentrations were well correlated, and this enabled measurement of specific conductance to be used as a surrogate for technetium-99 concentration. Time-series measurements were collected during purging from three specific conductance probes installed in the well at 1.2, 3.1, and 4.9 m below the static water level in a 7.7-m-deep screened well. The vertical contaminant profile adjacent to the well in the aquifer was calculated using the concentration profile in the well during pumping, the pumping flow rate, and a wellbore flow and mixing model. The plume was found to be stratified in the aquifer—the highest concentrations occurred adjacent to the upper part of the screened interval. The purge and pump sample concentrations were 41% to 58% of the calculated peak concentration in the aquifer. Plume stratification in the aquifer adjacent to the well screen became more pronounced as pumping continued. Extended pumping may have partially reversed the effect of contaminant redistribution in the aquifer by wellbore flow and allowed the stratification of the plume to be more observable. It was also found that the vertical profile of contamination in the well under static (i.e., nonpumping conditions) was not representative of the profile in the aquifer. Thus, passive or micropurge sampling techniques, which sample the wellbore water at different depths, would not yield results representative of the aquifer in this well.  相似文献   

17.
Porous aquifer materials are often characterized by layered heterogeneities that influence groundwater flow and present complexities in contaminant transport modeling. Such flow variations also have the potential to impact the dissolution flux from dense nonaqueous phase liquid (DNAPL) pools. This study examined how these heterogeneous flow conditions affected the dissolution of a tetrachloroethene (PCE) pool in a two-dimensional intermediate-scale flow cell containing coarse sand. A steady-state mass-balance approach was used to calculate the PCE dissolution rate at three different flow rates. As expected, aqueous PCE concentrations increased along the length of the PCE pool and higher flow rates decreased the aqueous PCE concentration in the effluent. Nonreactive tracer studies at two flow rates confirmed the presence of a vertical flow gradient, with the most rapid velocity located at the bottom of the tank. These results suggest that flow focusing occurred near the DNAPL pool. Effluent PCE concentrations and pool dissolution flux rates were compared to model predictions assuming local equilibrium (LE) conditions at the DNAPL pool/aqueous phase interface and a uniform distribution of flow. The LE model did not describe the data well, even over a wide range of PCE solubility and macroscopic transverse dispersivity values. Model predictions assuming nonequilibrium mass-transfer-limited conditions and accounting for vertical flow gradients, however, resulted in a better fit to the data. These results have important implications for evaluating DNAPL pool dissolution in the field where subsurface heterogeneities are likely to be present.  相似文献   

18.
The remediation strategy for an industrial site located in a coastal area involves a pump and treat system and a horizontal flow barrier (HFB) penetrating the main aquifer. To validate the groundwater flow conceptual model and to verify the efficiency of the remediation systems, we carried out piezometric measurements, slug tests, pumping tests, flowmeter tests and multilevel sampling. Flowmeter tests are used to infer vertical groundwater flow directions, and base exchange index is used to infer horizontal flow directions at a metric scale. The selected wells are located both upstream and downstream of the HFB. The installation of the HFB produced constraints to the groundwater flow. A stagnant zone of contaminated freshwater floating over the salt wedge in the upper portion of the aquifer is detected downstream of the HFB. This study confirms that the adopted remediation system is efficiently working in the area upstream of the HFB and even downstream in the bottom part of the aquifer. At the same time, it has also confirmed that hot spots are still present in stagnant zones located downstream of the HFB in the upper part of the aquifer, requiring a different approach to accomplish remediation targets. The integrated approach for flow quantification used in this study allows to discriminate the direction and the magnitude of groundwater fluxes near an HFB in a coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   

20.
Dense nonaqueous phase liquid (DNAPL) accumulation and recovery from wells cannot be accurately modeled through typical pressure or flux boundary conditions due to gravity segregation of water and DNAPL in the wellbore, the effects of wellbore storage, and variations of wellbore inflow and outflow rates with depth, particularly in heterogeneous formations. A discrete wellbore formulation is presented for numerical modeling of DNAPL accumulation in observation wells and DNAPL removal from recovery wells. The formulation includes fluid segregation, changing water and DNAPL levels in the well and the corresponding changes in fluid storage in the wellbore. The method was added to a three-dimensional finite difference model (CompSim) for three phase (water, gas, DNAPL) flow. The model predictions are compared to three-dimensional pilot scale experiments of DNAPL (benzyl alcohol) infiltration, redistribution, recovery, and water flushing. Model predictions match experimental results well, indicating the appropriateness of the model formulation. Characterization of mixing in the extraction well is important for predicting removal of highly soluble organic compounds like benzyl alcohol. A sensitivity analysis shows that the incorporation of hysteresis is critical for accurate prediction. Among the multiphase flow and transport parameters required for modeling, results are most sensitive to soil intrinsic permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号