首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This paper discusses a newly developed high-quality integrated dataset of shallow earthquake ground motions that occurred in Iran, from 1976 to 2013. A total of 860 three-component strong motion records are processed from 183 earthquake events, moment magnitudes 5.0?≤?M w ?≤?7.4, and rupture distances of R RUP   120 km. Strong motion data from Iran having special tectonic features and shallow earthquakes with depths less than 35 km are included. This paper presents a thorough procedure used to collect and to generate a database following the Next-Generation Attenuation-West research projects. This database can be used in the development and ranking of ground motion models and for seismological and engineering hazard and risk analyses. Unprocessed strong motion records are obtained from the Iranian Strong Motion Network (ISMN). The time series collected were thoroughly examined through several rounds of quality reviews. The newly generated database includes the peak ground acceleration, peak ground velocity, and pseudo-spectral acceleration for the 5% damped with periods ranging from 0.01 to 10 s. The database also includes ground motion information and source characterization and parameters. This study is the near-source compiled ground motion database that can be used for Iran, and it is consistent with standard worldwide databases.  相似文献   

2.
The earthquake is known to be an unpredictable geophysical phenomenon. Only few seismic indicators and assumptions of earthquakes can be predicted with probable certainty. This study attempts to analyze the earthquakes over the Indo-Himalayan Border region including Bhutan, Bangladesh, Nepal, China and India during the period from 1995 to 2015. Bangladesh, Bhutan and China borders experience fewer earthquakes than Nepal and India border regions. However, Indo-China rim has inconsistency and vast range in its magnitude. Bangladesh though is a small country with respect to others, but it experiences earthquakes comparable to Bhutan. Nepal experiences highest number of earthquakes. In the last 20 years around 800 records have been observed with moment magnitude > 4.0 Richter scale, while very few records (around 10–12) have been observed for large earthquakes having moment magnitude > 6.0 Richter scale over the region. In this study adaptive neuro-fuzzy inference system has been implemented to assess the predictability of seismic moment associated with large earthquakes having the moment magnitude between 6.0 and 8.0 Richter scales using different combination of epochs, technique and membership functions. The Gaussian membership function with hybrid technique and 40 epochs is observed to be the reasonable model on the basis of the selected spatial and temporal scale. The forecast error in terms of root-mean-square error with the stopping criterion 0.001 has been observed to be 0.006 in case of large earthquakes (> 6.5 Richter scale), that is, forecast accuracy of 99.4%. The model bias of 0.6% may be due to inadequate number of large earthquakes having moment magnitude > 6.5 Richter scale over the region.  相似文献   

3.
Takashi Furumura 《Landslides》2016,13(6):1519-1524
The sequence of the 2016 Kumamoto, Japan, earthquake, which included an initial M6.5 foreshock on April 14, followed by a larger M7.3 mainshock on April 16, and subsequently occurred high aftershock activity, caused significant damage in Kumamoto and neighboring regions. The near-field strong motion record by strong motion network (K-NET and KiK-net) and the intensity meter network demonstrated clearly the characteristics of the strong ground motion developed by the shallow (H = 12 km), inland earthquake comprising short-time duration (<15–20 s) but large (>1G) ground accelerations. The velocity response spectra of the near-fault motion at Mashiki and Nishihara showed large levels (>300–550 cm/s) in the short-period range (T = 1–2 s), several times larger than that of the near-field record of the destructive 1995 Kobe earthquake (M7.3) and that of the 2004 Mid-Niigata earthquake (M6.8). This period corresponds to the collapse vulnerability of Japanese wooden-frame houses, and is the major cause of severe damage during the Kumamoto earthquake. The response spectra also showed extremely large levels (>240–340 cm/s) in the long-period (T > 3 s) band, which is potentially disastrous for high-rise buildings, large oil storage tanks, etc. to have longer resonant period. Such long-period motion was, for the most parts, developed by the static displacement of the fault movement rather than by the seismic waves radiating from the source fault. Thus, the extreme near-fault long-period motion was hazardous only close to the fault but it attenuated very rapidly away from the fault.  相似文献   

