首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Geology of the Gasa Island (Gasado), Korea, consists mainly of tuffaceous rocks, rhyolite and andesitic rocks related to Cretaceous volcanic activity. These rocks are hydrothermally altered, and are classified into the following four alteration zones based on the alteration mineral assemblages: advanced argillic alteration (alunite‐pyrophyllite‐kaolinite‐pyrite); sericitic alteration (sericite‐kaolinite‐quartz); propylitic alteration (quartz‐chlorite‐carbonate‐pyrite); and silicified zones. Alunite in the advanced argillic zone occurred in two types; a massive or disseminated type and a vein type. Most of the massive or disseminated alunites are ≥50 μm in size, whereas the size of vein alunites is <20–30 μm. Alunite grain size is greater in the central part of disseminated or massive alunite, while it is smaller toward the margins. The gold content of each alteration zone is 21–2900 ppb, 15–88 ppb, 57–1730 ppb, and 2–231 ppb, respectively. The gold content of quartz veins developed in the alteration zones is 39–715 ppb. Gold is enriched in the minerals and rocks around faults and fissures, and is strongly concentrated in the advanced argillic alteration zone around faults. Hydrothermal solutions traveling along the fracture systems might be responsible for the comparatively high gold content in the study area. δ34S of alunites occurring in the advanced argillic alteration zone range from +16.5 to +3.9‰, although most are in a comparatively narrow range from +8.6 to +5.2‰. There is no difference between disseminated or massive and vein alunites. The δ34S of pyrites in the advanced argillic alteration zone are from +4.8 to ?2.9‰. Oxygen and hydrogen isotope values of alunites are from +8.5 to 0‰ and from ?59.6 to ?97.3‰, respectively. With an assumed temperature of 200°C, δD and δ18O of hydrothermal solutions calculated for alunites are from ?53.6 to ?91.3‰, and from ?2.4 to ?8.1 for massive or disseminated alunites and from ?6.6 to ?10.9‰ for vein alunites, respectively. These data suggest that meteoric water dominated during the alunite formation. Isotopic data, geological setting, mineralogy, size of alunite and pure alunite composition (K end member) indicate that alunites of the study area were formed in the steam‐heated environment of acid sulfate alteration.  相似文献   

2.
The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.Editorial handling: B. Lehmann  相似文献   

3.
A rhyolitic hyaloclastite from Ponza Island, Italy, was hydrothermally altered, producing four distinct alteration zones based on X-ray diffraction mineralogy and field textures: (1) nonpervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the nonpervasive argillic zone, characterized by smectite and disordered opal-CT. The other three zones exhibit more complete alteration of the hyaloclastite. The propylitic zone is characterized by mixed-layer illite-smectite (I-S) with 10 to 85% I, mordenite, opal-C, and authigenic K-feldspar (akspar). The silicic zone is characterized by I-S with ≥90% I, pure illite, quartz, akspar, and occasional albite. The sericitic zone consists primarily of I-S with ≥66% I, pure illite, quartz, and minor akspar and pyrite. K/Ar dates of I-S indicate hydrothermal alteration occurred at 3.38 ± 0.08 Ma.Oxygen isotope compositions of I-S systematically decrease from zones 1 to 4. In the argillic zone, smectite has δ18O values of 21.7 to 22.0‰ and I-S from the propylitic, silicic, and sericitic zones ranges from 14.5 to 16.3‰, 12.5 to 14.0‰, and 8.6 to 11.9‰, respectively. δ18O values for quartz from the silicic and sericitic zones range from 12.6 to 15.9‰. By use of isotope fractionation equations and data from authigenic quartz-hosted primary fluid inclusions, alteration temperatures ranged from 50 to 65°C for the argillic zone, 85 to 125°C for the propylitic zone, 110 to 210°C for the silicic zone, and 145 to 225°C for the sericitic zone. Fluid inclusion data and calculated δ18Owater values indicate that hydrothermal fluids were seawater dominated.Mass-transfer calculations indicate that hydrothermal alteration proceeded in a relatively open chemical system and alteration in the sericitic zone involved the most extensive loss of chemical species, especially Si. Systematic gains in Mg occur in all alteration zones as a result of I-S clay mineral formation, and systematic losses of Na, Ca, and K occur in most zones. With the exception of Ca, calculations of mass transfer associated with hydrothermal alteration on Ponza agree with chemical fluxes observed in laboratory experiments involving hydrothermal reactions of rhyolite and seawater. The anomalous Ca loss at Ponza may be due to hydrothermal formation of anhydrite and later low-temperature dissolution. On the basis of Mg enrichments derived from circulating seawater, we estimate the following minimum water/rock ratios: 9, 3, 6, and 9 for the argillic, propylitic, silicic, and sericitic zones, respectively. Hydrothermal fluid pH for the propylitic and silicic zones was neutral to slightly basic and relatively acidic for the sericitic zone as a result of condensation of carbonic and perhaps other acids.  相似文献   

