首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite, launched on 17 March 2009, is designed to measure the Earth’s mean gravity field with unprecedented accuracy at spatial resolutions down to 100?km. The accurate calibration of the gravity gradiometer on-board GOCE is of utmost importance for achieving the mission goals. ESA’s baseline method for the calibration uses star sensor and accelerometer data of a dedicated calibration procedure, which is executed every 2?months. In this paper, we describe a method for monitoring the evolution of calibration parameter during that time. The method works with star sensor and accelerometer data and does not require gravity field models, which distinguishes it from other existing methods. We present time series of calibration parameters estimated from GOCE data from 1 November 2009 to 17 May 2010. The time series confirm drifts in the calibration parameters that are present in the results of other methods, including ESA’s baseline method. Although these drifts are very small, they degrade the gravity gradients, leading to the conclusion that the calibration parameters of the ESA’s baseline method need to be linearly interpolated. Further, we find a correction of ?36 × 10?6 for one calibration parameter (in-line differential scale factor of the cross-track gradiometer arm), which improves the gravity gradient performance. The results are validated by investigating the trace of the calibrated gravity gradients and comparing calibrated gravity gradients with reference gradients computed along the GOCE orbit using the ITG-Grace-2010s gravity field model.  相似文献   

2.
A reliable and accurate gradiometer calibration is essential for the scientific return of the gravity field and steady-state ocean circulation explorer (GOCE) mission. This paper describes a new method for external calibration of the GOCE gradiometer accelerations. A global gravity field model in combination with star sensor quaternions is used to compute reference differential accelerations, which may be used to estimate various combinations of gradiometer scale factors, internal gradiometer misalignments and misalignments between star sensor and gradiometer. In many aspects, the new method is complementary to the GOCE in-flight calibration. In contrast to the in-flight calibration, which requires a satellite-shaking phase, the new method uses data from the nominal measurement phases. The results of a simulation study show that gradiometer scale factors can be estimated on a weekly basis with accuracies better than 2 × 10−3 for the ultrasensitive and 10−2 for the less sensitive axes, which is compatible with the requirements of the gravity gradient error. Based on a 58-day data set, scale factors are found that can reduce the errors of the in-flight-calibrated measurements. The elements of the complete inverse calibration matrix, representing both the internal gradiometer misalignments and scale factors, can be estimated with accuracies in general better than 10−3.  相似文献   

3.
GOCE gravitational gradients along the orbit   总被引:6,自引:3,他引:3  
GOCE is ESA’s gravity field mission and the first satellite ever that measures gravitational gradients in space, that is, the second spatial derivatives of the Earth’s gravitational potential. The goal is to determine the Earth’s mean gravitational field with unprecedented accuracy at spatial resolutions down to 100 km. GOCE carries a gravity gradiometer that allows deriving the gravitational gradients with very high precision to achieve this goal. There are two types of GOCE Level 2 gravitational gradients (GGs) along the orbit: the gravitational gradients in the gradiometer reference frame (GRF) and the gravitational gradients in the local north oriented frame (LNOF) derived from the GGs in the GRF by point-wise rotation. Because the V XX , V YY , V ZZ and V XZ are much more accurate than V XY and V YZ , and because the error of the accurate GGs increases for low frequencies, the rotation requires that part of the measured GG signal is replaced by model signal. However, the actual quality of the gradients in GRF and LNOF needs to be assessed. We analysed the outliers in the GGs, validated the GGs in the GRF using independent gravity field information and compared their assessed error with the requirements. In addition, we compared the GGs in the LNOF with state-of-the-art global gravity field models and determined the model contribution to the rotated GGs. We found that the percentage of detected outliers is below 0.1% for all GGs, and external gravity data confirm that the GG scale factors do not differ from one down to the 10−3 level. Furthermore, we found that the error of V XX and V YY is approximately at the level of the requirement on the gravitational gradient trace, whereas the V ZZ error is a factor of 2–3 above the requirement for higher frequencies. We show that the model contribution in the rotated GGs is 2–35% dependent on the gravitational gradient. Finally, we found that GOCE gravitational gradients and gradients derived from EIGEN-5C and EGM2008 are consistent over the oceans, but that over the continents the consistency may be less, especially in areas with poor terrestrial gravity data. All in all, our analyses show that the quality of the GOCE gravitational gradients is good and that with this type of data valuable new gravity field information is obtained.  相似文献   

