首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Yarlung Tsangpo-Brahmaputra river drains a large portion of the Himalaya and southern Tibetan plateau, including the eastern Himalayan syntaxis, one of the most tectonically active regions on the globe. We measured the solute chemistry of 161 streams and major tributaries of the Tsangpo-Brahmaputra to examine the effect of tectonic, climatic, and geologic factors on chemical weathering rates. Specifically, we quantify chemical weathering fluxes and CO2 consumption by silicate weathering in southern Tibet and the eastern syntaxis of the Himalaya, examine the major chemical weathering reactions in the tributaries of the Tsangpo-Brahmaputra, and determine the total weathering flux from carbonate and silicate weathering processes in this region. We show that high precipitation, rapid tectonic uplift, steep channel slopes, and high stream power generate high rates of chemical weathering in the eastern syntaxis. The total dissolved solids (TDS) flux from the this area is greater than 520 tons km−2 yr−1 and the silicate cation flux more than 34 tons km−2 yr−1. In total, chemical weathering in this area consumes 15.2 × 105 mol CO2 km−2 yr−1, which is twice the Brahmaputra average. These data show that 15-20% of the total CO2 consumption by silicate weathering in the Brahmaputra catchment is derived from only 4% of the total land area of the basin. Hot springs and evaporite weathering provide significant contributions to dissolved Na+ and Cl fluxes throughout southern Tibet, comprising more than 50% of all Na+ in some stream systems. Carbonate weathering generates 80-90% of all dissolved Ca2+ and Mg2+ cations in much of the Yarlung Tsangpo catchment.  相似文献   

2.
The watershed in the southern Jiangxi Province (Jiangxi Province is called simply Gan) (SGW) and the watershed in the central Guizhou Province (Guizhou Province is called simply Qian) (CQW) are two subtropical watersheds of the Yangtze River in China. Both watersheds have similar latitudes and climate, but distinct differences in basin lithology. These similarities and differences provide a good natural laboratory in which to investigate weathering processes and Sr end-members in river waters. This work aims to identify and contrast the sources, fluxes and controls on Sr isotopic composition in the river waters of these two areas. Results showed that the 87Sr/86Sr in the SGW waters ranged from 0.716501 to 0.724931, with dissolved Sr averaging 27 μg l− 1. Rhyolites and granites are two major sources for the dissolved Sr. The SGW waters receive 42% of their Sr from silicates weathering, 32% from carbonates and 3.2% from evaporites. 87Sr/86Sr in the CQW waters has a lesser variation from 0.707694 to 0.710039, but higher Sr contents (average of 208 μg l− 1). Dolomite, limestone and dolomitic limestone are major sources of Sr in the waters. The CQW waters receive 69% of their Sr from carbonates, 1.7% from silicates and 0.9% from evaporites. The chemical erosion rate and Sr flux in the CQW are 122 t km− 2 a− 1 and 0.079 t km− 2 a− 1, respectively, which are higher than those of the SGW (56 t km− 2 a− 1 and 0.021 t km− 2 a− 1, respectively). These data suggest that the intensive carbonates weathering occurred in the karstic area in the upper-reach of the Yangtze River exert great influence on the high Sr concentration and low Sr isotopic ratios in the River.  相似文献   

3.
Recent studies of chemical weathering of andesitic-dacitic material on high-standing islands (HSIs) have shown these terrains have some of the highest observed rates of chemical weathering and associated CO2 consumption yet reported. However, the paucity of stream gauge data in many of these terrains has limited determination of chemical weathering product fluxes. In July 2006 and March 2008, stream water samples were collected and manual stream gauging was performed in watersheds throughout the volcanic island of Dominica in the Lesser Antilles. Distinct wet and dry season solute concentrations reveal the importance of seasonal variations on the weathering signal. A cluster analysis of the stream geochemical data shows the importance of parent material age on the overall delivery of solutes. Observed Ca:Na, HCO3:Na and Mg:Na ratios suggest crystallinity of the parent material may also play an important role in determining weathering fluxes. From total dissolved solids concentrations and mean annual discharge calculations we calculate chemical weathering yields of (6-106 t km−2 a−1), which are similar to those previously determined for basalt terrains. Silicate fluxes (3.1-55.4 t km−2 a−1) and associated CO2 consumption (190-1575 × 103 mol km−2 a−1) determined from our study are among the highest determined to date. The calculated chemical fluxes from our study confirm the weathering potential of andesitic-dacitic terrains and that additional studies of these terrains are warranted.  相似文献   