4.
A. Golara 《Natural Hazards》2014,73(2):567-577
Seismic hazard maps are widely used for engineering design, land-use planning, and disaster mitigation. The development of the new seismic hazard map of Iran with regard to the specification of Iranian high-pressure gas network is based on probabilistic seismic hazard analysis using the historical and new earthquakes data, geology, tectonics, fault activity, and seismic zone models in Iran. The map displays the probabilistic estimates of peak ground acceleration for the return period of 2,475 year (2 % probability in 50 years). The results presented in this study will provide the basis for the preparation of risk map, the estimation of insurance premiums, finding best paths for future pipelines, planning, and relocating lifeline facilities especially for interconnected infrastructures.  相似文献   

5.
In conventional seismic hazard analysis, uniform distribution over area and magnitude range is assumed for the evaluation of source seismicity which is not able to capture peculiar characteristic of near-fault ground motion well. For near-field hazard analysis, two important factors need to be considered: (1) rupture directivity effects and (2) occurrence of scenario characteristic ruptures in the nearby sources. This study proposed a simple framework to consider these two effects by modifying the predictions from the conventional ground motion model based on pulse occurrence probability and adjustment of the magnitude frequency distribution to account for the rupture characteristic of the fault. The results of proposed approach are compared with those of deterministic and probabilistic seismic hazard analyses. The results indicate that characteristic earthquake and directivity consideration both have significant effects on seismic hazard analysis estimates. The implemented approach leads to results close to deterministic seismic hazard analysis in the short period ranges (T < 1.0 s) and follows probabilistic seismic hazard analysis results in the long period ranges (T > 1.0 s). Finally, seismic hazard maps based on the proposed method could be developed and compared with other methods.  相似文献   

6.
A method of seismic zonation based on deterministic modeling of rupture plane is presented in this work. This method is based on the modeling of finite rupture plane along identified lineaments in the region using the semi-empirical technique, of Midorikawa [(1993) Tectonophysics 218:287–295]. The modeling procedure follows ω2 scaling law, directivity effects, and other strong motion parameters. The technique of zonation is applied for technoeconomically important NE part of Brahmaputra valley that falls in the seismic gap region of Himalaya. Zonation map prepared for Brahmaputra valley for earthquakes of magnitude M > 6.0 show that approximately 90,000 km2 area fall in the highly hazardous zone IV, which covers region that can have peak ground accelerations of order more than 250 cm/s2. The zone IV covers the Tezu, Tinsukia, Dibrugarh, Ziro, North Lakhimpur, Itanagar, Sibsagar, Jorhat, Golaghat, Wokha, Senapati, Imphal, and Kohima regions. The Pasighat, Daring, Basar, and Seppa region belong to zone III with peak ground accelerations of the order 200–250 cm/s2. The seismic zonation map obtained from deterministic modeling of the rupture is consistent with the historical seismicity map and it has been found that the epicenter of many moderate and major earthquakes fall in the identified zones.  相似文献   

7.
Recent and paleo seismicity indicate that moderate seismic activity is relatively large for Aswan area. This is a warning on the possibility of occurrence of earthquakes in the future too. No strong motion records are available in Aswan area for engineers to rely upon. Consequently, the seismological modeling is an alternative approach till sufficient instrumental records around Aswan become available. In the present study, we have developed new ground motion attenuation relationship for events spanning 4.0?? M w?≤?7.0 and distance to the surface projection of the fault up to 100 km for Aswan based on a statistically simulated seismological model. We generated suites of ground motion time histories using stochastic technique. The ground motion attenuation relation describes the dependence of the strength of the ground motions on the earthquake magnitude and distance from the earthquake. The proposed equation for peak ground acceleration (PGA) for the bed rock is in the form of: $ {\mathbf{log}}{\text{ }}\left( {{\mathbf{PGA}}/{\mathbf{gal}}} \right){\text{ }} = {\mathbf{1}}.{\mathbf{24}} + {\mathbf{0}}.{\mathbf{358}}{M_{\mathbf{w}}} - {\text{ }}{\mathbf{log}}\left( {\mathbf{R}} \right){\text{ }}-{\text{ }}{\mathbf{0}}.{\mathbf{008}}{\text{ }}{\mathbf{R}}{\text{ }} + {\text{ }}{\mathbf{0}}.{\mathbf{22}}{\text{ }}{\mathbf{P}} $ . Where PGA is the peak ground acceleration in gal (cm/s2); Mw, its moment magnitude; R is the closest distance between the rupture projection and the site of interest; and the factor P is a dummy variable. It is observed that attenuation of strong motion in Aswan is correlated with those used before in Egypt.  相似文献   