4.
At Rodalquilar gold mineralization is found in Late Tertiary volcanic rocks of the Sierra del Cabo de Gata and is related to a caldera collapse. Radial and concentric faults were preferred sites for gold deposition. Hydrothermal activity produced a specific alteration zoning around gold-bearing vein structures, grading from an innermost advanced argillic via an argillic into a more regionally developed propylitic zone. Advanced argillic alteration with silica, pyrophyllite, alunite, and kaolinite extends down to several hundred m indicating a hypogene origin. High-grade gold mineralization in vein structures is confined to the near-surface part of the advanced argillic alteration. Fine-grained gold is associated with hematite, jarosite, limonite, or silica. At a depth of about 120 m, the oxidic ore assemblage grades into sulfide mineralization with pyrite and minor chalcopyrite, covellite, bornite, enargite, and tennantite. Two types of fluids from different sources were involved in the hydrothermal system. Overpressured and hypersaline fluids of presumably magmatic origin initiated the hydrothermal system. Subsequent hydrothermal processes were characterized by the influx of low-salinity solutions of probable marine origin and by interactions between both fluids. Deep-reaching, advanced argillic alteration formed from high-salinity fluids with 20–30 equiv. wt% NaCl at about 225°C. Near-surface gold precipitation and silification are related to fluids with temperatures of about 175°C and 3–4 equiv. wt% NaCl. Gold was transported as Au(HS) 2 , and precipitation resulted from boiling with a concomitant decrease in temperature, pressure, and pH and an increase in fO2. All features of the Rodalquilar gold deposit reveal a close relationship to acid-sulfate-type epithermal gold mineralization.  相似文献   

5.
A widespread, intense hydrothermal alteration zone has developed in the Cretaceous Saplica volcanics as a result of the intrusion of Late Cretaceous-Paleocene granitoids. The propylitic, phyllitic (sericitic), and argillic alteration along with hematite, silica polymorphs, and two types of tourmaline mineralization developed under a wide range of Eh and pH conditions.

Alunite, kaolinite, and silica are abundant in the argillic alteration, whereas sericite dominates in the phyllic alteration. Most of the major alunite deposits are located along the periphery of the Saplica volcanic rocks and in addition contain alunite, kaolinite + quartz ± opal ± cristobalite. Illite and pyrite, barite, and gypsum also occur in small amounts.

Major and trace elements are concentrated in, or were leached from, the volcanic rocks, depending upon the alteration types. In general, Al + K and Mg + Ca + Fe were enriched in the alunitic + sericitic and propylitic alteration types, respectively. On the other hand, Ca, Mg, and Fe were leached during argillic alteration, and Fe was concentrated in hematite formation. Strong leaching of Na was determined for alteration types. Silica generally decreased in argillitic (kaolinitic and alunitic) alteration zones. Most trace elements were mobile during hydrothermal alteration. Y, Sc, Mo, Cr, Co, Ni, and Zn tend to be mobile in acid aqueous systems, and thus are nearly absent in these alunitic alteration zones. In the surrounding kaolinitic envelope, these elements are present at background (average) or slightly higher concentrations. Rb and Sr contents are high in the alunitic and kaolinitic zones. Barium is highest near the alunite zone because of the relative insolubility of barite in acidic solutions. Pb and Cu contents increase in the propylitic zone. Such hydrothermal alteration zones can be used effectively in the exploration and evaluation of mineral resources of the eastern Black Sea region.  相似文献   