4.
The most crucial part of the GOCE gradiometer processing is, besides the internal calibration of the gradiometer, the determination of the satellite’s inertial angular rate. This paper describes a new method for the angular rate determination. It is based on the stochastic properties of the GOCE star sensors and the gradiometer. The attitude information of both instrument types is combined at the level of angular rates. The combination is done in the spectral domain by Wiener filtering, and thus using an optimal relative weighting of the star sensor and gradiometer attitude information. Since the complete processing chain from raw measurements to gravity field solutions is performed, the results are not only analyzed at the level of gravity gradients, but also of gravity field solutions. Compared to the nominal method, already the resulting gravity gradients show a significantly improved performance for the frequencies (mainly) below the gradiometer measurement bandwidth. This can be verified by analysis of the gravity gradient trace. The improvement is propagated to the level of gravity field models, where a better accuracy can be observed for selected groups of coefficients at characteristic bands at orders k × 16, with integer k, up to high harmonic degrees.  相似文献   

5.
重力梯度仪校准参数的确定是GOCE重力梯度观测数据处理的关键环节。本文对GOCE卫星重力梯度观测值中的时变信号与粗差进行了分析,利用高精度全球重力场模型,确定了GOCE重力梯度观测值各分量的尺度因子与偏差,并对校准结果进行了精度评定。结果表明,在测量带宽内,海潮对重力梯度观测值影响在mE量级,与重力梯度仪的精度水平相当,陆地水等非潮汐重力场时变信号略小于海潮,量级约为10~(-4)E;各分量重力梯度观测值的粗差比例均大于0.2%;除EGM96模型外的其他模型对GOCE重力梯度仪进行校准后,Vxx、Vyy、Vzz、Vyz分量上尺度因子的稳定性均在10~(-4)量级,Vxz分量能达到10~(-5)量级,Vxy分量为10~(-2)量级,这与梯度观测值各分量的精度水平一致。  相似文献   

6.
潘娟霞  邹贤才 《测绘学报》2022,51(2):192-200
GOCE卫星引力梯度仪的精确校准是反演高精度重力场的前提之一,本文利用GOCE卫星L1b数据中的引力梯度仪及恒星敏感器数据实现了卫星引力梯度的内部校准。以最小二乘联合多个恒星敏感器观测数据确定内部校准使用的角速度,有效避免了单个恒星敏感器低精度角速度分量对坐标转换过程的影响。考虑到恒星敏感器坐标系与梯度仪坐标系间旋转矩阵随时间的变化,本文在ESA官方内部校准方法的基础上,提出了顾及旋转矩阵校准参数的内部校准模型,并利用2009年11月的GOCE实测数据验证了该方法的效果。结果表明,该旋转矩阵校准参数数值约100″,且在该月存在3″~30″的漂移;与GOCE官方内部校准方法对比,从卫星引力梯度精度结果来看,在低于0.005 Hz频段内,同时解算旋转矩阵的校准参数与梯度仪内3个加速度计对的校准参数的内部校准模型优于仅考虑加速度计对校准参数的模型;除此之外,本文讨论了以该模型为基础的GOCE梯度仪数据校准的可能方法,为GOCE及后续重力卫星的数据处理工作提供参考。  相似文献   

7.
A method has been developed and tested for estimating calibration parameters for the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations. These six accelerometers are part of the gradiometer, which is the prime instrument on board GOCE. It will be shown that by taking appropriate combinations of observations collected by the accelerometers, by modeling acceleration terms caused by gravity gradients from an a priori low-degree spherical harmonic expansion, and by modeling rotational acceleration terms derived from star-tracker observations, scale factors of each of the accelerometers can be estimated for each axis. Simulated observations from a so-called end-to-end simulator were used to test the method. This end-to-end simulator includes a detailed model of the GOCE satellite, its instruments and instrument errors, and its environment. Results of the tests indicate that scale factors of all six accelerometers can be determined with an accuracy of around 0.01 for all components on a daily basis.  相似文献   

