首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sunspot catalogue was published by the Coimbra Astronomical Observatory (Portugal), which is now called the Geophysical and Astronomical Observatory of the University of Coimbra, for the period 1929?–?1941. We digitalised data included in that catalogue and provide a machine-readable version. We show the reconstructions for the (total and hemispheric) sunspot number index and sunspot area according to this catalogue and compare it with the sunspot number index (version 2) and the Balmaceda sunspot area series (Balmaceda et al. in J. Geophys. Res.114, A07104, 2009). Moreover, we also compared the Coimbra catalogue with records made at the Royal Greenwich Observatory. The results demonstrate that the historical catalogue compiled by the Coimbra Astronomical Observatory contains reliable sunspot data and can therefore be considered for studies about solar activity.  相似文献   

2.
Sunspots are the most conspicuous aspects of the Sun. They have a lower temperature, as compared to the surrounding photosphere; hence, sunspots appear as dark regions on a brighter background. Sunspots cyclically appear and disappear with a 11-year periodicity and are associated with a strong magnetic field ( ~103 G) structure. Sunspots consist of a dark umbra, surrounded by a lighter penumbra. Study of umbra–penumbra area ratio can be used to give a rough idea as to how the convective energy of the Sun is transported from the interior, as the sunspot’s thermal structure is related to this convective medium.An algorithm to extract sunspots from the white-light solar images obtained from the Kodaikanal Observatory is proposed. This algorithm computes the radius and center of the solar disk uniquely and removes the limb darkening from the image. It also separates the umbra and computes the position as well as the area of the sunspots. The estimated results are compared with the Debrecen photoheliographic results. It is shown that both area and position measurements are in quite good agreement.  相似文献   

3.
A new sunspot and faculae digital dataset for the interval 1874?–?1955 has been prepared under the auspices of the NOAA National Geophysical Data Center (NGDC). This digital dataset contains measurements of the positions and areas of both sunspots and faculae published initially by the Royal Observatory, Greenwich, and subsequently by the Royal Greenwich Observatory (RGO), under the title Greenwich Photo-heliographic Results (GPR), 1874?–?1976. Quality control (QC) procedures based on logical consistency have been used to identify the more obvious errors in the RGO publications. Typical examples of identifiable errors are North versus South errors in specifying heliographic latitude, errors in specifying heliographic (Carrington) longitude, errors in the dates and times, errors in sunspot group numbers, arithmetic errors in the summation process, and the occasional omission of solar ephemerides. Although the number of errors in the RGO publications is remarkably small, an initial table of necessary corrections is provided for the interval 1874?–?1917. Moreover, as noted in the preceding companion papers, the existence of two independently prepared digital datasets, which both contain information on sunspot positions and areas, makes it possible to outline a preliminary strategy for the development of an even more accurate digital dataset. Further work is in progress to generate an extremely reliable sunspot digital dataset, based on the long programme of solar observations supported first by the Royal Observatory, Greenwich, and then by the Royal Greenwich Observatory.  相似文献   

4.
Measurements from the Mount Wilson Observatory (MWO) were used to study the long-term variations of sunspot field strengths from 1920 to 1958. Following a modified approach similar to that presented in Pevtsov et al. (Astrophys. J. Lett. 742, L36, 2011), we selected the sunspot with the strongest measured field strength for each observing week and computed monthly averages of these weekly maximum field strengths. The data show the solar cycle variation of the peak field strengths with an amplitude of about 500?–?700 gauss (G), but no statistically significant long-term trends. Next, we used the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for cycles 15?–?19. This relationship was used to create a proxy of the peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA network for the period from 1874 to early 2012. Over this interval, the magnetic field proxy shows a clear solar cycle variation with an amplitude of 500?–?700 G and a weaker long-term trend. From 1874 to around 1920, the mean value of magnetic field proxy increases by about 300?–?350 G, and, following a broad maximum in 1920?–?1960, it decreases by about 300 G. Using the proxy for the magnetic field strength as the reference, we scaled the MWO field measurements to the measurements of the magnetic fields in Pevtsov et al. (2011) to construct a combined data set of maximum sunspot field strengths extending from 1920 to early 2012. This combined data set shows strong solar cycle variations and no significant long-term trend (the linear fit to the data yields a slope of ??0.2±0.8 G?year?1). On the other hand, the peak sunspot field strengths observed at the minimum of the solar cycle show a gradual decline over the last three minima (corresponding to cycles 21?–?23) with a mean downward trend of ≈?15 G?year?1.  相似文献   