4.
Numerous studies of weathering fluxes have been carried out on major world rivers during the last decade, to estimate CO2 consumption rates, landscape evolution and global erosion rates. For obvious logistical reasons, most of these studies were based on large scale investigations carried out on short timescales. By comparison, much less effort has been devoted to long term monitoring, as a means to verify the temporal variability of the average characteristics, their trends, and the representativeness of short-term investigations. Here we report the results of a three-year survey (November 2000 to December 2003) of the major and trace element composition of dissolved and suspended matter in the lower Rhone River (France), the largest river of the Mediterranean area. Subsurface water samples were collected in Arles, about 48 km upstream of the estuary, twice a month routinely, and at higher frequency during flood events.During each flood event, the suspended particulate matter (SPM) show the usual trend of clockwise hysteresis with higher SPM concentrations on the rising limb of the flood than at the same discharge on the falling limb. We show that the annual average SPM flux of the Rhone River to the Mediterranean Sea (7.3 ± 0.6 × 106 tons yr−1) was largely controlled by the flood events (83% of the solid discharge occurred in less than 12% of the time), and that the precision on the total output flux depends strongly on the precise monitoring of SPM variations during the floods.The chemical composition of water and SPM are characterized by the predominance of Ca2+ due to the abundance of carbonate rocks in the Rhone watershed. Chemical budgets have been calculated to derive the contributions of atmospheric deposition, carbonate, silicate and evaporite weathering, and anthropogenic inputs. The chemical weathering rate of carbonates is estimated to be 89 ± 5 t km−2 yr−1 compared to 14.4 ± 3 t km−2 yr−1 from silicates. By contrast, the physical erosion rate of silicates is about 51 t km−2 yr−1 against 19 t km−2 yr−1 for carbonates.The steady-state model of Gaillardet et al. (1995) has been applied to the chemical composition of dissolved and solid products. The results show that the Rhone River currently exports much less material than produced at steady-state by weathering in its watershed. The sediment flux inferred from the steady-state calculation (21-56 × 106 t yr−1) is on the same order as that estimated in literature for the 19th and the beginning of the 20th centuries. This imbalance may suggest that the Rhone is under a transient erosion regime following climate change (i.e. significant decrease of the flooding frequency since the beginning of the 19th century). On the other hand, the imbalance may also be due to the trapping of alluvion by the numerous dams on the river and its tributaries.Our data corroborate with previous studies that suggest a strong coupling between chemical and physical erosion fluxes, during the hydrological seasonal cycle of the Rhone River. The correlation between physical and chemical transport rates is, however, clearly different from that reported for global annual averages in large world rivers.  相似文献   

5.
Concentrations of major ions, Sr and 87Sr/86Sr have been measured in the Gomti, the Son and the Yamuna, tributaries of the Ganga draining its peninsular and plain sub-basins to determine their contribution to the water chemistry of the Ganga and silicate and carbonate erosion of the Ganga basin. The results show high concentrations of Na and Sr in the Gomti, the Yamuna and the Ganga (at Varanasi) with much of the Na in excess of Cl. The use of this ‘excess Na’ (Na∗ = Nariv − Clriv) a common index of silicate weathering yield values of ∼18 tons km−2 yr−1 for silicate erosion rate (SER) in the Gomti and the Yamuna basins. There are however, indications that part of this Na∗ can be from saline/alkaline soils abundant in their basins, raising questions about its use as a proxy to determine SER of the Ganga plain. Independent estimation of SER based on dissolved Si as a proxy give an average value of ∼5 tons km−2 yr−1 for the peninsular and the plain drainages, several times lower than that derived using Na∗. The major source of uncertainty in this estimate is the potential removal of Si from rivers by biological and chemical processes. The Si based SER and CER (carbonate erosion rate) are also much lower than that in the Himalayan sub-basin of the Ganga. The lower relief, runoff and physical erosion in the peninsular and the plain basins relative to the Himalayan sub-basin and calcite precipitation in them all could be contributing to their lower erosion rates.Budget calculations show that the Yamuna, the Son and Gomti together account for ∼75% Na, 41% Mg and ∼53% Sr and 87Sr of their supply to the Ganga from its major tributaries, with the Yamuna dominating the contribution. The results highlight the important role of the plain and peninsular sub-basins in determining the solute and Sr isotope budgets of the Ganga. The study also shows that the anthropogenic contribution accounts for ?10% of the major ion fluxes of the Ganga at Rajmahal during high river stages (October). The impact of both saline/alkaline soils and anthropogenic sources on the major ion abundances of the Ganga is minimum during its peak flow and therefore the SER and CO2 consumption rates of the river is best determined during this period.  相似文献   