8.
Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63–84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10–30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.  相似文献   

9.
A method has been implemented and tested for estimating bias and scale factor parameters for all six individual accelerometers that will fly on-board of GOCE and together form the so-called gradiometer. The method is based on inclusion of the individual accelerometer observations in precise orbit determinations, opposed to the baseline method where so-called common-mode accelerometer observations are used. The method was tested using simulated data from a detailed GOCE system simulator. It was found that the observations taken by individual accelerometers need to be corrected for (1) local satellite gravity gradient (SGG), and (2) rotational terms caused by centrifugal and angular accelerations, due to the fact that they are not located in the satellite’s center of mass. For these corrections, use is made of a reference gravity field model. In addition, the rotational terms are derived from on-board star tracker observations. With a perfect a priori gravity field model and with the estimation of not only accelerometer biases but also accelerometer drifts, scale factors can be determined with an accuracy and stability better than 0.01 for two of the three axes of each accelerometer, the exception being the axis pointing along the long axis of the satellite (more or less coinciding with the flight direction) for which the scale factor estimates are unreliable. This axis coincides with the axis of drag-free control, which results in a small variance of the signal to be calibrated and thus an inaccurate determination of its scale factor in the presence of relatively large (colored) accelerometer observation errors. In the presence of gravity field model errors, it was found that still an accuracy and stability of about 0.015 can be obtained for the accelerometer scale factors by simultaneously estimating empirical accelerations.  相似文献   

10.
The vertical gradients of gravity anomaly and gravity disturbance can be related to horizontal first derivatives of deflection of the vertical or second derivatives of geoidal undulations. These are simplified relations of which different variations have found application in satellite altimetry with the implicit assumption that the neglected terms—using remove-restore—are sufficiently small. In this paper, the different simplified relations are rigorously connected and the neglected terms are made explicit. The main neglected terms are a curvilinear term that accounts for the difference between second derivatives in a Cartesian system and on a spherical surface, and a small circle term that stems from the difference between second derivatives on a great and small circle. The neglected terms were compared with the dynamic ocean topography (DOT) and the requirements on the GOCE gravity gradients. In addition, the signal root-mean-square (RMS) of the neglected terms and vertical gravity gradient were compared, and the effect of a remove-restore procedure was studied. These analyses show that both neglected terms have the same order of magnitude as the DOT gradient signal and may be above the GOCE requirements, and should be accounted for when combining altimetry derived and GOCE measured gradients. The signal RMS of both neglected terms is in general small when compared with the signal RMS of the vertical gravity gradient, but they may introduce gradient errors above the spherical approximation error. Remove-restore with gravity field models reduces the errors in the vertical gravity gradient, but it appears that errors above the spherical approximation error cannot be avoided at individual locations. When computing the vertical gradient of gravity anomaly from satellite altimeter data using deflections of the vertical, the small circle term is readily available and can be included. The direct computation of the vertical gradient of gravity disturbance from satellite altimeter data is more difficult than the computation of the vertical gradient of gravity anomaly because in the former case the curvilinear term is needed, which is not readily available.  相似文献   

11.
徐新禹  赵永奇  魏辉  吴汤婷 《测绘学报》2015,44(11):1196-1201
GOCE卫星任务搭载了高灵敏度的重力梯度仪,其观测值用于恢复高精度高分辨率的地球重力场。本文利用EIGEN-5C、EGM2008、GOTIM3、GGM03S高精度全球重力场模型,确定了GOCE引力梯度张量的对角分量观测值(Vxx、Vyy、Vzz)的校准参数,分析了比例因子的稳定性,并讨论了相同模型不同阶次、同阶次不同模型以及是否估计漂移参数对比例因子、偏差参数及校准观测值的影响。研究表明比例因子的稳定性在10-4的量级,利用250阶的EIGEN-5C模型和EGM2008模型校准得到观测值的差异小于10-4 E,远远小于观测误差,以1d为周期估计校准参数时,是否估计漂移对校准结果的影响达到0.4E。同时,校准前后观测值差异的频谱说明校准过程主要影响Vxx、Vyy、Vzz观测值的低频部分,即来自先验重力场模型的中低(150)阶次,考虑到GOCE引力梯度的观测频带,校准后的观测值可用于恢复中高频的重力场信号。  相似文献   