5.
Long-lived (>20 days) sunspot groups extracted from the Greenwich Photoheliographic Results (GPR) are examined for evidence of decadal change. The problem of identifying sunspot groups that are observed on consecutive solar rotations (recurrent sunspot groups) is tackled by first constructing manually an example dataset of recurrent sunspot groups and then using machine learning to generalise this subset to the whole GPR. The resulting dataset of recurrent sunspot groups is verified against previous work by A. Maunder and other Royal Greenwich Observatory (RGO) compilers. Recurrent groups are found to exhibit a slightly larger value for the Gnevyshev?–?Waldmeier Relationship than the value found by Petrovay and van Driel-Gesztelyi (Solar Phys. 51, 25, 1977), who used recurrence data from the Debrecen Photoheliographic Results. Evidence for sunspot-group lifetime change over the previous century is observed within recurrent groups. A lifetime increase of a factor of 1.4 between 1915 and 1940 is found, which closely agrees with results from Blanter et al. (Solar Phys. 237, 329, 2006). Furthermore, this increase is found to exist over a longer period (1915 to 1950) than previously thought and provisional evidence is found for a decline between 1950 and 1965. Possible applications of machine-learning procedures to the analysis of historical sunspot observations, the determination of the magnetic topology of the solar corona and the incidence of severe space–weather events are outlined briefly.  相似文献   

6.
Emission core widths of K Ca ii line in the umbra and penumbra of 9 sunspots and in their vicinity are measured. All sunspots are located near the solar disc center. Data on variation of widths W K along the mean sunspot radius are obtained. Values W K in the umbra and penumbra centers are equal or somewhat less than on stars of the same luminosity.  相似文献   

7.
Torsional oscillations of seven single spots are studied based on the observations of the longitudinal magnetic field and the field of radial velocities in the photospheric Fe I λ 525.3 nm line. The periods of umbra and penumbra oscillations are 2.2–7.1 and 3.3–7.7 days, respectively. The spots at a greater solar latitude are characterized by a longer period of oscillations and a smaller axial strength of the magnetic field. The periods of umbra and penumbra oscillations increase with an increase in the period and amplitude of the sunspot umbra oscillations. The obtained results can point to a unitary mechanism of torsional oscillations of umbra and penumbra of single spots and a connection of these oscillations with the differential rotation of the Sun.  相似文献   

8.
A huge collection of solar images to visualize sunspot are acquired by various solar observatories spread across the globe. This necessitates efficient tools for detecting and analyzing the sunspots encompassing diverse solar features. One such contribution is delivered in this work by exploiting the intrinsic intensity variations of solar images associated with sunspots and their attributes. The presented mechanism initially, pre-processes the acquired solar images by correcting the intensity variations introduced while profiling from the sun center to the limb followed by smoothening using a localized window. The resultant is then differenced from the global threshold that is obtained as a result of the statistical analysis computed over the probability distribution function of the input image. This arrangement offers higher discerning variations concerned with the local contextual structures related to sunspot, umbra, and penumbra. Also, it captures the major gradient variation between these regions that adds to the pixel heterogeneity surrounding them to finally render an automatic sunspot detection mechanism distinguishing the diverse solar regions. Receiver Operating Characteristics (ROC) investigation on annual solar images in Flexible Image Transport System (FITS) format reveals the presented method’s efficacy. Also, Pearson correlation analysis of the evaluated sunspot numbers from the detected sunspots with the solar catalog reveals the scheme’s detection closeness. Moreover, the model’s simplicity analyzed along the time and space dimensions affirms its extension to real-time analysis  相似文献   

9.
We studied the evolution and dynamic processes in the chromosphere above a sunspot umbra. A relatively rarely occurring phenomenon of bright long-lasting emission observed in the umbra of a unipolar sunspot of the AR 9570 group on August 11, 2001 was investigated. It was found that during the course of the observation, emission was spreading, gradually occupying nearly the entire sunspot umbra. Based on the analysis of the observations from other observatories, we arrived at the conclusion that the bright emission was a sympathetic flare that occurred in the sunspot umbra. It was assumed that there occurred an interaction with a neighboring, rapidly evolving group that exhibited subflares on the day of observation. In the same umbra, there was taking place an oscillatory process of the type of umbral flash (observations from August 11 and 12, 2001). The characteristics of the oscillatory process in the presence of the flare were studied. As the bright emission propagated in the sunspot umbra, brightness fluctuations ceased to be seen in the umbral flashes against the background of this brighter emission. The character of velocity variations did not change substantially, although the oscillation amplitude did decrease.  相似文献   

10.
本文把我们在文[1]和[2]中建立的诊断方法,应用于美国高山天文台斯托克斯参量仪对1978年12月11日太阳黑子本影和半影取得的Q和U两个参数的轮廓,发现这个黑子的磁力线不呈现较强的扭绞。  相似文献   