6.
Abstract: Hydrothermal systems related to magmatic intrusions in the Jozankei-Zenibako district, southwest Hokkaido are examined, based on field observations, K-Ar ages, and alteration mineral assemblages. The study reveals five major magmat–ic–hydrothermal systems of Late Miocene in age, comprising Ogawa (9. 7 Ma), Jozankei (9. 5–9. 0 Ma), Otarunaigawa (8. 7 Ma), Asarigawa (8. 8 and 6. 7 Ma) and Hariusu (6. 7 Ma). The Ogawa system is related to granodiorite, and the Jozankei, Otarunaigawa and Asarigawa systems are related to quartz porphyry.
The Ogawa system includes potassic, sericitic, propylitic and advanced argillic alteration as well as base-metal mineralization, represented by the Toyotomi deposit. The Jozankei and Otarunaigawa systems lack significant potassic alteration, and are accompanied by sericitic and propylitic alteration. The Otarunaigawa system is associated with base-metal mineralization at Toyohiro and Inatoyo. The Asarigawa and Hariusu systems include advanced argillic and argillic alteration, as well as iron sulfide deposits. The presence of potassic alteration only in the Ogawa system is ascribed to deeper emplacement (˜3 km from the surface) of the intrusive magma. These systems formed in terrestrial environments that existed from ca. 11 Ma to 8. 5 Ma and after 7. 5 Ma in the district.
Age–data compilation shows that the major advanced argillic alteration events in southwest Hokkaido, including those in the Jozankei-Zenibako district, formed during the periods from 9. 7–6. 5 Ma and 3. 5–1. 5 Ma. These periods correspond to the timing of normal subduction of the Pacific plate beneath the Northeast Japan arc. Normal, in contrast to oblique, plate subduction is characterized by andesitic, polygenetic volcanism and associated advanced argillic alteration.  相似文献   

7.
Porphyry Cu-Mo-Au mineralisation with associated potassic and phyllic alteration, an advanced argillic alteration cap and epithermal quartz-sulphide-gold-anhydrite veins, are telescoped within a vertical interval of 400-800 m on the northeastern margin of the Thames district, New Zealand. The geological setting is Jurassic greywacke basement overlain by Late Miocene andesitic-dacitic rocks that are extensively altered to propylitic and argillic assemblages. The porphyry Cu-Mo-Au mineralisation is hosted in a dacite porphyry stock and surrounding intrusion breccia. Relicts of a core zone of potassic K-feldspar-magnetite-biotite alteration are overprinted by phyllic quartz-sericite-pyrite or intermediate argillic chlorite-sericite alteration assemblages. Some copper occurs in quartz-magnetite-chlorite-pyrite-chalcopyrite veinlets in the core zone, but the bulk of the copper and the molybdenum are associated with the phyllic alteration as disseminated chalcopyrite and as molybdenite-sericite-carbonate veinlets. The advanced argillic cap has a quartz-alunite-dickite core, which is enveloped by an extensive pyrophyllite-diaspore-dickite-kaolinite assemblage that overlaps with the upper part of the phyllic alteration zone. Later quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins occur within and around the margins of the porphyry intrusion, and are associated with widespread illite-carbonate (argillic) alteration. Multiphase fluid inclusions in quartz stockwork veins associated with the potassic alteration trapped a highly saline (50-84 wt% NaCl equiv.) magmatic fluid at high temperatures (450 to >600 °C). These hypersaline brines were probably trapped at a pressure of about 300 bar, corresponding to a depth of 1.2 km under lithostatic conditions. This shallow depth is consistent with textures of the host dacite porphyry and reconstruction of the volcanic stratigraphy. Liquid-rich fluid inclusions in the quartz stockwork veins and quartz phenocrysts trapped a lower salinity (3-20 wt% NaCl equiv.), moderate temperature (300-400 °C) fluid that may have caused the phyllic alteration. Fluid inclusions in the quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins trapped dilute (1-3 wt% NaCl equiv.) fluids at 250 to 320 °C, at a minimum depth of 1.0 km under hydrostatic conditions. Oxygen isotopic compositions of the fluids that deposited the quartz stockwork veins fall within the 6 to 10‰ range of magmatic waters, whereas the quartz-sulphide-gold-anhydrite veins have lower '18Owater values (-0.6 to 0.5‰), reflecting a local meteoric water (-6‰) influence. A '18O versus 'D plot shows a trend from magmatic water in the quartz stockwork veins to a near meteoric water composition in kaolinite from the advanced argillic alteration. Data points for pyrophyllite and the quartz-sulphide-gold-anhydrite veins lie about midway between the magmatic and meteoric water end-member compositions. The spatial association between porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins suggests that they are all genetically part of the same hydrothermal system. This is consistent with K-Ar dates of 11.6-10.7 Ma for the intrusive porphyry, for alunite in the advanced argillic alteration, and for sericite selvages from quartz-gold veins in the Thames district.  相似文献   