6.
Major ion composition of waters, δ13C of its DIC (dissolved inorganic carbon), and the clay mineral composition of bank sediments in the Brahmaputra River System (draining India and Bangladesh) have been measured to understand chemical weathering and erosion and the factors controlling these processes in the eastern Himalaya. The time-series samples, collected biweekly at Guwahati, from the Brahmaputra mainstream, were also analyzed for the major ion composition. Clay mineralogy and chemical index of alteration (CIA) of sediments suggest that weathering intensity is relatively poor in comparison to that in the Ganga basin. This is attributed to higher runoff and associated physical erosion occurring in the Brahmaputra basin. The results of this study show, for the first time, spatial and temporal variations in chemical and silicate erosion rates in the Brahmaputra basin. The subbasins of the Brahmaputra watershed exhibit chemical erosion rates varying by about an order of magnitude. The Eastern Syntaxis basin dominates the erosion with a rate of ∼300 t km−2 y−1, one of the highest among the world river basins and comparable to those reported for some of the basaltic terrains. In contrast, the flat, cold, and relatively more arid Tibetan basin undergoes much slower chemical erosion (∼40 t km−2 y−1). The abundance of total dissolved solids (TDS, 102-203 mg/L) in the time-series samples collected over a period of one year shows variations in accordance with the annual discharge, except one of them, cause for which is attributable to flash floods. Na* (Na corrected for cyclic component) shows a strong positive correlation with Si, indicating their common source: silicate weathering. Estimates of silicate cations (Nasil+Ksil+Casil+Mgsil) suggest that about half of the dissolved cations in the Brahmaputra are derived from silicates, a proportion higher than that for the Ganga system. The CO2 consumption rate due to silicate weathering in the Brahmaputra watershed is ∼6 × 105 moles km−2 y−1; whereas that in the Eastern Syntaxis subbasin is ∼19 × 105 moles km−2 y−1, similar to the estimates for some of the basaltic terrains. This study suggests that the Eastern Syntaxis basin of the Brahmaputra is one of most intensely chemically eroding regions of the globe; and that runoff and physical erosion are the controlling factors of chemical erosion in the eastern Himalaya.  相似文献   

7.
Water samples from the Fraser, Skeena and Nass River basins of the Canadian Cordillera were analyzed for dissolved major element concentrations (HCO3, SO42−, Cl, Ca2+, Mg2+, K+, Na+), δ13C of dissolved inorganic carbon (δ13CDIC), and δ34S of dissolved sulfate (δ34SSO4) to quantify chemical weathering rates and exchanges of CO2 between the atmosphere, hydrosphere, and lithosphere. Weathering rates of silicates and carbonates were determined from major element mass balance. Combining the major element mass balance with δ34SSO4 (−8.9 to 14.1‰CDT) indicates sulfide oxidation (sulfuric acid production) and subsequent weathering of carbonate and to a lesser degree silicate minerals are important processes in the study area. We determine that on average, 81% of the riverine sulfate can be attributed to sulfide oxidation in the Cordilleran rivers, and that 25% of the total weathering cation flux can be attributed to carbonate and silicate dissolution by sulfuric acid. This result is validated by δ13CDIC values (−9.8 to −3.7‰ VPDB) which represents a mixture of DIC produced by the following weathering pathways: (i) carbonate dissolution by carbonic acid (−8.25‰) > (ii) silicate dissolution by carbonic acid (−17‰) ≈ (iii) carbonate dissolution by sulfuric acid derived from the oxidation of sulfides (coupled sulfide-carbonate weathering) (+0.5‰).δ34SSO4 is negatively correlated with δ13CDIC in the Cordilleran rivers, which further supports the hypothesis that sulfuric acid produced by sulfide oxidation is primarily neutralized by carbonates, and that sulfide-carbonate weathering impacts the δ13CDIC of rivers. The negative correlation between δ34SSO4 and δ13CDIC is not observed in the Ottawa and St. Lawrence River basins. This suggests other factors such as landscape age (governed by tectonic uplift) and bedrock geology are important controls on regional sulfide oxidation rates, and therefore also on the magnitude of sulfide-carbonate weathering—i.e., it is more significant in tectonically active areas.Calculated DIC fluxes due to Ca and Mg silicate weathering by carbonic acid (38.3 × 103 mol C · km−2 · yr−1) are similar in magnitude to DIC fluxes due to sulfide-carbonate weathering (18.5 × 103 mol C · km−2 · yr−1). While Ca and Mg silicate weathering facilitates a transfer of atmospheric CO2 to carbonate rocks, sulfide-carbonate weathering can liberate CO2 from carbonate rocks to the atmosphere when sulfide oxidation exceeds sulfide deposition. This implies that in the Canadian Cordillera, sulfide-carbonate weathering can offset up to 48% of the current CO2 drawdown by silicate weathering in the region.  相似文献   