11.
Spectro-polarimetric observations at 2231 nm were made of NOAA 10008 near the west solar limb on 29 June 2002 using the National Solar Observatory McMath–Pierce Telescope at Kitt Peak and the California State University Northridge – National Solar Observatory infrared camera. Scans of spectra in both Stokes I and Stokes V were collected; the intensity spectra were processed to remove strong telluric absorption lines, and the Stokes V umbral spectra were corrected for instrumental polarization. The sunspot temperature is computed using the continuum contrast and umbral temperatures down to about 3700 K are observed. A strong Tii line at 2231.0 nm is used to probe the magnetic and velocity fields in the spot umbra and penumbra. Measurements of the Tii equivalent width versus plasma temperature in the sunspot agree with model predictions. Zeeman splitting measurements of the Stokes I and Stokes V profiles show magnetic fields up to 3300 G in the umbra, and a dependence of the magnetic field on the plasma temperature similar to that which was seen using Fei 1565 nm observations of the same spot two days earlier. The umbral Doppler velocity measurements are averaged in 16 azimuthal bins, and no radial flows are revealed to a limit of ±200 m s–1. A Stokes V magnetogram shows a reversal of the line-of-sight magnetic component between the limb and disk center sides of the penumbra. Because the Tii line is weak in the penumbra, individual spectra are averaged in azimuthal bins over the entire penumbral radial extent. The averaged Stokes V spectra show a magnetic reversal as a function of sunspot azimuthal angle. The mean penumbral magnetic field as measured with the Stokes V Zeeman component splitting is 1400 G. Several weak spectral lines are observed in the sunspot and the variation of the equivalent width versus temperature for four lines is examined. If these lines are from molecules, it is possible that lines at 2230.67, 2230.77, and 2231.70 nm originate from OH, while the line at 2232.21 nm may originate from CN.  相似文献   

12.
We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot of active region NOAA 11242 using scanning spectroscopy in Hα and Ca?ii 8542 Å with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler-velocity maps. Temporal-sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.  相似文献   

13.
The boundary between the umbra and penumbra of a sunspot is consistently observed to be very sharp, on the order of 500 km. Approximating the sunspot as a static region in a homogeneous medium with a radiative surface, temperature distributions resulting from a variety of convective motions exterior to the sunspot are calculated. The calculations suggest that, for the exterior convection to produce the observed boundary, the maximum depth of the region of inhibited convection below a sunspot umbra is on the order of 103 km.  相似文献   

14.
Brynildsen  N.  Maltby  P.  Fredvik  T.  Kjeldseth-Moe  O. 《Solar physics》2002,207(2):259-290
The 3-min oscillations in the sunspot atmosphere are discussed, based on joint observing with the Transition Region and Coronal Explorer – TRACE and the Solar and Heliospheric Observatory – SOHO. We find that the oscillation amplitude above the umbra increases with increasing temperature, reaches a maximum for emission lines formed close to 1–2× 105 K, and decreases for higher temperatures. Oscillations observed with a high signal-to-noise ratio show deviations from pure linear oscillations. The results do not support the sunspot filter theory, based on the idea of a chromospheric resonator. Whereas the filter theory predicts several resonant peaks in the power spectra, equally spaced 1 mHz in frequency, the observed power spectra show one dominating peak, close to 6 mHz. Spectral observations show that the transition region lines contribute less than 13 percent to the TRACE 171 Å channel intensity above the umbra. The 3-min oscillations fill the sunspot umbra in the transition region. In the corona the oscillations are concentrated to smaller regions that appear to coincide with the endpoints of sunspot coronal loops, suggesting that wave propagation along the magnetic field makes it possible for the oscillations to reach the corona.  相似文献   

15.
D. H. Hathaway 《Solar physics》2013,286(2):347-356
Daily records of sunspot group areas compiled by the Royal Observatory, Greenwich, from May of 1874 through 1976 indicate a curious history for the penumbral areas of the smaller sunspot groups. On average, the ratio of penumbral area to umbral area in a sunspot group increases from 5 to 6 as the total sunspot group area increases from 100 to 2000 μHem (a μHem is 10?6 the area of a solar hemisphere). This relationship does not vary substantially with sunspot group latitude or with the phase of the sunspot cycle. However, for the sunspot groups with total areas <?100 μHem, this ratio changes dramatically and systematically through this historical record. The ratio for these smallest sunspots is near 5.5 from 1874 to 1900. After a rapid rise to more than 7 in 1905, it drops smoothly to less than 3 by 1930 and then rises smoothly back to more than 7 in 1961. It then returns to near 5.5 from 1965 to 1976. The smooth variation from 1905 to 1961 shows no indication of any step-like changes that might be attributed to changes in equipment or personnel. The overall level of solar activity was increasing monotonically during this time period when the penumbra-to-umbra area ratio dropped to less than half its peak value and then returned. If this history can be confirmed by other observations (e.g. Mt. Wilson or Kodaikanal), it may impact our understanding of penumbra formation, our dynamo models, and our estimates of historical changes in the solar irradiance.  相似文献   