8.
Abstract: Hydrothermally altered areas forming pyrophyllite‐kaolin‐sericite‐alunite deposits are distributed in Chonnam and Kyongsang areas, Cretaceous volcanic field of the Yuchon Group. The Chonnam alteration area is located within depression zone which is composed of volcanic and granitic rocks of late Cretaceous age. The clay deposits of this area show the genetic relationship with silicic lava domes. The Kyongsang alteration area is mainly distributed within Kyongsang Basin comprising volcanic, sedimentary and granitic rocks of Cretaceous and Tertiary age. Most of the clay deposits of this area are closely related to cauldrons. Paleozoic clay deposit occurs in the contact zone between Precambrian Hongjesa granite gneiss and Paleozoic Jangsan quartzite of Choson Supergroup. Cretaceous igneous rocks of the both alteration areas belong to high K calc‐alkaline series formed in the volcanic arc of continental margin by subduction‐related magmatism. Chonnam igneous rocks show more enrichment of crustal components such as K, La, Ce, Sm, Nd and Ba, higher (La/Yb)cn ratio, and higher initial 87Sr/86Sr ratio (0. 708 to 0. 712) than those of Kyongsang igneous rocks. This might be due to the difference of degree of crustal contamination during Cretaceous magmatism. The most characteristic alteration minerals of Chonnam clay deposits are alunite, kaolin, quartz, pyrophyllite and diaspore which were formed by acidic solution. Those of Kyongsang clay deposits are sericite, quartz and pyrophyllite which were formed by weak acid and neutral solution. The formation ages of the clay deposits of two alteration areas range from 70. 1 to 81. 4 Ma and 39. 7 to 79. 4 Ma, respectively. The Daehyun clay deposit in Ponghwa area of Kyongsang province shows the alteration age range from 290 to 336 Ma. This result shows the different alteration episode from the hydrothermal alteration of Cretaceous to early Tertiary in the Kyongsang and Chonnam alteration areas. These data indicate, at least, three hydrothermal activities of Tertiary (middle to late Eocene), late Cretaceous (Santonian to Maastrichtian) and Paleozoic Carboniferous Periods in South Korea.  相似文献   