12.
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model’s spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components \(V_{xy}\) and \(V_{yz}\) of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE’s inclination of \(96.7^{\circ }\). With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of \(V_{xy}\) and \(V_{yz}\) are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1’s accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.  相似文献   

13.
地球重力场和海洋环流探测(gravity field and steady-state ocean circulation explorer,GOCE)卫星重力梯度数据有色噪声和低频系统误差的滤波处理是反演高精度地球重力场的一个关键问题。针对GOCE卫星重力梯度数据的滤波处理,基于移动平均(moving average,MA)方法和CPR(circle per revolution)经验参数方法设计了两类低频系统误差滤波器,并分别将这两类滤波器与基于自回归移动平均(auto-regressive and moving average,ARMA)模型设计的有色噪声滤波器组合起来形成级联滤波器。为了分析滤波器处理的实际效果,基于空域最小二乘法采用70 d的GOCE观测数据,并联合重力恢复与气候实验(gravity recovery and climate experiment,GRACE)数据分别反演了224阶次的重力场模型GOGR-MA(MA+ARMA级联滤波)和GOGR-CPR(CPR+ARMA级联滤波)。将反演模型与采用同期数据求解的第一代GOCE系列模型及GOCE和GRACE联合模...  相似文献   

14.
We present a global static model of the Earth’s gravity field entitled DGM-1S based on GRACE and GOCE data. The collection of used data sets includes nearly 7 years of GRACE KBR data and 10 months of GOCE gravity gradient data. The KBR data are transformed with a 3-point differentiation into quantities that are approximately inter-satellite accelerations. Gravity gradients are processed in the instrumental frame. Noise is handled with a frequency-dependent data weighting. DGM-1S is complete to spherical harmonic degree 250 with a Kaula regularization being applied above degree 179. Its performance is compared with a number of other satellite-only GRACE/GOCE models by confronting them with (i) an independent model of the oceanic mean dynamic topography, and (ii) independent KBR and gravity gradient data. The tests reveal a competitive quality for DGM-1S. Importantly, we study added value of GOCE data by comparing the performance of satellite-only GRACE/GOCE models with models produced without GOCE data: either ITG-Grace2010s or EGM2008 depending on which of the two performs better in a given region. The test executed based on independent gravity gradients quantifies this added value as 25–38 % in the continental areas poorly covered with terrestrial gravimetry data (Equatorial Africa, Himalayas, and South America), 7–17 % in those with a good coverage with these data (Australia, North America, and North Eurasia), and 14 % in the oceans. This added value is shown to be almost entirely related to coefficients below degree 200. It is shown that this gain must be entirely attributed to gravity gradients acquired by the mission. The test executed based on an independent model of the mean dynamic topography suggests that problems still seem to exist in satellite-only GRACE/GOCE models over the Pacific ocean, where noticeable deviations between these models and EGM2008 are detected, too.  相似文献   

15.
The GOCE gravity gradiometer measured highly accurate gravity gradients along the orbit during GOCE’s mission lifetime from March 17, 2009, to November 11, 2013. These measurements contain unique information on the gravity field at a spatial resolution of 80 km half wavelength, which is not provided to the same accuracy level by any other satellite mission now and in the foreseeable future. Unfortunately, the gravity gradient in cross-track direction is heavily perturbed in the regions around the geomagnetic poles. We show in this paper that the perturbing effect can be modeled accurately as a quadratic function of the non-gravitational acceleration of the satellite in cross-track direction. Most importantly, we can remove the perturbation from the cross-track gravity gradient to a great extent, which significantly improves the accuracy of the latter and offers opportunities for better scientific exploitation of the GOCE gravity gradient data set.  相似文献   