8.
The Narmada River in India is the largest west-flowing river into the Arabian Sea, draining through the Deccan Traps, one of the largest flood basalt provinces in the world. The fluvial geochemical characteristics and chemical weathering rates (CWR) for the mainstream and its major tributaries were determined using a composite dataset, which includes four phases of seasonal field (spot) samples (during 2003 and 2004) and a decade-long (1990-2000) fortnight time series (multiannual) data. Here, we demonstrate the influence of minor lithologies (carbonates and saline-alkaline soils) on basaltic signature, as reflected in sudden increases of Ca2+-Mg2+ and Na+ contents at many locations along the mainstream and in tributaries. Both spot and multiannual data corrected for non-geological contributions were used to calculate the CWR. The CWR for spot samples (CWRspot) vary between 25 and 63 ton km−2 year−1, showing a reasonable correspondence with the CWR estimated for multiannual data (CWRmulti) at most study locations. The weathering rates of silicate (SilWR), carbonate (CarbWR) and evaporite (Sal-AlkWR) have contributed ∼38-58, 28-45 and 8-23%, respectively to the CWRspot at different locations. The estimated SilWR (11-36 ton km−2 year−1) for the Narmada basin indicates that the previous studies on the North Deccan Rivers (Narmada-Tapti-Godavari) overestimated the silicate weathering rates and associated CO2 consumption rates. The average annual CO2 drawdown via silicate weathering calculated for the Narmada basin is ∼0.032 × 1012 moles year−1, suggesting that chemical weathering of the entire Deccan Trap basalts consumes approximately 2% (∼0.24 × 1012 moles) of the annual global CO2 drawdown. The present study also evaluates the influence of meteorological parameters (runoff and temperature) and physical weathering rates (PWR) in controlling the CWR at annual scale across the basin. The CWR and the SilWR show significant correlation with runoff and PWR. On the basis of observed wide temporal variations in the CWR and their close association with runoff, temperature and physical erosion, we propose that the CWR in the Narmada basin strongly depend on meteorological variability. At most locations, the total denudation rates (TDR) are dominated by physical erosion, whereas chemical weathering constitutes only a small part (<10%). Thus, the CWR to PWR ratio for the Narmada basin can be compared with high relief small river watersheds of Taiwan and New Zealand (1-5%) and large Himalayan Rivers such as the Brahmaputra and the Ganges (8-9%).  相似文献   

9.
This study focuses on the chemical and Sr isotopic compositions of the dissolved load of the rivers of the Changjiang Basin, one of the largest riverine systems in the world. Water samples were collected in August 2006 from the main tributaries and the main Changjiang channel. The chemical and isotopic analyses indicated that four major reservoirs (carbonates, silicates, evaporites and agriculture/urban effluents) contribute to the total dissolved solutes. The overall chemical weathering (carbonate and silicate) rate for the Changjiang is approximately 40 ton/km2/year or 19 mm/kyr, similar to that of the Ganges-Brahmaputra system, and the basin is characterized by carbonate and silicate weathering rates ranging from 17 to 56 ton/km2/year and from 0.7 to 7.1 ton/km2/year, respectively. In the lower reach of the Changjiang main channel, the weathering rates are estimated to be 36 and 2.2 ton/km2/year for carbonates and silicates, respectively. It appears that sulphuric acid may dominate chemical weathering reactions for some sub-basins. The budgets of CO2 consumption are estimated to be 646 × 109 and 191 × 109 mol/year by carbonate and silicate weathering, respectively. The contribution of the anthropogenic inputs to the cationic TDS of the Changjiang is estimated to be 15-20% for the most downstream stations. Our study suggested that the Changjiang is strongly impacted by human activities and is very sensitive to the change of land use.  相似文献   