9.
Abstract. The Pantingan Gold System (PGS) is a vein-type epithermal prospect exposed within the summit caldera of Mount Mariveles, Bagac, Bataan (Luzon), Philippines. It consists of nine major veins, eight of which trend NW-WNW and distributed in an en echelon array. The eastern tips of these veins appear to terminate near the NE-NNE trending Vein 1, which is located in the easternmost portion of the prospect. Metal assay results on vein and wall rock samples indicate concentrations of 0.01 to 1.1 g/ton Au, trace to 34 g/ton Ag and 0.003 to 0.02 % Cu. Andesite lava flow deposits host the PGS. Potassium-Argon isotopic dating of these andesites yields anarrow age range of 0.88± 0.13 to 1.13 ± 0.17 Ma. The surface exposures of the veins (up to 5 m wide) are encountered at different levels between 590–740 masl. These commonly display a massive texture although banding prominently occurs in Vein 1. The veins consist of gray to cream-colored crystalline and chalcedonic quartz and amorphous silica. Pyrite is the most ubiquitous sulfide mineral. It occurs either as fine-grained disseminations and aggregates in quartz or as infillings in vugs. Calcite, marcasite and bornite are also occasionally noted in the deposit. The prospect shows silicic, argillic, propylitic and advanced argillic alteration zones. Silicic and argillic alterations are confined in the immediate wall rocks of the quartz veins. Argillic alteration grades to a propylitic zone farther away from the veins. The advanced argillic alteration zone, indicated by a suite of acidic clay minerals that include kaolin-ite, dickite, pyrophyllite and alunite, might have been imprinted during the late stages of gold deposition. As a whole, the PGS displays geological and mineralogical features typical of gold mineralization in a low sulfidation, epithermal environment. It is also representative of a young, tectonically undisturbed gold deposit.  相似文献   

10.
Abstract: Mineral paragenesis of the alteration, ore and gangue minerals of the Lepanto epithermal copper‐gold deposit and the Victoria gold deposit, Mankayan Mineral District, Northern Luzon, Philippines, is discussed. The principal ore minerals of the Lepanto copper‐gold deposit are enargite and luzonite, with significant presence of tennantite‐tetrahedrite, chalcopyrite, sphalerite, galena, native gold/electrum and gold‐silver tellurides. Pervasive alteration zonations are commonly observed from silicification outward to advanced argillic then to propylitic zone. The ore mineralogy of the Lepanto copper‐gold deposit suggests high fS2 in the early stages of mineralization corresponding to the deposition of the enargite‐luzonite‐pyrite assemblage. Subsequent decrease in the fS2 formed the chalcopyrite‐tennantite‐pyrite assemblage. An increase in the fS2 of the fluids with the formation of the covellite‐digenite‐telluride assemblage caused the deposition of native gold/electrum and gold‐silver tellurides. The principal ore minerals of the Victoria gold deposit are sphalerite, galena, chalcopyrite, tetrahedrite and native gold/electrum. The alteration halos are relatively narrow and in an outward sequence from the ore, silica alteration grades to illitic‐argillic alteration, which in turn grades to propylitic alteration. The Victoria gold mineralization has undergone early stages of silica supersaturation leading to quartz deposition. Vigorous boiling increased the pH of the fluids that led to the deposition of sulfides and carbonates. The consequent decrease in H2S precipitated the gold. Gypsum and anhydrite mainly occur as overprints that cut the carbonate‐silica stages. The crosscutting and overprinting relationships of the Victoria quartz‐gold‐base metal veins on the Lepanto copper‐gold veins manifest the late introduction of near neutral pH hydrothermal fluids.  相似文献   

11.
岗岔—克莫金矿区位于西秦岭北缘夏河—合作成矿带,具浅成低温热液型矿床特征,初步显示深部可能具有斑岩成矿系统存在。利用短波红外光谱矿物分析技术对岗岔—克莫金矿区蚀变岩特征的研究表明,矿区内发育的蚀变矿物主要有白云母、伊利石、蒙脱石、高岭石、地开石、绿泥石、绿帘石和次生石英等。近矿蚀变类型主要为绢英岩化。矿区内以下家门沟口为中心向外依次发育了中心带(绢英岩化带)、过渡带(泥化带)和外围带(青磐岩化带)。此外,伊利石结晶度以下家门沟口为中心向外具有明显的降低趋势。研究结果指示下家门沟口可能是矿区的热液活动中心。  相似文献   