16.
GOCE采用的高低卫-卫跟踪和卫星重力梯度测量技术在恢复重力场方面各有所长并互为补充,如何有效利用这两类观测数据最优确定地球重力场是GOCE重力场反演的关键问题。本文研究了联合高低卫-卫跟踪和卫星重力梯度数据恢复地球重力场的最小二乘谱组合法,基于球谐分析方法推导并建立了卫星轨道面扰动位T和径向重力梯度Tzz、以及扰动位T和重力梯度分量组合{Tzz-Txx-Tyy}的谱组合计算模型与误差估计公式。数值模拟结果表明,谱组合计算模型可以有效顾及各类数据的精度和频谱特性进行最优联合求解。采用61天GOCE实测数据反演的两个180阶次地球重力场模型WHU_GOCE_SC01S(扰动位和径向重力梯度数据求解)和WHU_GOCE_SC02S(扰动位和重力梯度分量组合数据求解),结果显示后者精度优于前者,并且它们的整体精度优于GOCE时域解,而与GOCE空域解的精度接近,验证了谱组合法的可行性与有效性。  相似文献   

17.
GOCE level 1b data processing   总被引:5,自引:2,他引:3  
In this article, the processing steps applied to the raw GOCE science payload instrument data (level 0) in order to obtain input data for the gravity field determination (level 1b) are described. The raw gradiometer measurements, which are given at the level of control voltages, have to be transformed into accelerations and gradients. For the latter step, knowledge about the GOCE attitude is required, which is provided by the star trackers. In addition, the data of the satellite to satellite tracking instrument are used to date the measurements, after its clock error has been corrected. All intermediate steps of the processing flow are described. Together with the explanation of the processing flow, an overview of the main level 1b products is given. The final part of the article discusses the means of quality control of the L1b data currently used and gives an outlook on potential processor evolutions.  相似文献   

18.
传统的引力场梯度计算公式在两极附近存在奇异性,需要换用其他的非奇异计算公式。从奇异性产生的原因入手,并结合勒让德函数的有关性质,推导了一组新的计算公式。实际计算验证了该公式的正确性和有效性。  相似文献   

19.
不同于当前广泛使用的空域法、时域法、直接解法,本文尝试采用Torus方法处理GOCE实测数据,利用71 d的GOCE卫星引力梯度数据反演了200阶次GOCE地球重力场模型,实现了对参考模型的精化。首先,采用Butterworth零相移滤波方法加移去—恢复技术,处理引力梯度观测值中的有色噪声,并利用泰勒级数展开和Kriging方法对GOCE卫星引力梯度数据进行归算和格网化,计算得到了名义轨道上格网点处的引力梯度数据。然后,利用2D-FFT技术和块对角最小二乘方法处理名义轨道上数据,获得了200阶次的GOCE地球重力场模型GOCE_Torus。利用中国和美国的GPS/水准数据进行外部检核结果说明,GOCE_Torus与ESA发布的同期模型的精度相当;GOCE_Torus模型与200阶次的EGM2008模型相比,在美国区域精度相当,但在中国区域精度提高了4.6 cm,这充分体现了GOCE卫星观测数据对地面重力稀疏区的贡献。Torus方法拥有快速高精度反演卫星重力场模型的优势,可以在重力梯度卫星的设计、误差分析及在轨快速评估等方面得到充分应用。  相似文献   

20.
Gravity gradients acquired by the Gravity field and steady-state Ocean Circulation Explorer(GOCE) do not cover the entire earth because of its sun-synchronous orbit leaving data gaps with a radius of about 6.5° in the polar regions.Previous studies showed that the loss of data in the polar regions deteriorates the accuracy of the low order(or near zonal) coefficients of the earth gravity model,which is the so-called polar gap problem in geodesy.In order to find a stable solution for the earth gravity model from the GOCE gravity gradients,three models,i.e.the Gauss-Markov model,light constraint model and the mixed model,are compared and evaluated numerically with the gravity gradient simulated with the EGM2008.The comparison shows that the Best Linear Uniformly Unbiased Estimation(BLUUE) estimator of the mixed model can solve the polar gap problem as effectively as the light constraint model;furthermore,the mixed model is more rigorous in dealing with the supplementary information and leads to a better accuracy in determining the global geoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号