10.
The Hanjiang River, the largest tributaries of the Changjiang (Yangtze) River, is the water source area of the Middle Route of China’s South-to-North Water Transfer Project. The chemical and strontium isotopic compositions of the river waters are determined with the main purpose of understanding the contribution of chemical weathering processes and anthropogenic inputs on river solutes, as well as the associated CO2 consumption in the carbonate-dominated basin. The major ion compositions of the Hanjiang River waters are characterized by the dominance of Ca2+ and HCO3 , followed by Mg2+ and SO4 2−. The increase in TDS and major anions (Cl, NO3 , and SO4 2−) concentrations from upstream to downstream is ascribed to both extensive influences from agriculture and domestic activities over the Hanjiang basin. The chemical and Sr isotopic analyses indicate that three major weathering sources (dolomite, limestone, and silicates) contribute to the total dissolved loads. The contributions of the different end-members to the dissolved load are calculated with the mass balance approach. The calculated results show that the dissolved load is dominated by carbonates weathering, the contribution of which accounts for about 79.4% for the Hanjiang River. The silicate weathering and anthropogenic contributions are approximately 12.3 and 6.87%, respectively. The total TDS fluxes from chemical weathering calculated for the water source area (the upper Hanjiang basin) and the whole Hanjiang basin are approximately 3.8 × 106 and 6.1 × 106 ton/year, respectively. The total chemical weathering (carbonate and silicate) rate for the Hanjiang basin is approximately 38.5 ton/km2/year or 18.6 mm/k year, which is higher than global mean values. The fluxes of CO2 consumption by carbonate and silicate weathering are estimated to be 56.4 × 109 and 12.9 × 109 mol/year, respectively.  相似文献   

11.
Chemical weathering in the Three Rivers region of Eastern Tibet   总被引:2,自引:0,他引:2  
Three large rivers - the Chang Jiang (Yangtze), Mekong (Lancang Jiang) and Salween (Nu Jiang) - originate in eastern Tibet and run in close parallel over 300 km near the eastern Himalayan syntaxis. Seventy-four river water samples were collected mostly during the summer season from 1999 to 2004. Their major element compositions vary widely, with total dissolved solids (TDS) ranging from 31 to 3037 mg/l, reflecting the complex geologic makeup of the vast drainage basins. The major ion distribution of the main channel samples primarily reflects the weathering of carbonates. Evaporite dissolution prevails in the headwater samples of the Chang Jiang in the Tibetan Plateau interior, as evidenced by the high TDS (928 and 3037 mg/l) and the Na-Cl dominant major element composition. Local tributary samples of the Mekong and Salween, draining the Lincang Batholith and the Tengchong Volcano, show distinctive silicate weathering signatures. We used five reservoirs - rain, halite, sulfate, carbonate, and silicate - in a forward model to calculate the contribution from silicate weathering to the total dissolved load and to estimate the consumption rate of atmospheric CO2 by silicate weathering. Carbonate weathering accounts for about 50% of the total cationic charge (TZ+) in the samples of the Mekong and the Salween exiting the Tibetan Plateau. In the “exit” sample of the Chang Jiang, 45% of TZ+ is from halite dissolution inherited from the extreme headwater tributaries in the interior of the plateau, and carbonates contribute only 26% to the TZ+. The net rate of CO2 consumption by silicate weathering is (103-121) × 103 mol km−2 year−1, lower than the rivers draining the Himalayan front. GIS-based analyses indicate that runoff and relief can explain 52% of the spread in the rate of atmospheric CO2 drawdown by silicate weathering, but other climatic (temperature, precipitation, potential evapotranspiration) and geomorphic (elevation, slope) factors also show collinearity. Only qualitative conclusions can be drawn for the significance of lithology due to lack of digitized lithologic information. The effect of the peculiar drainage pattern due to tectonic forcing is not readily apparent in the major element composition or in increased chemical weathering rates. The 87Sr/86Sr ratios and the silicate weathering rates are in general lower in the Three Rivers than in the rivers draining the Himalayan front.  相似文献   