16.
Rolf Brahde 《Solar physics》1972,26(2):318-334
A numerical method for correction of stray light in solar observations has been developed. In particular a regular sunspot, where the circular contours of penumbra and umbra are projected as ellipses, has been studied. When a specified set of values for the stray light parameters is given, and also tentative values for the relative intensities of penumbra and umbra, the integration of stray light can be performed in any point. The result will be the observable intensity if the conditions were as given by these initial values.By means of limb observations the stray light parameters may be improved, and finally a variation of the penumbra- and umbra intensities in the computation, enables a determination of these quantities by comparison with observations.The method is tested on observations of the transit of Mercury, May 9, 1970. Calculation of isophotes with Mercury close to the limb shows the black drop phenomenon; which thus may be explained as an effect of stray light only.It is also shown that the Wilson effect on a sunspot cannot be produced by stray light alone.  相似文献   

17.
本文用云南天文台在第22周太阳活动峰年期间拍摄到的大太阳黑子群照相资料,太阳黑子目视描述资料,以及Nimbus—7卫星上辐射计测量的太阳总辐照度,分别计算了太阳总辐射照度与大黑子群的本影视面积,大黑子群全群视面积和日面上全部黑子的总视面积的相关系数。结果表明,太阳总辐射照度与这三种视面积均存在强的负相关。其中与大黑子群本影视面积的相关最强,其次是与全群视面积的相关,最后是与日面上全部黑子的总视面积的相关。并对以上结果和其它有关结果进行了分析和讨论。  相似文献   

18.
The Maunder Minimum is the period between 1645 and 1715. Its main characteristic is abnormally low and prolonged solar activity. However, some authors have doubted the low level of solar activity during that period by questioning the accuracy and objectivity of the observers. This work presents a particular case of a sunspot observed during the Maunder Minimum with an unusual shape of its umbra and penumbra: a hexagon. This sunspot was observed by Cassini in November 1676, just at the core of the Maunder Minimum. This historical observation is compared with a twin case that occurred recently in May 2016. The conclusion reached is that Cassini’s record is another example of the good quality of the observations that were made during the Maunder Minimum, showing the meticulousness of the astronomers of that epoch. This sunspot observation made by Cassini does not support the conclusions of Zolotova and Ponyavin (Astrophys. J. 800, 42, 2015) that professional astronomers in the seventeenth century only registered round sunspots. Finally, a discussion is given of the importance of this kind of unusual sunspot record for a better assessment of the true level of solar activity in the Maunder Minimum.  相似文献   

19.
We perform a nonlinear study of the short-term correlation properties of the solar activity (daily range) in order to reveal their long-life variations. We estimate the lifetime of the high-frequency component of a Markov-type signal when the high-frequency component is modulated by a slowly varying multiplicative factor. This treatment is applied to different series of solar activity: Wolf Sunspot numbers (WSN), Sunspot Group numbers (SGN), and Royal Greenwich Observatory (RGO) sunspot group series. We obtain that all the lifetime estimates exhibit similar temporal variations that agree with the variations of the sunspot lifetimes directly measured from the RGO data and those of the sunspot areas. An increase of lifetimes by a factor 1.4 is observed from 1915 to 1940. At the same time, a stable ratio is observed between the sunspot group’s maximal area and the lifetime, confirming the Gnevyshev–Waldmeier-type relationship. The analysis identifies also time intervals where the homogeneity of the different time series may be questioned.  相似文献   

20.
Analysis of long-term solar data from different observatories is required to compare and confirm the various level of solar activity in depth. In this paper, we study the north–south asymmetry of monthly mean sunspot area distribution during the cycle-23 and rising phase of cycle-24 using the data from Kodaikanal Observatory (KO), Michelson Doppler Imager (MDI) and Solar Optical Observing Network (SOON). Our analysis confirmed the double peak behavior of solar cycle-23 and the dominance of southern hemisphere in all the sunspot area data obtained from three different resources. The analysis also showed that there is a 5–6 months time delay in the activity levels of two hemispheres. Furthermore, the wavelet analysis carried on the same data sets showed several known periodicities (e.g., 170–180 days, 2.1 year) in the north–south difference of sunspot area data. The temporal occurrence of these periods is also the same in all the three data sets. These results could help in understanding the underlying mechanism of north–south asymmetry of solar activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号