8.
Presented in this paper are results of two centrifuge tests on single piles installed in unimproved and improved soft clay (a total of 14 piles), with the relative pile–soil stiffness values varying nearly two orders of magnitude, and subjected to cyclic lateral loading and seismic loading. This research was motivated by the need for better understanding of lateral load behavior of piles in soft clays that are improved using cement deep soil mixing (CDSM). Cyclic test results showed that improving the ground around a pile foundation using CDSM is an effective way to improve the lateral load behavior of that foundation. Depending on the extent of ground improvement, elastic lateral stiffness and ultimate resistance of a pile foundation in improved soil increased by 2–8 times and 4–5 times, respectively, from those of a pile in the unimproved soil. While maximum bending moments and shear forces within piles in unimproved soil occurred at larger depths, those in improved soil occurred at much shallower depths and within the improved zone. The seismic tests revealed that, in general, ground improvement around a pile is an effective method to reduce accelerations and dynamic lateral displacements during earthquakes, provided that the ground is improved at least to a size of 13D × 13D × 9D (length × width × depth), where D is the outside diameter of the pile, for the pile–soil systems tested in this study. The smallest ground improvement used in these tests (9D × 9D × 6D), however, proved ineffective in improving the seismic behavior of the piles. The ground improvement around a pile reduces the fundamental period of the pile–soil system, and therefore, the improved system may produce larger pile top accelerations and/or displacements than the unimproved system depending on the frequency content of the earthquake motion.  相似文献   

9.
Earthquake ground motion model is an essential part of seismic hazard assessment. The model consists in several empirical ground motion prediction equations (GMPEs) that are considered to be applicable to the given region. When the recorded ground motion data are scarce, numerical modeling of ground motion based on available seismological information is widely used. We describe results of stochastic simulation of ground motion acceleration records for western Saudi Arabia. The simulation was performed using the finite fault model and considering peak ground acceleration and amplitudes of spectral acceleration at natural frequencies 0.2 and 1.0 s. Based on the parameters of the input seismological model that were accepted in similar previous studies, we analyze influence of variations in the source factor (stress drop) and in the local attenuation and amplification factors (kappa value, crustal amplification). These characteristics of the model are considered as the major contributors to the ground motion variability. The results of our work show that distribution of simulated ground motion parameters versus magnitude and distance reveals an agreement with the GMPEs recently used in seismic hazard assessment for the region. Collection of credible information about seismic source, propagation path, and site attenuation parameters using the regional ground motion database would allow constraining the seismological model and developing regional GMPEs. The stochastic simulation based on regional seismological model may be applied for generation of ground motion time histories used for development of analytical fragility curves for typical constructions in the region.  相似文献   

10.
Estimation of seismic spectral acceleration in Peninsular India   总被引:6,自引:0,他引:6  
Peninsular India (PI), which lies south of 24°N latitude, has experienced several devastating earthquakes in the past. However, very few strong motion records are available for developing attenuation relations for ground acceleration, required by engineers to arrive at rational design response spectra for construction sites and cities in PI. Based on a well-known seismological model, the present paper statistically simulates ground motion in PI to arrive at an empirical relation for estimating 5% damped response spectra, as a function of magnitude and source to site distance, covering bedrock and soil conditions. The standard error in the proposed relationship is reported as a function of the frequency, for further use of the results in probabilistic seismic hazard analysis.  相似文献   