12.
Sediment fluxes from high standing oceanic islands (HSIs) such as New Zealand are some of the highest known [Milliman J. D. and Syvitski J. P. M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol.100, 525-544]. Recent geochemical work has suggested that along with their extremely high physical weathering yields, many New Zealand watersheds also have very high chemical weathering yields. In New Zealand, the magnitude of both the physical and chemical weathering yields is related to the lithology of the watershed. Most of the previous work on this topic has been undertaken in Southern Alps watersheds of schist and greywacke and in East Cape watersheds of semi-consolidated marine sediments and greywacke. We recently sampled North Island watersheds in the Taranaki and Manawatu-Wanganui regions which have been subjected to volcanism since the Miocene. We sampled watersheds that contain both volcanic and sedimentary rocks. A series of water and sediment samples was collected and analyzed for major, minor and trace elements. This was done to quantify the weathering intensities in the watersheds and to establish the relationship between physical and chemical weathering yields in volcanic lithologies. Our results reveal distinct chemical signatures for the different regions. Waters draining the Taranaki region volcanics are significantly enriched in K+, and depleted in Ca2+ and Sr2+ compared to waters draining the Manawatu-Wanganui region volcanics, which also traverse expanses of sedimentary siltstones and mudstones. The Ca2+ and Sr2+ depletions may reflect the relative absence of CaCO3 in the Taranaki region watersheds. In addition, sediment samples from the Taranaki region show significant enrichment in Ti, Al, Ca, Fe, Mn, Mg, Ca, and P and depletion in Si and Rb compared to those of the Manawatu-Wanganui region. From total dissolved solids concentrations and mean annual water discharge, we calculate chemical weathering yields of 60-240 tons km−2 a−1. These weathering yields fall within the middle to upper range of those previously documented for the Southern Alps (93-480 tons km−2 a−1) and East Cape (62-400 tons km−2 a−1). Calculated silicate weathering yields of 12-33.6 tons km−2 a−1 and CO2 consumption of 852-2390 × 103 mol km−2 a−1 for the rivers draining the Taranaki volcanic region are higher than those previously reported for watersheds hosted in sedimentary and metamorphosed rock terrains on HSIs. CO2 consumption is found to be within the range previously measured for the basaltic terrains of the Deccan Traps (580-2450 × 103 mol km−2 a−1) and Réunion Island(1300-4400 × 103 mol km−2 a−1). Our calculated chemical weathering yields demonstrate the importance of HSIs, particularly those with volcanic terrains, when considering global geochemical fluxes.  相似文献   

13.
14.
CO2 consumption by chemical weathering is an integral part of the boundless carbon cycle, whose spatial patterns and controlling factors on continental scale are still not fully understood. A dataset of 338 river catchments throughout North America was used to empirically identify predictors of bicarbonate fluxes by chemical weathering and interpret the underlying controlling factors. Detailed analysis of major ion ratios enables distinction of the contributions of silicate and carbonate weathering and thus quantifying CO2 consumption. Extrapolation of the identified empirical model equations to North America allows the analysis of the spatial patterns of the CO2 consumption by chemical weathering.Runoff, lithology and land cover were identified as the major predictors of the riverine bicarbonate fluxes and the associated CO2 consumption. Other influence factors, e.g. temperature, could not be established in the models. Of the distinguished land cover classes, artificial surfaces, dominated by urban areas, increase bicarbonate fluxes most, followed by shrubs, grasslands, managed lands, and forests. The extrapolation results in an average specific bicarbonate flux of 0.3 Mmol km−2 a−1 by chemical weathering in North America, of which 64% originates from atmospheric CO2, and 36% from carbonate mineral dissolution. Chemical weathering in North America thus consumes 50 Mt atmospheric CO2-C per year. About half of that originates from 10% of the area of North America.The estimated strength of individual predictors differs from previous studies. This highlights the need for a globally representative set of regionally calibrated models of CO2 consumption by chemical weathering, which apply very detailed spatial data to resolve the heterogeneity of earth surface processes.  相似文献   

15.
In this study we evaluate the dynamics of the biophile element phosphorus (P) in the catchment and proglacial areas of the Rhône and Oberaar glaciers (central Switzerland). We analysed erosion and dissolution rates of P-containing minerals in the subglacial environment by sampling water and suspended sediment in glacier outlets during three ablation and two accumulation seasons. We also quantified biogeochemical weathering rates of detrital P in proglacial sedimentary deposits using two chronosequences of samples of fresh, suspended, material obtained from the Oberaar and Rhône water outlets, Little-Ice-Age (LIA) moraines and Younger Dryas (YD) tills in each catchment. Subglacial P weathering is mainly a physical process and detrital P represents more than 99% of the precipitation-corrected total P denudation flux (234 and 540 kg km−2 yr−1 for the Rhône and Oberaar catchments, respectively). The calculated detrital P flux rates are three to almost five times higher than the world average flux. The precipitation-corrected soluble reactive P (SRP) flux corresponds to 1.88-1.99 kg km−2 yr−1 (Rhône) and 2.12-2.44 kg km−2 yr−1 (Oberaar), respectively. These fluxes are comparable to those of tropical rivers draining transport-limited, tectonically inactive weathering areas.In order to evaluate the efficiency of detrital P weathering in the Rhône and Oberaar proglacial areas, we systematically graded apatite grains extracted from the chronosequence in each catchment relative to weathering-induced changes in their surface morphologies (grades 1-4). Fresh apatite grains are heavily indented and dissolution rounded (grade 1). LIA grains from two 0-10 cm deep moraine samples show extensive dissolution etching, similar to surface grains from the YD profile (mean grades 2.7, 3.5 and 3.5, respectively). In these proglacial deposits, the weathering front deepens progressively as a function of time due to biocorrosion in the evolving acidic pedosphere, with mechanical indentations on grains acting as sites of preferential dissolution. We also measured iron-bound, organic and detrital P concentrations in the chronosequence and show that organic and iron-bound P has almost completely replaced detrital P in the top layers of the YD profiles. Detrital P weathering rates are calculated as 310 and 280 kg km−2 yr−1 for LIA moraines and 10 kg km−2 yr−1 for YD tills. During the first 300 years of glacial sediment exposure P dissolution rates are shown to be approximately 70 times higher than the mean global dissolved P flux from ice-free continents. After 11.6 kyr the flux is 2.5 times the global mean. These data strengthen the argument for substantial changes in the global dissolved P flux on glacial-interglacial timescales. A crude extrapolation from the data described here suggests that the global dissolved P flux may increase by 40-45% during the first few hundred years of a deglaciation phase.  相似文献   