12.
Visible near infrared and shortwave infrared (VNIR-SWIR, 350 to 2500 nm) reflectance spectra obtained from an analytical spectral device (ASD) have been used to define alteration zones adjacent to porphyry copper deposits (PCDs), in the central part of Kerman magmatic arc, SE Iran. The spectral analysis identified sericite, illite, halloysite, montmorillonite, dickite, kaolinite, pyrophyllite, biotite, chlorite, epidote, calcite, jarosite, and iron oxyhydroxides (e.g. hematite, goethite) of hydrothermal and supergene origin. Identified alteration zones are classified into six principal types namely phyllic, phyllic/propylitic, propylitic, potassic, argillic and advanced argillic. The iron oxide minerals in the oxidized zone were also identified using spectral analysis. Results of spectral analyses of samples are consistent with mineralogical data obtained from X-ray diffraction (XRD) and petrographic studies. Spectroscopic studies by ASD demonstrate that this tool is very useful for semi-quantitative and cost effective identification of different types of alteration mineral assemblages. Furthermore, it can provide a valuable tool for evaluating aerial distribution of alteration minerals while coupled with remote sensing data analysis.  相似文献   

13.
金厂金矿18号矿体围岩蚀变发育顺序从早到晚为:钾化、硅化、绿泥石化、绢云母化、碳酸盐化、高蛉土化,从内往外依次发育青磐岩化带、绢英岩化带和钾化带.矿化出现在泥化和绢英岩化叠加处,以及泥化和青磐岩化叠加处.通过短波红外光谱测试技术,识别出本矿区有26种蚀交矿物,其中白云母含量与金矿体呈正相关,说明绢云母化与金矿化关系密切;青磐岩化带蚀变矿物组合为绿泥石+绿帘石+伊利石±埃洛石±蒙脱石±石英;钾化带蚀变矿物组合为钾长石+高岭石+埃洛石±蒙脱石±石英;绢英岩化带蚀变矿物组合为绢云母+埃洛石±蒙脱石±高岭石±石英.  相似文献   

14.
The operating Rodalquilar gold deposit and the abandoned Triunfo and Maria Josefa gold mines are located within the Sierra del Cabo de Gata volcanic field some 40 km east of Almeria in SE Spain. While the gold mineralization at Rodalquilar is mainly controlled by caldera-tectonics, vein structures at Triunfo and Maria Josefa are not. Wall-rock alteration at Triunfo and Maria Josefa is characterized by argillic alteration (illite/sericite, kaolinite). The alteration zonation around the gold-mineralized vein structures at Rodalquilar ranges from advanced argillic alteration (porous quartz, alunite, pyrophyllite, dickite) over argillic alteration into a regionally developed propylitization. Fluid inclusion studies from all three mines indicate that gold was deposited from low-salinity fluids (2–5 wt.% NaCl equivalent) between 170° and 250 °C. However, the hydrothermal system at Rodalquilar was fed by a second fluid source. High-salinity, halite and/or sylvite-bearing, liquid-rich, and vapour-dominated, CO2-bearing fluid inclusions are assumed to be of magmatic origin. High sulfidation ore mineral assemblages at depth (covellite, enargite, tennantite) and part of the advanced argillic alteration can be related to these fluids. Thus, part of those features which attribute the Rodalquilar gold deposit to the acid-sulfate or high sulfidation type of epithermal gold deposits, stem from magmatically derived fluids which are typical for a porphyry environment, whereas gold mineralization at all three localities is associated with low-salinity fluids, probably of marine origin.  相似文献   