11.
In this study, stochastic finite fault modeling is used to simulate Uttarkashi (1991) and Chamoli (1999) earthquakes using all available source, path, and site parameters available for the region. These two moderate earthquakes are recorded at number of stations of a strong motion network. The predicted peak ground accelerations at these stations are compared with the observed data and the ground motion parameters are constrained. The stress drop of Uttarkashi and Chamoli earthquakes is constrained at 77 and 65?bars, respectively, whereas the quality factor Q C is 112 $ f^{0.97} $ and 149 $ f^{0.95} $ for these two regions. The high-frequency attenuation parameter Kappa is in the range 0.04?C0.05. The constrained ground motion parameters are then used to simulate Mw 8.5 earthquake in central seismic gap region of Himalaya. Two scenarios are considered with epicenter of future great earthquake at locations of Uttarkashi and Chamoli earthquakes using above constrained parameters. The most vulnerable towns are the towns of Dehradun and Almora where expected PGA is in excess of 600?cm/s2 at VS30 520?m/s when the epicenter of the great earthquake is at the location of Uttarkashi (1991) earthquake. The towns of Shimla and Chandigarh can expect PGA close to 200?cm/s2. Whereas when the epicenter of the great earthquake is at the location of Chamoli (1999) earthquake, the towns of Dehradun and Almora can expect PGA of around 500 and 400?cm/s2, respectively, at VS30 620?m/s. The National Capital Region, Delhi can expect accelerations of around 80?cm/s2 in both the cases. The PGA contour maps obtained in this study can be used to assess the seismic hazard of the region and identify vulnerable areas in and around central Himalaya from a future great earthquake.  相似文献   

12.
Mumbai city, the economical capital of India, is located on the west coast of stable intra-plate continental region of Peninsular India which has an experience of significant historical earthquakes in the past. The city stood as the fourth most populous city in the world. Recent seismo-tectonic studies of this city highlighted the presence of active West coast fault and Chiplun fault beneath the Deccan basalt. In the present study, spatial variability of probabilistic seismic hazard for Mumbai region (latitudes of 18.85–19.35°N and longitudes of 72.80–73.15°E at a grid spacing of 0.05°) which includes Mumbai city, Suburban, part of Thane district and Navi Mumbai, in terms of ground motion parameters; peak horizontal acceleration and spectral acceleration at 1.0-s period for 2 and 10 % probability of exceedance in 50 years are generated. The epistemic uncertainty in hazard estimation is accounted by employing seven different ground motion prediction equations developed for worldwide shallow crustal intra-plate environments. Further, the seismic hazard results are deaggregated for Mumbai (latitude 18.94°N, longitude 72.84°E) to understand the relative contributions of earthquake sources in terms of magnitude and distance. The generated hazard maps are compared with the zoning specified by Indian seismic code (IS1893: Part 1 in Indian standard criteria for earthquake-resistant design of structures, Part 1—General provisions and buildings. Bureau of Indian Standards, New Delhi, India, 2002) for rocky site. Present results show an underestimation of potential seismic hazard in the entire study region by non-probabilistic zoning prescribed by IS1893: Part 1 with significantly higher seismic hazard values in the southern part of Navi Mumbai.  相似文献   