16.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

17.
Rates of chemical and silicate weathering of the Deccan Trap basalts, India, have been determined through major ion measurements in the headwaters of the Krishna and the Bhima rivers, their tributaries, and the west flowing streams of the Western Ghats, all of which flow almost entirely through the Deccan basalts.Samples (n = 63) for this study were collected from 23 rivers during two consecutive monsoon seasons of 2001 and 2002. The Total dissolved solid (TDS) in the samples range from 27 to 640 mg l−1. The rivers draining the Western Ghats that flow through patches of cation deficient lateritic soils have lower TDS (average: 74 mg l−1), whereas the Bhima (except at origin) and its tributaries that seem to receive Na, Cl, and SO4 from saline soils and anthropogenic inputs have values in excess of 170 mg l−1. Many of the rivers sampled are supersaturated with respect to calcite. The chemical weathering rates (CWR) of “selected” basins, which exclude rivers supersaturated in calcite and which have high Cl and SO4, are in range of ∼3 to ∼60 t km−2 y−1. This yields an area-weighted average CWR of ∼16 t km−2 y−1 for the Deccan Traps. This is a factor of ∼2 lower than that reported for the Narmada-Tapti-Wainganga (NTW) systems draining the more northern regions of the Deccan. The difference can be because of (i) natural variations in CWR among the different basins of the Deccan, (ii) “selection” of river basin for CWR calculation in this study, and (iii) possible contribution of major ions from sources, in addition to basalts, to rivers of the northern Deccan Traps.Silicate weathering rates (SWR) in the selected basins calculated using dissolved Mg as an index varies between ∼3 to ∼60 t km−2 y−1, nearly identical to their CWR. The Ca/Mg and Na/Mg in these rivers, after correcting for rain input, are quite similar to those in average basalts of the region, suggesting near congruent release of Ca, Mg, and Na from basalts to rivers. Comparison of calculated and measured silicate-Ca in these rivers indicates that at most ∼30% of Ca can be of nonsilicate origin, a likely source being carbonates in basalts and sediments.The chemical and silicate weathering rates of the west flowing rivers of the Deccan are ∼4 times higher than the east flowing rivers. This difference is due to the correspondingly higher rainfall and runoff in the western region and thus reemphasises the dominant role of runoff in regulating weathering rates. The silicon weathering rate (SWR) in the Krishna Basin is ∼15 t km−2 y−1, within a factor of ∼2 to those in the Yamuna, Bhagirathi, and Alaknanda basins of the Himalaya, suggesting that under favourable conditions (intense physical weathering, high runoff) granites and the other silicates in the Himalaya weather at rates similar to those of Deccan basalts. The CO2 consumption rate for the Deccan is deduced to be ∼3.6 × 105 moles km−2 y−1 based on the SWR. The rate, though, is two to three times lower than reported for the NTW rivers system; it still reinforces the earlier findings that, in general, basalts weather more rapidly than other silicates and that they significantly influence the atmospheric CO2 budget on long-term scales.  相似文献   