15.
岛弧环境斑岩铜矿蚀变分带模式已为人们所熟知 ,但碰撞造山环境的斑岩铜矿蚀变分带特征尚不清楚。对此 ,文中以西藏冈底斯斑岩铜矿带为例 ,选择驱龙、冲江、厅宫 3个典型斑岩铜矿 ,对其蚀变系统进行了系统研究。依据蚀变矿物组合可分为 3个蚀变带 ,呈环带状分布。从中心向外依次为钾硅酸盐化带、石英绢云母化带、青磐岩化带。泥化带不太发育 ,通常叠加在其它蚀变带之上。钾硅酸盐化带主要蚀变矿物为钾长石、黑云母、石英、硬石膏 ,伴有大量的黄铜矿与辉钼矿 ,是成矿物质的主要堆积区。石英绢云母化带与钾硅酸盐化带渐变过渡或叠加其上 ,是次于钾硅酸盐化带的储矿部位。蚀变矿物组合为绢云母 +石英 +钾长石 ,金属硫化物有黄铁矿、黄铜矿、辉钼矿、斑铜矿 ,少量的方铅矿、闪锌矿。主要的辉钼矿以石英 +辉钼矿脉的形式出现于本矿带。青磐岩化在斑岩体内不发育 ,矿化极微弱。蚀变岩石组分分析表明 ,岩石蚀变及其分带是岩浆流体 /岩石反应时K ,Na ,Ca ,Mg等组分迁移的结果 ,矿化伴随着蚀变发生。钾硅酸盐化带、石英绢云母化带和青磐岩化带的蚀变岩石与未 (弱 )蚀变斑岩具有一致的稀土配分模式 ,REE含量有规律地变化 ,说明蚀变岩石均经历了源于岩浆的流体的交代 ,不同的蚀变形成于岩浆流体演化的不同阶段。蚀?  相似文献   

16.
Intrusion of quartz‐monzodioritic igneous bodies of Oligocene age into Eocene lithic crystal tuffs and trachy‐basalts resulted in the occurrence of a widespread argillic alteration zone in the Jizvan district (northern Iran). Mineralogically, the argillic alteration zone includes minerals such as kaolinite, quartz, smectite, pyrophyllite, muscovite‐illite, alunite, rutile, calcite, feldspar, chlorite, hematite and goethite. Therefore, the non‐CHARAC behaviour for trace elements in the argillic samples is reflected in the non‐chondritic Y/Ho and Zr/Hf ratios and the irregular REE patterns, which appear related to the tetrad effect phenomenon. The chondrite‐normalized REE distribution patterns indicate both concave (W‐shaped) and convex (M‐shaped) tetrad effects in the argillic samples. Based on the field evidence and the results from geochemical studies, it can be concluded that the samples from the argillic alteration zone having high fourth tetrad effect values (>0.30) were developed in the fault and breccia zones. The results indicate that factors such as preferential scavenging by Mn‐oxides, crystallization of clay minerals, fluid‐rock interaction, overprint of hypogene mineral assemblage by supergene ones, and the structural control, have all played an important role in the occurrence of tetrad effects in samples of the argillic zone in the Jizvan district.  相似文献   

17.
文章基于ASTER和Landsat-8OLI两种多光谱遥感数据,采用高光谱遥感技术混合调谐滤波(MTMF)、多光谱遥感技术相对吸收深度(RBD)、波段比值(BR)等方法提取了西藏多龙矿集区地堡那木岗斑岩型铜金矿床地表的蚀变矿物组合。其结果表明,基于ASTER数据的MTMF技术可将Al—OH矿物划分为白云母+高岭石/蒙脱石和地开石+蒙脱石+累托石两种组合,进一步可细分出斑岩型矿床多光谱遥感地表蚀变矿物组合并呈现出良好的分带特征:地堡那木岗铜金矿床自内而外依次为白云母+高岭石/蒙脱石→地开石+蒙脱石+累托石→Mg—OH类矿物组合,分别对应于前人野外调查所勘测到的的绢英岩化带+泥化带→泥化带→青磐岩化带,Fe3+矿物叠加于绢英岩化带、泥化带及其两带的叠合部位。所提取的多光谱遥感蚀变矿物组合分带特征对该区斑岩型铜金矿床的勘查工作提供了重要的遥感线索,对定位找矿靶区具有指导意义。  相似文献   