13.
We test the sensitivity of seismic hazard to three fault source models for the northwestern portion of Gujarat, India. The models incorporate different characteristic earthquake magnitudes on three faults with individual recurrence intervals of either 800 or 1600 years. These recurrence intervals imply that large earthquakes occur on one of these faults every 266–533 years, similar to the rate of historic large earthquakes in this region during the past two centuries and for earthquakes in intraplate environments like the New Madrid region in the central United States. If one assumes a recurrence interval of 800 years for large earthquakes on each of three local faults, the peak ground accelerations (PGA; horizontal) and 1-Hz spectral acceleration ground motions (5% damping) are greater than 1 g over a broad region for a 2% probability of exceedance in 50 years' hazard level. These probabilistic PGAs at this hazard level are similar to median deterministic ground motions. The PGAs for 10% in 50 years' hazard level are considerably lower, generally ranging between 0.2 g and 0.7 g across northwestern Gujarat. Ground motions calculated from our models that consider fault interevent times of 800 years are considerably higher than other published models even though they imply similar recurrence intervals. These higher ground motions are mainly caused by the application of intraplate attenuation relations, which account for less severe attenuation of seismic waves when compared to the crustal interplate relations used in these previous studies. For sites in Bhuj and Ahmedabad, magnitude (M) 7 3/4 earthquakes contribute most to the PGA and the 0.2- and 1-s spectral acceleration ground motion maps at the two considered hazard levels.  相似文献   

14.
Seismic hazard assessment of slow active fault zones is challenging as usually only a few decades of sparse instrumental seismic monitoring is available to characterize seismic activity. Tectonic features linked to the observed seismicity can be mapped by seismic imaging techniques and/or geomorphological and structural evidences. In this study, we investigate a seismic lineament located in the Swiss Alpine foreland, which was discussed in previous work as being related to crustal structures carrying in size the potential of a magnitude M 6 earthquake. New, low-magnitude (?2.0 ≤ ML ≤ 2.5) earthquake data are used to image the spatial and temporal distribution of seismogenic features in the target area. Quantitative and qualitative analyses are applied to the waveform dataset to better constrain earthquakes distribution and source processes. Potential tectonic features responsible for the observed seismicity are modelled based on new reinterpretations of oil industry seismic profiles and recent field data in the study area. The earthquake and tectonic datasets are then integrated in a 3D model. Spatially, the seismicity correlates over 10–15 km with a N–S oriented sub-vertical fault zone imaged in seismic profiles in the Mesozoic cover units above a major decollement on top of the mechanically more rigid basement and seen in outcrops of Tertiary series east of the city of Fribourg. Observed earthquakes cluster at shallow depth (<4 km) in the sedimentary cover. Given the spatial extend of the observed seismicity, we infer the potential of a moderate size earthquake to be generated on the lineament. However, since the existence of along strike structures in the basement cannot be excluded, a maximum M 6 earthquake cannot be ruled out. Thus, the Fribourg Lineament constitutes a non-negligible source of seismic hazard in the Swiss Alpine foreland.  相似文献   

15.
Acceleration and velocity data of large earthquakes recorded by the Mexican National Broadband Seismological Network were used to generate isoseismal maps for Mexico. The seismic data consist of 99 events recorded at 27 seismic stations located in the southern and northern regions of Mexico from 2004 to 2009. The magnitude (Mw) of these events ranged from 4.1 to 7.1. Peak ground velocity values (PGV) and peak ground accelerations (PGA) were estimated, and velocity-derived peak ground accelerations (PGAv) were calculated. No important differences between PGAv and PGA values were found; thus, both parameters were used in the isoseismal determination. The generated synthetic isoseismal maps were compared with those from an existing catalog for large earthquakes in Mexico. Using empiric relations between PGA and MMI (modified Mercalli intensity) and PGV and MMI, the obtained simulated intensity maps showed similar behavior to those reported in the catalog. The results indicate that the PGAv values can be used to determine intensities when acceleration records (PGA) are unavailable.  相似文献   

16.
A method of seismic zonation based on the deterministic modeling of rupture planes is presented. Finite rupture planes along identified lineaments are modeled in the Uttarakhand Himalaya based on the semi empirical technique of Midorikawa (Tectonophysics 218:287–295, 1993). The expected peak ground acceleration thus estimated from this technique is divided into different zones similar to zones proposed by the Bureau of Indian standard, BIS (Indian standards code of practice for earthquake-resistant design of structures, 2002). The proposed technique has been applied to Kumaon Himalaya area and the surrounding region for earthquakes of magnitude M > 6.0. Approximately 56000 km2 study area is classified into the highest hazard zone V with peak accelerations of more than 400 cm/s2. This zone V includes the cities of the Dharchula, Almora, Nainital, Haridwar, Okhimath, Uttarkashi, Pithorahargh, Lohaghat, Munsiari, Rudraprayag, and Karnprayag. The Sobla and Gopeshwar regions belong to zone IV, where peak ground accelerations of the order from 250 to 400 cm/s2 can be expected. The prepared map shows that epicenters of many past earthquakes in this region lie in zone V, and hence indicating the utility of developed map in defining various seismic zones.  相似文献   