18.
The Hong (Red) River drains the prominent Red River Fault Zone that has experienced various tectonic activities—intrusion of magma, exhumation of basement rocks, and influx of thermal waters—associated with the Cenozoic collision of India and Eurasia. We report dissolved major element and Sr isotope compositions of 43 samples from its three tributary systems (Da, Thao/Hong main channel, and Lo) encompassing summer and winter seasons. Carbonic acid ultimately derived from the atmosphere is the main weathering agent, and sulfuric acid from pyrite oxidation plays a minor role. Seasonality is manifested in higher calcite saturation index and Mg/TZ+ and lower Ca/Mg in summer, suggesting calcite precipitation, and in higher Si/(Na + K) ratios in summer suggesting more intensive silicate weathering. We quantified the input from rain, evaporite, carbonate, and silicate reservoirs using forward and inverse models and examined the robustness of the results. Carbonate dissolution accounts for a significant fraction of total dissolved cations (55-97%), and weathering of silicates makes a minor contribution (1-40%). Our best estimate of the spatially averaged silicate weathering rate in the Hong basin is 170 × 103 mol/km2/yr in summer and 51 × 103 mol/km2/yr in winter. We tested for correlations between the rate of CO2 consumption by silicate weathering and various climatic (air temperature, precipitation, runoff, and potential evapotranspiration) and geologic (relief, elevation, slope, and lithology) parameters calculated using GIS. Clear correlations do not emerge (except for ?CO2 and runoff in winter) which we attribute to the complex geologic setting of the area, the seasonal regime change from physical-dominant in summer to chemical-dominant in winter, and the incoherent timescales involved for the different parameters tested.  相似文献   

19.
In this study, eight organic-rich rivers that flow through the Brazilian craton in the southwestern Amazon rainforest are investigated. This investigation is the first of its type in this area and focuses on the effects of lithology, long-term weathering, thick soils, forest cover and hydrological period on the dissolved load compositions in rivers draining cratonic terrain. The major dissolved ion concentrations, alkalinity (TAlk), SiO2, trace element concentrations, and Sr isotope contents in the water were determined between April 2009 and January 2010. In addition, the isotopic values of oxygen and hydrogen were determined between 2011 and 2013. Overall, the river water is highly dilute and dominated by the major dissolved elements TAlk, SiO2 and K+ and the major dissolved trace elements Al, Fe, Ba, Mn, P, Zn and Sr, which exhibit large temporal and spatial variability and are closely correlated with the silicatic bedrock and hydrology. Additionally, rainwater and recycled water vapor and the size of the basin contribute to the geochemistry of the waters. The total weathering flux estimated from our results is 2–4 t km−2.yr−1, which is one of the lowest fluxes in the world. The CO2 consumption rate is approximately 21–61 103 mol km−2 yr−1, which is higher than expected given the stability of the felsic to basic igneous and metamorphic to siliciclastic basement rocks and the thick tropical soil cover. Thus, weathering of the cratonic terrain under intertropical humid conditions is still an important consumer of CO2.  相似文献   

20.
The S and O isotopic composition of dissolved SO4, used as a tracer for SO4 sources, was applied to the water of the Llobregat River system (NE Spain). The survey was carried out at 30 sites where surface water was sampled on a monthly basis over a period of 2a. The concentration of dissolved SO4 varied from 20 to 1575 mg L−1. Sulphur isotopic compositions clustered in two populations: one – 93% of the samples – had positive values with a mode of +9‰; the other had negative values and a mode of −5‰. Data for δ18OSO4 showed a mean value of +11‰, with no bi-modal distribution, though lower values of δ18O corresponded to samples with negative δ34S. These values can not be explained solely by the contribution of bedrock SO4 sources: that is, sulphide oxidation and the weathering of outcrops of sulphates, though numerous chemical sediments exist in the basin. Even in a river with a high concentration of natural sources of dissolved SO4, such as the Llobregat River, the δ34S values suggest that dissolved SO4 is controlled by a complex mix of both natural and anthropogenic sources. The main anthropogenic sources in this basin are fertilizers, sewage, potash mine effluent and power plant emissions. Detailed river water sampling, together with the chemical and isotopic characterisation of the main anthropogenic inputs, allowed determination of the influence of redox processes, as well as identification of the contribution of natural and anthropogenic SO4 sources and detection of spatial variations and seasonal changes among these sources. For instance, in the Llobregat River the input of fertilisers is well marked seasonally. Minimum values of δ34S are reported during fertilization periods – from January to March – indicating a higher contribution of this source. The dual isotope approach, δ34S and δ18O, is useful to better constrain the sources of SO4. Moreover, in small-scale studies, where the inputs are well known and limited, the mixing models can be enhanced and the contribution of the different sources can be quantified to some extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号