18.
排山楼地区变质作用的主要因素为热量(约600℃)、化学活动流体和压力(地压应力和挤压应力).地壳震动是造成本区造山作用的原因.这种现象与板块构造理论相吻合.矿物分异作用序列为:首先,受火成侵入活动的影响,产生片麻岩、糜棱岩、花岗岩;然后,经历地压和挤压的作用;最后,发生各种类型蚀变作用,包括绢云母化、硅化、碳酸岩化、方解石化、绿泥石化、脱氧作用等.排山楼金矿成矿模式可概述如下:a)成矿作用为热液蚀变型,矿床赋存在太古宙变质岩大型韧性剪切带中;b)矿体产于裂隙中;c)矿体形态与岩脉和细脉形态一致;d)围岩经历了强烈的蚀变作用;e)黄铁矿是最重要的富金矿物,热液流体来源于侵入体,在流经破碎带和裂隙带后,在围岩中沉积黄铁矿.主要岩石类型有花岗岩、角闪岩、片岩、片麻岩和糜棱岩.区内广泛发育青盘岩化、泥化和绢云母化蚀变作用.主要蚀变矿物有石英、黄铁矿、白云母、绢云母、绿帘石、黑云母、微斜长石、方解石、角闪石、云母和锆石.矿体主要赋存在花岗岩和片麻岩中.主要蚀变作用为绢云母化、黑云母化、硅化和方解石化.蚀变过程中,铁氧化物(铁帽、云母)覆于贫硫酸盐矿石表面.蚀变类型有青盘岩化(黏土)、泥化和绢云母化.通常,氧化铁与黏土矿物的混合影响卫星影像中光谱的反射.利用遥感技术方法,适于这类矿床的进一步预测研究.  相似文献   

19.
排山楼地区变质作用的主要因素为热量(约600℃)、化学活动流体和压力(地压应力和挤压应力).地壳震动是造成本区造山作用的原因.这种现象与板块构造理论相吻合.矿物分异作用序列为:首先,受火成侵入活动的影响,产生片麻岩、糜棱岩、花岗岩;然后,经历地压和挤压的作用;最后,发生各种类型蚀变作用,包括绢云母化、硅化、碳酸岩化、方解石化、绿泥石化、脱氧作用等.排山楼金矿成矿模式可概述如下:a)成矿作用为热液蚀变型,矿床赋存在太古宙变质岩大型韧性剪切带中;b)矿体产于裂隙中;c)矿体形态与岩脉和细脉形态一致;d)围岩经历了强烈的蚀变作用;e)黄铁矿是最重要的富金矿物,热液流体来源于侵入体,在流经破碎带和裂隙带后,在围岩中沉积黄铁矿.主要岩石类型有花岗岩、角闪岩、片岩、片麻岩和糜棱岩.区内广泛发育青盘岩化、泥化和绢云母化蚀变作用.主要蚀变矿物有石英、黄铁矿、白云母、绢云母、绿帘石、黑云母、微斜长石、方解石、角闪石、云母和锆石.矿体主要赋存在花岗岩和片麻岩中.主要蚀变作用为绢云母化、黑云母化、硅化和方解石化.蚀变过程中,铁氧化物(铁帽、云母)覆于贫硫酸盐矿石表面.蚀变类型有青盘岩化(黏土)、泥化和绢云母化.通常,氧化铁与黏土矿物的混合影响卫星影像中光谱的反射.利用遥感技术方法,适于这类矿床的进一步预测研究.  相似文献   

20.
The 1.5 km-large hydrothermal system of Balya is characterized by three alteration styles which from the outer halo towards the center are: (i) propylitic alteration with the hydrothermal mineral assemblage of calcite-daphnite-albite-epidote-quartz-pyrite; (ii) argillic/phyllic alteration with the hydrothermal mineral assemblage of sericite/muscovite-kaolinite-rutile-quartz ± pyrite; (iii) advanced argillic alteration with the hydrothermal mineral assemblage of alunite-jarosite-kaolinite-quartz-sericite ± pyrite. Hornblende andesite is the protolith of the hydrothermal alteration system. Enrichment in Si, Sb and Rb, and depletion in Na, Ca, Mg, Fe, Mn, P, Ba, Sr, and Zn distinguishes the argillic/phyllic and advanced alteration types from propylitic alteration and the unaltered hornblende andesite protolith. REE distribution patterns indicate an essentially immobile behaviour of REEs during the alteration cycle. K-Ar age data for unaltered and hydrothermally altered rocks define a synchronous age of 25.3 ± 1.2 Ma for both igneous and hydrothermal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号