17.
In recent years, Iraq has experienced an increase in seismic activity, especially, near the east boundary with Iran. Previous studies present their results in terms of PGA and for return periods of 500 years and less, and other studies not continued to include the whole PSHA process whereas some recent studies continued to include the whole PSHA process using earthquakes data till 2009 including dependent events. This study includes two main stages, the first is collecting the earthquakes records including the recent events till the end of March 2016 and applying data processing to get the net catalog to independent events. The second stage is applying the steps of PSHA method. Matlab programs have been built to execute these two stages and to convert the results of PSHA computations into contours of 5% damping PGA and spectral accelerations at 0.2 and 1.0 s for a return period of 2475 years, and for rock sites. Also, spectral acceleration against period has been presented for main cities. Also, the PGA map, for a return period of 475 years, has been plotted and then prepared together with similar maps of neighbor countries in one map for comparison. In general, this comparison indicates the similarity in behavior but, the values reveal a relative agreement and they are between Turkish and Iranian values.  相似文献   

18.
Landslides triggered by moderate to major earthquakes are a recognized seismic hazard. Arias Intensity (I a) is a key intensity measure of the ground motion, but significant duration is widely used to define strong motion duration. We calculate Newmark’s displacements using earthquake records bracketing a broad range of Arias Intensity and significant duration employing Newmark’s rigid block method and a number of yield accelerations. Total landslide displacement increases with the increase in the energy content of the ground motion (I a) above a threshold. Such threshold may be expressed as a function of yield acceleration of the slope regardless of the ground motion characteristics. Newmark displacement decreases with increasing duration for earthquakes with similar energy content. The wide scatter in the results converges when using formal dimensional analysis. Self-similar symmetry may facilitate the assessment of the performance of slopes during earthquakes. The mathematical framework for probabilistic determination of landslides displacement may be a useful aid to estimate the likelihood of landslide hazards provided that the geotechnical properties of the slopes are known.  相似文献   

19.
This article is devoted to evaluating destructive earthquakes (magnitude >6) of Iran and determining properties of their source parameters. First of all, a database of documented earthquakes has been prepared via reliable references and causative faults of each event have been determined. Then, geometric parameters of each fault have been presented completely. Critical parameters such as Maximum Credible Rupture, MCR, and Maximum Credible Earthquake, MCE, have been compiled based on the geometrical parameters of the earthquake faults. The calculated parameters have been compared to the maximum earthquake and the surface rupture which have been recorded for the earthquake faults. Also, the distance between the epicenter of documented earthquake events and their causative faults has been calculated (the distance was less than 20 km for 90% of the data). Then, the distance between destructive earthquakes (with the magnitude more than 6) and the nearest active fault has been calculated. If the estimated distance is less than 20 km and the mechanism of the active fault and the event are reported the same, the active fault will be introduced as a probable causative fault of that earthquake. In the process, all of the available geological, tectonic, seismotectonic maps, aerial geophysical data as well as remote sensing images have been evaluated. Based on the quality and importance of earthquake data, the events have been classified into three categories: (1) the earthquakes which have their causative faults documented, (2) the events with magnitude higher than 7, and (3) the events with the magnitude between 6 and 7. For each category, related maps and tables have been compiled and presented. Some important faults and events have been also described throughout the paper. As mentioned in this paper, these faults are likely to be in high seismic regions with potential for large-magnitude events as they are long, deep and bound sectors of the margins characterized by different deformation and coupling rates on the plate interface.  相似文献   

20.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号